Właściwości kryształów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Właściwości kryształów"

Transkrypt

1 Właściwości kryształów Skaar - wektor - tensor Anizotropia - izotropia Liniowość -nieiniowość e Wprowadzenie matematycznych ram opisu właściwości fizycznych materiału krystaicznego, szczegónie gdy zaeżą one od kierunku.

2 o to jest właściwość materiału? Właściwość materiału jest to wiekość, która wiąże bodziec, którym działamy na materiał z reakcją materiału na ten bodziec. Np. w odpowiedzi na naprężenie (bodziec) materiał zmieni kształt (tzn. reakcją jest odkształcenie). Właściwość, która wiąże bodziec z reakcją jest odpowiedni współczynnik sprężystości. Bodziec Właściwość Reakcja Jak to zapisać matematycznie? Właściwość (P) jest odpowiednikiem funkcji, natomiast bodziec (F) i reakcja (R) to zmienne. R = R(F) R = P(F)

3 Właściwości iniowe W niektórych przypadkach reakcja materiału jest wprost proporcjonana do bodźca: R = R + PF ub, jeśi R =, R = PF. Właściwości iniowe Właściwość może zaeżeć też od innych zmiennych. Np. stałe sprężystości zaeżą od temperatury. Moduł Temperatura 3

4 Właściwości nieiniowe Nie wszystkie właściwości są iniowe. Istnieją też właściwości, które w pewnym zakresie wiekości bodźca są iniowe, a w pewnym nie (np. właściwości optyczne niektórych kryształów).wówczas mamy: R = PF ( )= P + F P + F P +K Fn n P! F F =! F n! F n F= F = wyraz iniowy wyrazy nieiniowe Właściwości nieiniowe Przykładem właściwości nieiniowych jest pastyczność. ε& = yied n 4

5 Skaar, wektor, tensor Skaar = wiekość, która nie zaeży od kierunku i jest iczbą Wektor = wiekość, która ma kierunek, wymaga 3 iczb; Tensor = wiekość, która wymaga opisu za pomocą 9 ub więcej iczb, ae nie zaeży od układu współrzędnych. Skaar, wektor, tensor Rząd n = n = n = n = 3 Nazwa Skaar Wektor Tensor Tensor Przykład wiekości Potencjał poa eektrycznego Natężenie poa eektrycznego Przenikaność eektryczna Sprzężenie piezoeektryczne Symbo Φ e E= E i e ε = ε ij ee i d= d ijk e e e i j i j k n = 4 Tensor Moduł sztywności c= c ijk e e e e i j k 5

6 Właściwości skaarne W niektórych przypadkach, bodziec, reakcja i właściwość są skaarne.taką właściwością jest np. ciepło właściwe: Q = m T Gdzie Q dostarczone ciepło, m-masa, T - zmiana temperatury Właściwości skaarne Istnieje bardzo niewiee właściwości skaarnych, które można zapisać za pomocą jednej iczby. Poza ciepłem właściwym są to np. masa i gęstość. Właściwość jest jedną iczbą, gdy wiąże ze sobą skaarny bodziec ze skaarną reakcją. np. iość dostarczonego ciepła z temperaturą; 6

7 Właściwości tensorowe Gdy właściwość wiąże ze sobą dwie wiekości wektorowe, wówczas i bodziec i reakcja mają składowe x, y i z. Oba czynniki nie muszą być do siebie równoegłe. Przyczyną jest anizotropia kryształów. To oznacza, że właściwość też ma różne wartości w różnych kierunkach - ma składowe. Nie jest to jednak wektor (nie ma kierunku i zwrotu). Jest to TENSOR. Właściwości tensorowe W takim przypadku, zaeżność między bodźcem a reakcją może wygądać tak: Ri 3 3 P = + + i P R i i Fk F + kfh... = F = k k F h, k k Fh 7

8 Anizotropia Greckie słowo: aniso = różne, zmienne; tropos = kierunek; Praktycznie wszystkie materiały krystaiczne są anizotropowe; Wiee materiałów wytwarza się ceowo tak aby były anizotropowe (puszki do piwa, łopatki turbin ) Anizotropia E (diagona) = 73 GPa Moduł Younga żeaza bcc E (edge) = 5 GPa Data from Tabe 3.3, aister 6e. (Source of data is R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materias, 3rd ed., John Wiey and Sons, 989.) 8

9 Zasada Neumanna Eementy symetrii dowonej właściwości fizycznej kryształu musza zawierać eementy symetrii grupy punktowej kryształu. Dana właściwość może mieć dodatkowe eementy symetrii (ae nie może być mniej symetryczna niż symetria grupy punktowej). Zasada Neumanna Jeżei kryształ zawiera defekty, takie jak sieć dysokacji, wówczas symetria danej właściwości może być niższa niż symetria grupy punktowej. Zatem, zasada Neumanna powinna brzmieć następująco: Eementy symetrii dowonej właściwości fizycznej kryształu musza zawierać eementy symetrii, które są wspóne da grupy punktowej kryształu i struktury defektów obecnych w krysztae. 9

10 Symetria środkowa Wiee właściwości ma środek symetrii. Odwrócenie zwrotu działania bodźca i reakcji musi być identyczne. Tzn. jeśi R i = P ij F j, i jednocześnie zmienimy znak R i F, te same wartości P będą musiały spełniać równanie. Zatem, w takim przypadku, P ij musi być równe P ji. Anizotropia: przewodnictwo eektryczne Bodziec: poe eektryczne, E Reakcja: prąd (gęstość prądu), J Właściwość: przewodność eektryczna, J i = ij E j

11 Anizotropia: przewodnictwo eektryczne O Poe: E, E =E 3 = Reakcja: j = E, j = E, j 3 = 3 E, Anizotropia: właściwości mechaniczne Przykładem właściwości zaeżnej od kierunku jest sprężystość. Nawet kryształ reguarny jest anizotropowy. Moduł Younga w kierunku [] jest przeważnie większy niż w kierunku []. Zatem, do opisu właściwości sprężystych kryształu reguarnego potrzebne są trzy stałe sprężystości (ciało całkowicie izotropowe wymaga E (diagona) = 73 GPa stałych). E (edge) = 5 GPa

12 Anizotropia właściwości mechanicznych W -D przypadku, da iniowego, sprężystego ciała naprężenie jest proporcjonane do odkształcenia ε, czyi =Eε. Zaeżność =Eε jest znana jako prawo Hooke a. W ogónym, 3-D przypadku: ij = ijk k ij = cijkε k c c c c = c c c c c c c3 c4 c6 c7 c8 c c c 3... c3 c c 99 9 ε ε ε ε ε ε ε ε ε stałych sprężystości?

13 Tensor naprężeń 3 ij 3 Wektor prostopadły do danej powierzchni Kierunek siły działającej na tę powierzchnię Anizotropia właściwości mechanicznych Zatem, poszczegóne składowe naprężenia zdefiniowane są następująco: 3

14 Anizotropia właściwości mechanicznych Ponieważ: ij = ji Zatem, wystarczy 6 składowych tensora naprężeń Anizotropia właściwości mechanicznych = Zapisując uogónione prawo Hooke'a za pomocą tensorów, mamy: 3 = ij ijk k

15 Anizotropia właściwości mechanicznych Jest jeszcze jedna niezgodność: jak się mają oznaczenia w macierzy współczynników do czteroindeksowych oznaczeń w tensorowym zapisie prawa Hooke'a? ij = ijk k 3 = Tensor Macierz Anizotropia właściwości mechanicznych Ogónie, w przypadku 3-D, prawo Hooke a mówi, że składniki naprężenia są iniową funkcją składowych tensora odkształcenia, gdzie 36 stałych,,, 66, to stałe sprężystości. W danej temperaturze współczynniki ij są stałe. 36 stałych ij to: 6 stałych i=j oraz 3 stałych, w których i j. Tych jest 5, ponieważ tyko połowa jest niezaeżna. Razem:. 5

16 6 Anizotropia właściwości mechanicznych = sym Przykład

17 Przykład Odwrotność modułu Younga kryształu tetragonanego wykreśona w 3D; A. Authier, Laboratoire de Minéraogie- ristaographie, Université Pierre et Marie urie, Paris, France. Anizotropia właściwości mechanicznych Jeżei kryształ jest symetryczny, wówczas stałych sprężystości może być mniej. Struktura Trójskośna Jednoskośna Rombowa Tetragonana Heksagonana Reguarna iało izotropowe Symetria obrotowa brak x x 3 Liczba stałych

18 Symetria Niech O jest operacją symetrii R () = PF R () = OPO T F R () = R () Te dwa wyniki są nierozróżniane czyi równe. Symetria Da tensora -rzędu i operacji symetrii O, po zastosowaniu operacji symetrii otrzymamy nową macierz stałych sprężystości, '. Jej składowe wyznacza się w następujący sposób: ijk = ΣO im O jn O ko O p mnop 8

19 Symetria Rozważmy oś 4-krotną równoegłą do osi z. z ijk = ΣO im O jn O ko O p mnop O 4 = Tensor Macierz = = Symetria Ponieważ musi być równe, otrzymujemy: =, 3 = 3, 44 = 35, 6 =- 6, oraz 4 = 5 = 4 = 5 = 34 = 35 = 36 = 45 = 46 = 56 = =

20 Symetria W układzie reguarnym, po zastosowaniu wszystkich operacji symetrii, okazuje się, że są tyko 3 niezaeżne stałe symetrii:, and 44, Używa się również stałej ' = ( - )/, która jest stałą sprężystości związaną z naprężeniem ścinającym w kierunku <>. Miarą sprężystej anizotropii jest stosunek 44 /'. Poikryształy mm Adapted from Fig. K, coor inset pages of aister 6e. (Fig. K is courtesy of Pau E. Danieson, Teedyne Wah hang Abany) płyta Nb-Hf-W; środkowy obszar: miejsce spawania. Każde ziarno to monokryształ; rozmiary ziarna krystaicznego mogą być od nm do cm.

21 Poikryształy Poikryształy mogą, ae nie muszą być izotropowe: Jeśi ziarna krystaiczne są zorientowane przypadkowa (E poi Fe = GPa) Jeśi nie: to materiał jest anizotropowy. µm Adapted from Fig. 4.(b), aister 6e. (Fig. 4.(b) is courtesy of L.. Smith and. Brady, the Nationa Bureau of Standards, Washington, D [now the Nationa Institute of Standards and Technoogy, Gaithersburg, MD].) 4 Poikryształy Skoro każdy kryształ jest inaczej ustawiony i jego właściwości są anizotropowe to jak obiczyć właściwości całego poikryształu?

22 Poikryształy Żeby przeprowadzić dokładne obiczenia, naeżałoby znać orientację każdego krystaitu, co jest raczej niemożiwe. Poikryształy Rzadko możiwe jest dokładne obiczenie właściwości poikryształu. Bardziej odpowiednią procedurą jest wyznaczyć górną i doną granicę danej właściwości.

23 Poikryształy Aby opisać właściwości materiału, trzeba zdefiniować minimany reprezentatywny eement objętości wystarczająco duży aby statystycznie reprezentaował cały materiał. Pytanie: ie krystaitów wystarczy aby reprezentować cały poikrystaiczny materiał? Przykład: górna i dona granica właściwości sprężystych Moduł Voigta: najprostszy mode górnej granicy stałych sprężystości zakłada, że wszystkie ziarna doznają takiego samego odkształcenia. Moduł Reussa: najprostszy mode donej granicy stałych sprężystości zakłada, że wszystkie ziarna doznają takiego samego naprężenia. 3

24 Przykład: górna i dona granica właściwości sprężystych Moduł Reussa : Moduł Voigta : E Reuss = s E Voigt = c Przykład: górna i dona granica właściwości sprężystych 4

25 Anizotropia poikryształów Odkształcenie sprężyste w warunkach anizotropowych jest opisane przez 3 - stałych sprężystości ij, natomiast całkowicie izotropowe ciało mastałe. Poikryształ nie musi być izotropowy: Tekstura, gdzie ziarna nie są przypadkowo zorientowane; Uporządkowanie cząstek innej fazy; 5

26 6 Materiał ortotropowy Materiały takie jak drewno, aminaty, sta wacowana, kompozyty, w których poszczegóne warstwy mają różną orientację włókien; Mają one 3 prostopadłe płaszczyzny symetrii i 3 odpowiadające im prostopadłe osie (tzw. osie ortotropowe). Materiał ortotropowy Zatem, stałe ij są niezmienne wzgędem obrotu o 8 wokół osi ortotropowych. 36 stałych ij ogranicza się do. =

27 Materiał izotropowy Jeśi materiał poikrystaiczny jest zbudowany z ziaren krystaicznych zorientowanych w całkowicie przypadkowy sposób, wówczas jego właściwości mechaniczne nie zaeżą od kierunku. Materiał jest całkowicie izotropowy. W takim przypadku iość stałych sprężystości redukuje się do : = = = = 3 = 3 = Materiał izotropowy Naprężenie w takim przypadku można zapisać jako: ' ' ' = = = ' ' ' ( ( ( = λ δ + µ ' ij ' ii ' ij ' ' ' ' ij ' ' ' ) ) ) I można wprowadzić inny rodzaj stałych sprężystości (stałe Lame'a) λ = µ = 7

28 8 Materiał izotropowy zęściej stosowanymi stałymi sprężystości są moduł Younga (E) i stała Poissona (ν) Stała Poissona to stosunek odkształcenia poprzecznego do podłużnego. )] ( [ )] ( [ )] ( [ ν ν ν + = + = + = E E E Materiał izotropowy W zapisie macierzowym: + = ) )( ( E ν ν ν ν ν ν ν ν ν ν ν ν ν ν

29 Anizotropia innych właściwości mechanicznych Łupiwość, twardość, pastyczność,.. Łupiwość kryształu Łupiwość Tendencja do pękania wzdłuż płaszczyzn, które są słabo związane między sobą; Powstają płaskie, błyszczące płaszczyzny; 9

30 Łupiwość kryształu fuoryt, hait i kacyt Łupiwość kryształu - mika ma ideaną łupiwość Muscovite 3

31 Łupiwość pozwaa na rozpoznawanie niektórych minerałów Łupiwość Pyroxene: dwie płaszczyzny łupiwości pod kątem około 9 o ; Amfibo: dwie płaszczyzny pod kątem 56 o i 4 o ; 3

32 Łupiwość kryształu Gdy kryształ nie ma płaszczyzn łupiwości: powstaje przeom muszowy (np. w kwarcu) Twardość Twardość - stopień oporu, jaki stawia kryształ zewnętrznemu mechanicznemu działaniu - również zaeży od kierunku. 3

33 Twardość Anizotropię twardości wykazują wszystkie kryształy. Jeśi ze środka badanej ściany kryształu odmierzymy w każdym kierunku wektor proporcjonany do wiekości użytej siły (czyi do twardości) i końce wektorów połączymy krzywą, to otrzymamy tzw. krzywą twardości zwaną również figurą twardości. Twardość Krzywa twardości jest okręgiem da całkowicie izotropowego materiału.

34 Twardość Przykłady: Twardość haitu (Na) na ścianie () jest mniejsza w kierunku krawędzi sześcianu, a większa w kierunku przekątnej ściany; Twardość fuorytu (af ) na ścianie () jest większa w kierunku krawędzi sześcianu, a mniejsza w kierunku przekątnej ściany; Twardość Poikryształy też nie są ani jednorodne, ani izotropowe pod wzgędem twardości Kontur twardości boku metaowego o rozmiarze 8 mm Twardość w funkcji odegłości od spawu. 34

35 Literatura Prof. A.D. Roet, arnegie Meon University, Dept. of Mat. Sci. and Eng.; Denyse Lemaire, "Atoms, Eements, Mineras, Rocks: Earth s Buiding Materias" Janet Rankin, Division of Engineering, MRSE Teacher Institute; 35

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Skaar - wektor - tensor Anizotropia - izotropia Liniowość -nieiniowość e Wprowadzenie matematycznych ram opisu właściwości fizycznych materiału krystaicznego, szczegónie gdy zaeżą

Bardziej szczegółowo

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ 11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

UOGÓLNIONE PRAWO HOOKE A

UOGÓLNIONE PRAWO HOOKE A UOGÓLNIONE PRAWO HOOKE A Układ liniowosprężysty Clapeyrona Robert Hooke podał następującą, pierwotna postać prawa liniowej sprężystości: ut tensio sic vis, czyli takie wydłużenie jaka siła W klasycznej

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

6. ZWIĄZKI FIZYCZNE Wstęp

6. ZWIĄZKI FIZYCZNE Wstęp 6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe

Bardziej szczegółowo

Fala EM w izotropowym ośrodku absorbującym

Fala EM w izotropowym ośrodku absorbującym Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów

Bardziej szczegółowo

Integralność konstrukcji

Integralność konstrukcji 1 Integraność konstrukcji Wykład Nr 2 Inżynierska i rzeczywista krzywa rozciągania Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.p/dydaktyka/imir/index.htm

Bardziej szczegółowo

STRUKTURA CIAŁA STAŁEGO

STRUKTURA CIAŁA STAŁEGO STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich

Bardziej szczegółowo

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ GAUSSA

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ GAUSSA Ćwiczenie WYZNACZANIE MOUŁU SZTYWNOŚCI METOĄ YNAMICZNĄ GAUSSA.1. Wiadomości ogóne Pod wpływem sił zewnętrznych ciała stałe uegają odkształceniom tzn. zmieniają swoje wymiary oraz kształt. Jeżei po usunięciu

Bardziej szczegółowo

ROZDZIAŁ 2 RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW KONFIGURACJA OSIOWA. σ = (2.1a) ε = (2.1b) σ = i, j = 1,2,...6 (2.2a) ε = i, j = 1,2,...6 (2.

ROZDZIAŁ 2 RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW KONFIGURACJA OSIOWA. σ = (2.1a) ε = (2.1b) σ = i, j = 1,2,...6 (2.2a) ε = i, j = 1,2,...6 (2. ROZDZIAŁ J. German: PODTAWY MCHANIKI KOMPOZYTÓW WŁÓKNITYCH ROZDZIAŁ RÓWNANIA FIZYCZN DLA KOMPOZYTÓW KONFIGURACJA OIOWA W rozdziale tym zostaną przedstawione równania fizyczne dla materiałów anizotropowych,

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

Ćw. 4. Wyznaczanie modułu Younga z ugięcia

Ćw. 4. Wyznaczanie modułu Younga z ugięcia KATEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw.. Wyznaczanie modułu Younga z ugięcia Wprowadzenie Ze wzgędu na budowę struktury cząsteczkowej, ciała stałe możemy podzieić na amorficzne oraz

Bardziej szczegółowo

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami

Bardziej szczegółowo

powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki

powierzchnia rozdziału - dwie fazy ciekłe - jedna faza gazowa - dwa składniki Przejścia fazowe. powierzchnia rozdziału - skokowa zmiana niektórych parametrów na granicy faz. kropeki wody w atmosferze - dwie fazy ciekłe - jedna faza gazowa - dwa składniki Przykłady przejść fazowych:

Bardziej szczegółowo

RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH

RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH Część 5. RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH 5. RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH 5.. ZWIĄZKI MIĘDZY ODKSZTAŁCENIAMI I GŁÓWNYMI NAPRĘŻENIAMI W każdym materiale konstrukcyjnym

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA

1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA J. Wyrwał, Wykłady z echaniki ateriałów.5. ZWIĄZKI KONSTYTUTYWN STRONA FIZYCZNA.5.. Wprowadzenie Wyprowadzone w rozdziałach.3 (strona statyczna) i.4 (strona geoetryczna) równania (.3.36) i (.4.) są niezależne

Bardziej szczegółowo

SUROWCE I RECYKLING. Wykład 2

SUROWCE I RECYKLING. Wykład 2 SUROWCE I RECYKLING Wykład 2 Układ krystalograficzny grupuje kryształy o pewnych wspólnych cechach symetrii geometrycznej Postacie krystalograficzne Kryształy ograniczone ścianami jednoznacznymi stanowią

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów

WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ Właściwości materiałów O możliwości zastosowania danego materiału decydują jego właściwości użytkowe; Zachowanie się danego materiału w środowisku pracy to zaplanowana

Bardziej szczegółowo

Wykład 5. Komórka elementarna. Sieci Bravais go

Wykład 5. Komórka elementarna. Sieci Bravais go Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Technika sensorowa. Czujniki piezorezystancyjne. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel

Technika sensorowa. Czujniki piezorezystancyjne. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel Technika sensorowa Czujniki piezorezystancyjne dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel. 12 617 30 39 Wojciech.Maziarz@agh.edu.pl 1 Czujniki działające w oparciu o efekt Tensometry,

Bardziej szczegółowo

TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP)

TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP) TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP) Wstęp. Podstawy matematyczne. Tensor naprężenia. Różniczkowe równania równowagi Zakład Mechaniki Budowli PP Materiały pomocnicze do TSP (studia niestacjonarne,

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego. Metody obiczeniowe w biomechanice UTRATA STATECZNOŚCI STATECZNOŚĆ odpornośćna małe zaburzenia. Układ stabiny po małym odchyeniu od stanu równowagi powrót do pierwotnego położenia. Układ niestabiny po małym

Bardziej szczegółowo

STRUKTURA KRYSTALICZNA

STRUKTURA KRYSTALICZNA PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais

Bardziej szczegółowo

Rozdział 3: Badanie i interpretacja drgań na płaszczyźnie fazowej. Część 1 Odwzorowanie drgań oscylatora liniowego na płaszczyźnie fazowej

Rozdział 3: Badanie i interpretacja drgań na płaszczyźnie fazowej. Część 1 Odwzorowanie drgań oscylatora liniowego na płaszczyźnie fazowej WYKŁAD 5 Rozdział 3: Badanie i interpretacja drgań na płaszczyźnie fazowej Część 1 Odwzorowanie drgań oscyatora iniowego na płaszczyźnie fazowej 3.1. Płaszczyzna fazowa, trajektoria fazowa, obraz fazowy

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

Mechanika Analityczna i Drgania

Mechanika Analityczna i Drgania Mechanika naityczna i rgania Zasada prac przygotowanych dr inż. Sebastian akuła Wydział nżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki mai: spakua@agh.edu.p dr inż. Sebastian akuła

Bardziej szczegółowo

Wykład 1. Symetria Budowy Kryształów

Wykład 1. Symetria Budowy Kryształów Wykład Symetria Budowy Kryształów Ciała krystaliczne i amorficzne Każda substancja ciekła (z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe. Jednakże proces

Bardziej szczegółowo

4. Elementy liniowej Teorii Sprężystości

4. Elementy liniowej Teorii Sprężystości 4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.

Bardziej szczegółowo

Poprawa właściwości konstrukcyjnych stopów magnezu - znaczenie mikrostruktury

Poprawa właściwości konstrukcyjnych stopów magnezu - znaczenie mikrostruktury Sympozjum naukowe Inżynieria materiałowa dla przemysłu 12 kwietnia 2013 roku, Krynica-Zdrój, Hotel Panorama Poprawa właściwości konstrukcyjnych stopów magnezu - znaczenie mikrostruktury P. Drzymała, J.

Bardziej szczegółowo

Prawo Coulomba. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Prawo Coulomba. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Prawo Couomba Autorzy: Zbigniew Kąko Kami Kutorasiński 2019 Prawo Couomba Autorzy: Zbigniew Kąko, Kami Kutorasiński Siłę wzajemnego oddziaływania dwóch naładowanych punktów materianych (ładunków punktowych)

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

Laboratorium Dynamiki Maszyn

Laboratorium Dynamiki Maszyn Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.

Bardziej szczegółowo

Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne.

Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne. Układ regularny Możliwe elementy symetrii: 3 osie 3- krotne m płaszczyzny równoległe do ścian m płaszczyzny przekątne 4 osie 4- krotne 2 osie 2- krotne Układ regularny Możliwe elementy symetrii: 3 osie

Bardziej szczegółowo

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem

Bardziej szczegółowo

Wprowadzenie do WK1 Stan naprężenia

Wprowadzenie do WK1 Stan naprężenia Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Wstęp. Krystalografia geometryczna

Wstęp. Krystalografia geometryczna Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)

Bardziej szczegółowo

LINIOWA MECHANIKA PĘKANIA

LINIOWA MECHANIKA PĘKANIA Podstawowe informacje nt. LINIOW MECHNIK PĘKNI Wytrzymałość materiałów II J. German KONCEPCJ CŁKI J 1 Podstawy teoretyczne Sprężyste (iniowo b nieiniowo), jednorodne i anizotropowe continm materiane o

Bardziej szczegółowo

Rozwiązanie: Zadanie 2

Rozwiązanie: Zadanie 2 Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 7 a szeregi Fouriera (zarówno w przypadku ciągłym, jak i dyskretnym) jest szczegónym przypadkiem aproksymacji funkcjami ortogonanymi. Anaitycznie rozwiązanie zadania aproksymacji trygonometrycznej

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Sił Si y y w ewnętrzne (1)(1 Mamy my bry r łę y łę mate t r e iralną obc ob iążon ż ą u kła k de d m e si m ł si ł

Sił Si y y w ewnętrzne (1)(1 Mamy my bry r łę y łę mate t r e iralną obc ob iążon ż ą u kła k de d m e si m ł si ł echanika ogóna Wykład nr 5 Statyczna wyznaczaność układu. Siły wewnętrzne. 1 Stopień statycznej wyznaczaności Stopień zewnętrznej statycznej wyznaczaności n: Beka: n=rgrs; Rama: n=r3ogrs; rs; Kratownica:

Bardziej szczegółowo

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Dany jest stan naprężenia w układzie x 1,x 2,x 3 T 11 12 13 [ ] 21 23 31 32 33 Znaleźć wektor naprężenia w płaszczyźnie o normalnej

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało

Bardziej szczegółowo

DEFEKTY STRUKTURY KRYSTALICZNEJ

DEFEKTY STRUKTURY KRYSTALICZNEJ DEFEKTY STRUKTURY KRYSTALICZNEJ Rodzaje defektów (wad) budowy krystalicznej Punktowe Liniowe Powierzchniowe Defekty punktowe Wakanse: wolne węzły Atomy międzywęzłowe Liczba wad punktowych jest funkcją

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie

Bardziej szczegółowo

Rys Przykładowe krzywe naprężenia w funkcji odkształcenia dla a) metali b) polimerów.

Rys Przykładowe krzywe naprężenia w funkcji odkształcenia dla a) metali b) polimerów. 6. Właściwości mechaniczne II Na bieżących zajęciach będziemy kontynuować tematykę właściwości mechanicznych, którą zaczęliśmy tygodnie temu. Ponownie będzie nam potrzebny wcześniej wprowadzony słowniczek:

Bardziej szczegółowo

θ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC

θ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC Przykłady drgań: Wahadło ateatyczne (ałe wychyenia): θ ( sinθ) M g && θ gsinθ && θ gθ (1-cosθ) && g θ + θ g g naczej: υ T V W & 1 g T θ υ 1 ( cosθ ) + V & θ dw dt &&& θθ + g & θ sinθ θ ub && g θ + sinθ

Bardziej szczegółowo

MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW

MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW ĆWICZENIA LABORATORYJNE Z MATERIAŁOZNAWSTWA Statyczna próba rozciągania stali Wyznaczanie charakterystyki naprężeniowo odkształceniowej. Określanie: granicy sprężystości, plastyczności, wytrzymałości na

Bardziej szczegółowo

MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność

MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność MATERIA ciała stałe - kryształy - ciała bezpostaciowe (amorficzne) - ciecze - gazy KRYSZTAŁY Periodyczność Kryształ (idealny) struktura zbudowana z powtarzających się w przestrzeni periodycznie identycznych

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 5

INSTRUKCJA DO CWICZENIA NR 5 INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić

Bardziej szczegółowo

mgr inż. Paweł Szeptyński Podstawy wytrzymałości materiałów i mechaniki układów prętowych 07 Teoria stanu naprężenia i odkształcenia

mgr inż. Paweł Szeptyński Podstawy wytrzymałości materiałów i mechaniki układów prętowych 07 Teoria stanu naprężenia i odkształcenia NAPRĘŻENIE Teoria stanu naprężenia i odkształcenia Naprężeniem nazywamy gęstość powierzchniowych sił wewnętrznych obrazujących oddziaływanie jednej części ciała na drugą, po dokonaniu jego myślowego rozcięcia.

Bardziej szczegółowo

3. Równania konstytutywne

3. Równania konstytutywne 3. Równania konstytutywne 3.1. Strumienie w zjawiskach transportowych Podczas poprzednich zajęć wprowadziliśmy pojęcie strumienia masy J. W większości zjawisk transportowych występuje analogiczna wielkość

Bardziej szczegółowo

W przestrzeni liniowej funkcji ciągłych na przedziale [a, b] można określić iloczyn skalarny jako następującą całkę:

W przestrzeni liniowej funkcji ciągłych na przedziale [a, b] można określić iloczyn skalarny jako następującą całkę: Układy funkcji ortogonanych Ioczyn skaarny w przestrzeniach funkcji ciągłych W przestrzeni iniowej funkcji ciągłych na przedziae [a, b] można okreśić ioczyn skaarny jako następującą całkę: f, g = b a f(x)g(x)w(x)

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie

Bardziej szczegółowo

x = cos θ. (13.13) P (x) = 0. (13.14) dx 1 x 2 Warto zauważyć, że miara całkowania w zmiennych sferycznych przyjmuje postać

x = cos θ. (13.13) P (x) = 0. (13.14) dx 1 x 2 Warto zauważyć, że miara całkowania w zmiennych sferycznych przyjmuje postać 3.. Zaeżność od kąta θ Aby rozwiązać równanie 3.9) da dowonego ν m, rozważymy przypadek z m 0, a potem pokażemy jak z tego rozwiązania przez wieokrotne różniczkowanie wygenerować rozwiązanie da dowonego

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

ZASTOSOWANIE METODY HOMOGENIZACJI DO WYZNACZANIA STAŁ YCH MATERIAŁ OWYCH MATERIAŁ U NIEJEDNORODNEGO

ZASTOSOWANIE METODY HOMOGENIZACJI DO WYZNACZANIA STAŁ YCH MATERIAŁ OWYCH MATERIAŁ U NIEJEDNORODNEGO ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVII NR (66) 006 Lesł aw Kyzioł Akademia Marynarki Wojennej ZASTOSOWANIE METODY HOMOGENIZACJI DO WYZNACZANIA STAŁ YCH MATERIAŁ OWYCH MATERIAŁ U NIEJEDNORODNEGO

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą

Bardziej szczegółowo

Teoria sprężystości F Z - F Z

Teoria sprężystości F Z - F Z Teoria sprężystości Ciało sprężyste bryła, która pod wpływem działających sił zewnętrznych ulega deformacji zmienia swój kształt i/lub objętość i wraca do pierwotnej postaci po ustaniu działania tych sił.

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.

Bardziej szczegółowo

σ ij x 3 x 2 x 1 NAPRĘŻENIA I ODKSZTAŁCENIA Wstęp: Pojęcia te występują w opisie procesu odkształcenia tzn. są to zmiany wymiarów

σ ij x 3 x 2 x 1 NAPRĘŻENIA I ODKSZTAŁCENIA Wstęp: Pojęcia te występują w opisie procesu odkształcenia tzn. są to zmiany wymiarów Krzysztof Wierzbanowski NAPRĘŻENIA I ODKSZTAŁCENIA Wstęp: Pojęcia te występują w opisie procesu odkształcenia tzn. są to zmiany wymiarów ciała pod wpływem przyłożonych sił. Siły powinny być znormalizowane

Bardziej szczegółowo

Przykłady (twierdzenie A. Castigliano)

Przykłady (twierdzenie A. Castigliano) 23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],

Bardziej szczegółowo

Symulacja procesu wtrysku - Obudowa miernika

Symulacja procesu wtrysku - Obudowa miernika I.J PALIGA Spółka jawna Ul.Długa 52 42-233 Wierzchowisko Tel. +48 34 328 71 03 Symulacja procesu wtrysku - Obudowa miernika Data: Projektant: Janusz Paliga Analiza: Model bryły/pełnej bryły Wprowadzenie

Bardziej szczegółowo

Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.

Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej. 2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek

Bardziej szczegółowo

9. PODSTAWY TEORII PLASTYCZNOŚCI

9. PODSTAWY TEORII PLASTYCZNOŚCI 9. PODSTAWY TEORII PLASTYCZNOŚCI 1 9. 9. PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co

Bardziej szczegółowo

STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży

STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży STAN NAPRĘŻENIA dr hab. inż. Tadeusz Chyży 1 SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE Rozważmy ciało o objętości V 0 ograniczone powierzchnią S 0, poddane działaniu sił będących w równowadze. Rozróżniamy tutaj

Bardziej szczegółowo

Symetria w fizyce materii

Symetria w fizyce materii Symetria w fizyce materii - Przekształcenia symetrii w dwóch i trzech wymiarach - Wprowadzenie w teorię grup; grupy symetrii - Wprowadzenie w teorię reprezentacji grup - Teoria grup a mechanika kwantowa

Bardziej szczegółowo

Właściwości optyczne kryształów

Właściwości optyczne kryształów Właściwości optyczne kryształów -ośrodki jedno- (n x =n y n z ) lub dwuosiowe (n x n y n z n x ) - oś optyczna : w tym kierunku rozchodzą się dwie takie same fale (z tą samą prędkością); w ośrodkach jednoosiowych

Bardziej szczegółowo

2. Obliczenie sił działających w huśtawce

2. Obliczenie sił działających w huśtawce . Obiczenie sił działających w huśtawce Rozważone zostaną dwa aspekty rozwiązania tego zadania. Dokonanie obiczeń jest ważne ze wzgędu na dobór eementów, które zostaną wykorzystane w koncepcjach reguacji

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

Atom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym.

Atom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym. Atom wodoropodobny z współrzędne w układzie kartezjańskim r sinθ cosφ x r cosθ φ θ r r sinθ (x,y,z) r sinθ sinφ Biegunowy układ współrzędnych y funkcja faowa współrzędne w układzie biegunowym ( ) r,θ,φ

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

Zjawisko piezoelektryczne 1. Wstęp

Zjawisko piezoelektryczne 1. Wstęp Zjawisko piezoelektryczne. Wstęp W roku 880 Piotr i Jakub Curie stwierdzili, że na powierzchni niektórych kryształów poddanych działaniu zewnętrznych naprężeń mechanicznych indukują się ładunki elektryczne,

Bardziej szczegółowo

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O). Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA

TERMODYNAMIKA PROCESOWA TERMODYNAMIKA PROCESOWA Wykład III Podstawy termodynamiki nierównowagowej Prof. Antoni Kozioł Wydział Chemiczny Politechniki Wrocławskiej Uwagi ogólne Większość zagadnień związanych z przemianami różnych

Bardziej szczegółowo

Równanie Fresnela. napisał Michał Wierzbicki

Równanie Fresnela. napisał Michał Wierzbicki napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)

Bardziej szczegółowo

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo