TERMODYNAMIKA PROCESOWA

Wielkość: px
Rozpocząć pokaz od strony:

Download "TERMODYNAMIKA PROCESOWA"

Transkrypt

1 TERMODYNAMIKA PROCESOWA Wykład III Podstawy termodynamiki nierównowagowej Prof. Antoni Kozioł Wydział Chemiczny Politechniki Wrocławskiej

2 Uwagi ogólne Większość zagadnień związanych z przemianami różnych rodzajów energii rozważanych na termodynamice technicznej oraz zagadnień równowagowych rozważanych na termodynamice procesowej należy do tzw. termodynamiki równowagowej rozwijanej głównie w XVIII i XIX wieku. Natomiast w XX wieku zaczyna rozwijać się nowa gałąź termodynamiki termodynamika nierównowagowa nazywana też termodynamiką procesów nieodwracalnych. Okazało się, że dziedzina ta jest bardzo owocna w teoretycznym uzasadnieniu wielu podstawowych praw stosowanych w inżynierii chemicznej i procesowej. W związku z tym dzisiejszy wykład poświęcimy podstawom właśnie termodynamiki nierównowagowej.

3 Termodynamika nierównowagowa Istotnym założeniem termodynamiki nierównowagowej jest przyjęcie, że w stanie nierównowagi istnieją tzw. bodźce termodynamiczne powodujące określone przepływy termodynamiczne, które zmniejszają stan nierównowagi jednocześnie zwiększając entropię. W stanie równowagi wszystkie bodźce i przepływy zanikają. Zatem jeżeli układ nie jest w stanie równowagi : 1. Y 1,Y 2,,Y i,,y k 0 bodźce 2. J 1,J 2,.,J i,.,j k 0 przepływy Bodźce i przepływy mogą mieć charakter skalarny, wektorowy lub tensorowy.

4 Termodynamika nierównowagowa Bodźce o charakterze skalarnym to przede wszystkim nierównomierność różnego rodzaju potencjałów chemicznych powodująca przepływy będące w istocie reakcjami chemicznymi. Bardzo ważne są bodźce o charakterze wektorowym. Są to przede wszystkim nierównomierność przestrzenne takich wielkości skalarnych jak temperatura i stężenia różnych substancji. Te nierównomierności można opisać za pomocą odpowiednich wielkości wektorowych czyli bodźców wektorowych powodujących odpowiednie przepływy które też są wielkościami wektorowymi. Najważniejszy bodziec o charakterze tensorowym to nierównomierność pola wektorowego prędkości w układzie. Odpowiednim przepływem jest w tym przypadku tensor naprężeń.

5 Bodźce i przepływy Przykładowy bodziec związany z nierównym rozkładem temperatury ma postać: YT 1 T grad( T) Odpowiednim przepływem będącym skutkiem tego bodźca jest strumień ciepła a bardziej ściśle gęstość tego strumienia: J q f ( Y T ) Q

6 s Źródło entropii Zajmijmy się teraz trochę bliżej entropią układu S. Wprowadźmy oznaczenia: ds ds 0 ds S dt ds dv - przyrost entropii (źródło) na skutek przebiegu procesów nieodwracalnych zbliżających układ do stanu równowagi. - II zasada termodynamiki (nierówność Clausiusa). - intensywność źródła entropii w układzie pochodzącej z procesów nieodwracalnych - gęstość rozkładu intensywności źródła entropii w układzie. Na gruncie termodynamiki procesów nieodwracalnych można wyprowadzić k wzór i1 s YiJ i

7 Bodźce i przepływy Przepływ w przypadku bodźca wektorowego również jest wektorem określającym gęstość strumienia pewnej wielkości ekstensywnej X i. Powstający przepływ wielkości X i niweluje bodziec Y i,zbliża układ do stanu równowagi oraz powoduje powstanie w układzie pewnej ilości entropii (generuje entropię). Wielkość przepływu X i zależy przede wszystkim od wielkości bodźca Y i a także od wielkości innych bodźców występujących w układzie. W stanie równowagi wszystkie przepływy stają się równe 0! J f ( Y, Y ) i i j i W przypadku nierównowagi związanej z nierównym rozkładem temperatury przepływ jest po prostu gęstością strumienia ciepła: JT q

8 Bodźce i przepływy Między bodźcami i przepływami występują ścisłe zależności. Zakładając że w układzie występuje k bodźców i k przepływów możemy napisać: J f ( Y, Y,..., Y,..., Y ) J f ( Y, Y,..., Y,..., Y ) J f ( Y, Y,..., Y,..., Y ) i i 1 2 i k... J f ( Y, Y,..., Y,..., Y ) k k 1 2 i k Rozwijając powyższe funkcje w szeregi Taylora i biorąc pod uwagę tylko liniowe składniki otrzymujemy układ liniowy nazywany fenomenologicznym układem równań przepływów: i i k k

9 Równania fenomenologiczne J L Y L Y... L Y... L Y i i 1k k J L Y L Y... L Y... L Y i i 2k k... J L Y L Y... L Y... L Y i i1 1 i2 2 ii i ik k... J L Y L Y... L Y... L Y k k1 1 k 2 2 ki i kk k Współczynniki L ij występujące w powyższych równaniach nazywane są fenomenologicznymi współczynnikami przepływu. Są one właściwościami ośrodka i tworzą k wymiarową macierz kwadratową L:

10 Współczynniki fenomenologiczne L L11 L12... L1 i... L 1k L21 L22... L2i... L2 k... Li 1 Li 2... Lii... Lik... Lk1 Lk 2... Lki... L kk Wyrazy leżące na przekątnej L ii reprezentują bezpośredni wpływ bodźca Y i na kreowanie przepływu J i. Opisują one tzw. procesy proste. Natomiast wyrazy niediagonalne L ij (i j) opisują tzw. procesy krzyżowe, w których bodziec j wpływa na przepływ i.

11 Współczynniki fenomenologiczne relacja Onsagera W roku 1931 laureat nagrody Nobla Onsager stwierdził, że macierz współczynników fenomenologicznych dla tzw. ośrodków izometrycznych jest symetryczna co oznacza równość: L ij L Symetryczność macierzy sprawia że w układzie, w którym mamy k niezależnych bodźców, liczba niezbędnych do opisu współczynników wynosi nie k 2 ale (k 2 +k)/2. ji Współczynniki tzw. efektów krzyżowych są na ogół dużo mniejsze od współczynników diagonalnych i często są pomijane w rozważaniach. Niemniej jednak istnieją sytuacje że nie można ich pomijać i dlatego teraz krótko omówimy najważniejsze z nich.

12 Współczynniki fenomenologiczne relacja Onsagera Lars Onsager uczony amerykański pochodzenia norweskiego. Laureat nagrody Nobla z roku Twórca liniowej termodynamiki nierównowagowej.

13 Współczynniki fenomenologiczne efekty krzyżowe Przyjmując różne bodźce i różne przepływy otrzymujemy odpowiednie efekty krzyżowe: 1. Jeżeli bodźcem jest gradient temperatury a przepływem przepływ jednego składnika mieszaniny wieloskładnikowej to mamy do czynienia z tzw. termodyfuzją lub efektem Soreta. 2. Jeżeli sytuacja jest odwrotna tzn. bodźcem jest gradient stężenia składnika mieszaniny wieloskładnikowej a przepływem jest przepływ ciepła to to mamy do czynienia z tzw. efektem Dufoura. 3. Jeżeli bodźcem jest gradient temperatury a efektem przepływ prądu elektrycznego to mamy do czynienia z tzw. efektem Seebecka. Efekt ten jest wykorzystywany przy pomiarach temperatury za pomocą termopar. 4. Efekt odwrotny gdy bodźcem jest różnica potencjału elektrycznego a przepływem jest przepływ ciepła nazywany jest efektem Peltiera. Należy jeszcze zwrócić uwagę że efekty krzyżowe powodują wzajemny wpływ różnych bodźców.

14 Współczynniki fenomenologiczne efekty krzyżowe Przepływy wywołane przez efekty krzyżowe prowadzą z kolei do zwiększenia związanych z nimi bodźcami a zatem powodują zmniejszenie entropii!!! Np. zjawisko termodyfuzji może spowodować powstanie gradientu stężenia w początkowo wyrównanym polu stężeń. Jednakże zgodnie z II zasadą sumarycznie przyrost entropii musi być dodatni. Źródłem dodatniego przyrostu entropii są procesy główne opisane przez diagonalne wyrazy macierzy współczynników fenomenologicznych. Można wykazać że II zasada termodynamiki wymaga aby główne i krzyżowe współczynniki fenomenologiczne spełniały następujące relacje: 2 ii jj ij L ii L L Oznacza to, że liczbowe wartości współczynników głównych muszą być większe od współczynników krzyżowych. 0 L 0

15 Bodźce i przepływy Zasada symetrii Curie Jak już powiedziano, większość bodźców termodynamicznych ma charakter wektorowy. Niektóre bodźce mają charakter skalarny lub tensorowy. Skalarny charakter ma np. powinowactwo chemiczne wywołujące przebieg reakcji chemicznej. Jednak skutkuje to lokalnym źródłem masy i nie prowadzi do transportu przestrzennego. Z kolei charakter tensorowy ma bodziec związany z gradientem prędkości. Powoduje on przepływ pędu, którego gęstość jest tensorem. W termodynamice nierównowagowej obowiązuje tzw. zasada symetrii Curie, która mówi że w ośrodkach izotropowych mogą się sprzęgać (czyli mogą wpływać na siebie) tylko te bodźce, których charakter tensorowy jest tego samego rzędu lub różni się o dwa. W związku z tym bodźce wektorowe nie mogą wywoływać efektów krzyżowych w przepływach o charakterze tensorowym i odwrotnie. Nie ma zatem efektów krzyżowych między transportem pędu a transportem ciepła lub masy.

16 Bodźce i przepływy Zasada symetrii Curie Pierre Curie fizyk francuski, laureat nagrody Nobla z roku 1903.

17 Przepływ dyfuzyjny W dalszym ciągu rozważań będziemy pomijać efekty krzyżowe i rozważać przepływy, będące efektem bodźców wektorowych. Przepływ będący efektem gradientu temperatury lub gradientu stężenia określonego składnika nazywamy przepływem dyfuzyjnym. Załóżmy, że w układzie występuje jeden bodziec termodynamiczny Y powodujący przepływ dyfuzyjny pewnej wielkości ekstensywnej X. Zgodnie z założeniami liniowej termodynamiki nierównowagowej gęstość strumienia przepływu dyfuzyjnego wielkości X będzie równa ( x) J ( Y ) L Y dyf x x xx x

18 Przepływ dyfuzyjny ( x) dyf L xx Y x Wskaźnik x odpowiada danej wielkości X. Jeżeli wielkością X jest objętość lub masa to odpowiedni współczynnik fenomenologiczny jest równy 0 i przepływ dyfuzyjny nie występuje. Bodziec termodynamiczny Y x jest na ogół związany z gradientem pewnej wielkości y x związanej w pewien sposób z opisywaną wielkością X.

19 Podstawowe prawo przepływu dyfuzyjnego Zależność między wielkościami y x a Y x można przedstawić następująco: Y grad ( y ) x x x Zatem część gęstości strumienia dyfuzyjnego wielkości X możemy zapisać w następujący sposób: ( x) L Y L ( grad ( y )) ( L ) grad ( y ) dyf ii i ii i ii i Wprowadźmy oznaczenie: D L x x xx otrzymujemy wyrażenie określające gęstość strumienia przepływu: ( x) ( D ) grad ( y ) dyf x x

20 Podstawowe prawo przepływu dyfuzyjnego ( x) ( D ) grad ( y ) dyf x x Wzór powyższy opisuje dyfuzyjny transport wielkości ekstensywnych. Współczynnik D x można określić jako współczynnik dyfuzji, natomiast wielkość y x można określić jako czynnik napędowy dyfuzji. Interpretacja tych wielkości zależy od charakteru transportowanej wielkości X i bo. Jeżeli będziemy za X podstawiać konkretne wielkości ekstensywne to nasz wzór będzie przybierał postać znanych praw eksperymentalnych opisujących różne procesy dyfuzyjne. Rozpatrzmy teraz kilka przypadków. 1. Niechaj X=Q, czyli rozpatrujemy transport ciepła. W tym przypadku mamy: 1 Lqq ( x) dyf ( q) dyf Dx yx T T T

21 Podstawowe prawo przepływu dyfuzyjnego Podstawienie tych oznaczeń do podstawowego równania dyfuzji prowadzi do: ( q) grad( T) dyf Otrzymaliśmy bardzo znane prawo Fouriera opisujące przewodzenie ciepła czyli dyfuzyjny transport ciepła.

22 Podstawowe prawo przepływu dyfuzyjnego ( x) ( D ) grad ( y ) dyf x x 2. Niechaj X=n i, czyli rozpatrujemy transport i tego składnika w układzie wieloskładnikowym. W tym przypadku mamy: ( x) ( n ) 1 D L D y c dyf i dyf iz xx x x i Podstawienie tych oznaczeń do podstawowego równania dyfuzji prowadzi do: ( n ) D grad ( c ) i dyf iz i Otrzymaliśmy powszechnie znane I prawo Ficka opisujące dyfuzję składnika i pod wpływem gradientu stężenia c i.

23 Podstawowe prawo przepływu dyfuzyjnego ( x) ( D ) grad ( y ) dyf x x 3. Niechaj X= Pęd, czyli rozpatrujemy transport pędu. W tym przypadku dyfuzyjna część przepływy będzie związana z częścią tensora naprężeń, która odpowiada za tzw. naprężenia styczne. Również samo równanie dyfuzji przyjmuje postać tensorową: ( x) ( D ) Grad ( y ) dyf x x Bodźcem jest w tym przypadku tensorowy gradient wektora prędkości a współczynnikiem dyfuzji jest tzw. lepkość dynamiczna płynu η. Podstawowe prawo dyfuzji przybiera w tym przypadku postać: ( ) ( ) Grad ( v)

24 Podstawowe prawo przepływu dyfuzyjnego ( ) ( ) Grad ( v) Załóżmy dalej że przepływ odbywa się tylko w kierunku osi x ze stałą prędkością v i ma charakter warstwowy (laminarny) warstwy leżą w płaszczyźnie xz. W takim przypadku siły lepkości płynu będą hamować ruch poszczególnych warstw powodując powstanie naprężenia stycznego i gradientu prędkości w kierunku prostopadłym czyli w kierunku osi y. Zatem mamy: ( ) v [ v,0,0] xz vx 0 0 y Grad( v) x dv x dy

25 Podstawowe prawo przepływu dyfuzyjnego Podstawowe prawo dyfuzji przybierze w takim przypadku postać: dvx xz dy Jest to znane na pewno Państwu tzw. prawo Newtona opisujące płaski przepływ uwarstwiony (laminarny) płynu newtonowskiego. Zatem wszystkie podstawowe prawa opisujące przepływ laminarny, przewodzenie ciepła i dyfuzję składników można wyprowadzić z jednego ogólnego prawa dyfuzyjnego transportu wielkości ekstensywnych. To prawo z kolei wywodzi się z II zasady termodynamiki na bazie liniowej teorii procesów nieodwracalnych.

26 To tyle na dzisiaj. Dziękuję bardzo Państwu za uwagę!

3. Równania konstytutywne

3. Równania konstytutywne 3. Równania konstytutywne 3.1. Strumienie w zjawiskach transportowych Podczas poprzednich zajęć wprowadziliśmy pojęcie strumienia masy J. W większości zjawisk transportowych występuje analogiczna wielkość

Bardziej szczegółowo

ZARYS LINIOWEJ TERMODYNAMIKI NIERÓWNOWAGOWEJ UKŁADÓW CIĄGŁYCH I MEMBRANOWYCH

ZARYS LINIOWEJ TERMODYNAMIKI NIERÓWNOWAGOWEJ UKŁADÓW CIĄGŁYCH I MEMBRANOWYCH UNIWERSYTET MIKO AJA KOPERNIKA JÓZEF CEYNOWA ZARYS LINIOWEJ TERMODYNAMIKI NIERÓWNOWAGOWEJ UKŁADÓW CIĄGŁYCH I MEMBRANOWYCH TORUŃ 1997 Recenzenci Bogdan Baranowski, Maciej Leszko ISBN 83-231-0808-0 Printed

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

Fizyka statystyczna Termodynamika bliskiej nierównowagi. P. F. Góra

Fizyka statystyczna Termodynamika bliskiej nierównowagi. P. F. Góra Fizyka statystyczna Termodynamika bliskiej nierównowagi P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Nasze wszystkie dotychczasowe rozważania dotyczyły układów w równowadze termodynamicznej lub

Bardziej szczegółowo

Termodynamika systemów otwartych - informacja (2)

Termodynamika systemów otwartych - informacja (2) Wykład 2 Termodynamika systemów otwartych - informacja (2) Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka 1 Potencjały i bodźce termodynamiczne Potencjał termodynamiczny

Bardziej szczegółowo

Bogdan Walkowiak. Zakład Biofizyki

Bogdan Walkowiak. Zakład Biofizyki Bogdan Walkowiak Zakład Biofizyki Politechnika Łódzka Potencjał termodynamiczny - jest to taka funkcja termodynamiczna, której zmiana w procesie odwracalnym jest równa różnicy całkowitej pracy wykonanej

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

WYKŁAD 12 ENTROPIA I NIERÓWNOŚĆ THERMODYNAMICZNA 1/10

WYKŁAD 12 ENTROPIA I NIERÓWNOŚĆ THERMODYNAMICZNA 1/10 WYKŁAD 12 ENROPIA I NIERÓWNOŚĆ HERMODYNAMICZNA 1/10 ENROPIA PŁYNU IDEALNEGO W PRZEPŁYWIE BEZ NIECIĄGŁOŚCI Załóżmy, że przepływ płynu idealnego jest gładki, tj. wszystkie pola wielkości kinematycznych i

Bardziej szczegółowo

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd. 4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15

WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15 WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15 Fundamentalne Zasady Zachowania/Zmienności w Mechanice mówią nam co dzieję się z: masą pędem krętem (momentem pędu)

Bardziej szczegółowo

[ A i ' ]=[ D ][ A i ] (2.3)

[ A i ' ]=[ D ][ A i ] (2.3) . WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy

Bardziej szczegółowo

6. ZWIĄZKI FIZYCZNE Wstęp

6. ZWIĄZKI FIZYCZNE Wstęp 6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe

Bardziej szczegółowo

1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH

1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH 1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH Ośrodki materialne charakteryzują dwa rodzaje różniących się zasadniczo od siebie wielkości fizycznych: globalne (ekstensywne) przypisane obszarowi przestrzeni fizycznej,

Bardziej szczegółowo

STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży

STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży STAN NAPRĘŻENIA dr hab. inż. Tadeusz Chyży 1 SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE Rozważmy ciało o objętości V 0 ograniczone powierzchnią S 0, poddane działaniu sił będących w równowadze. Rozróżniamy tutaj

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

9. PODSTAWY TEORII PLASTYCZNOŚCI

9. PODSTAWY TEORII PLASTYCZNOŚCI 9. PODSTAWY TEORII PLASTYCZNOŚCI 1 9. 9. PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11

WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11 WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 1/11 DEFORMACJA OŚRODKA CIĄGŁEGO Rozważmy dwa elementy płynu położone w pewnej chwili w bliskich sobie punktach A i B. Jak zmienia się ich względne położenie w krótkim

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

Aerodynamika I Efekty lepkie w przepływach ściśliwych.

Aerodynamika I Efekty lepkie w przepływach ściśliwych. Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. RUCHU PŁYNU. 1/11

WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. RUCHU PŁYNU. 1/11 WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA RUCHU PŁYNU. ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. 1/11 RÓŻNICZKOWE RÓWNANIA RUCHU PŁYNU Wiemy uż, że Zasada Zmienności Pędu est szczególnym przypadkiem ogólne

Bardziej szczegółowo

J. Szantyr Wykład 10 Stan naprężenia w płynie

J. Szantyr Wykład 10 Stan naprężenia w płynie J. Szantyr Wykład 10 Stan naprężenia w płynie Można udowodnić, że tensor stanu naprężenia w płynie jest tensorem symetrycznym, czyli: itd. xy = yx Redukuje to liczbę niewiadomych naprężeń lepkościowych

Bardziej szczegółowo

Analiza stanu naprężenia - pojęcia podstawowe

Analiza stanu naprężenia - pojęcia podstawowe 10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Analiza wektorowa. Teoria pola.

Analiza wektorowa. Teoria pola. Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykochemiczne podstawy inżynierii procesowej Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste przemiany termodynamiczne PRZYPOMNIENIE Z OSTATNIEGO

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami

Bardziej szczegółowo

Stany równowagi i zjawiska transportu w układach termodynamicznych

Stany równowagi i zjawiska transportu w układach termodynamicznych Stany równowagi i zjawiska transportu w układach termodynamicznych dr hab. Jerzy Nakielski Katedra Biofizyki i Biologii Komórki plan wykładu: 1. Funkcje stanu dla termodynamicznego układu otwartego 2.

Bardziej szczegółowo

J. Szantyr -Wykład 2 Poważne wprowadzenie do Mechaniki Płynów

J. Szantyr -Wykład 2 Poważne wprowadzenie do Mechaniki Płynów J. Szantyr -ykład Poważne wprowadzenie do Mechaniki Płynów Stany skupienia materii: ciała stałe płyny, czyli ciecze i gazy -Ciała stałe przenoszą obciążenia zewnętrzne w taki sposób, że ulegają deformacji

Bardziej szczegółowo

Dyfuzyjny transport masy

Dyfuzyjny transport masy listopad 2013 Koagulacja w ruchach Browna, jako stacjonarna, niejednorodna reakcja, kontrolowana przez dyfuzję Promień sfery zderzeń r i + r j możemy utożsamić z promieniem a. Każda cząstka typu j, która

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków

Bardziej szczegółowo

Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:

Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem: WYKŁAD 13 DYNAMIKA MAŁYCH (AKUSTYCZNYCH) ZABURZEŃ W GAZIE Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało

Bardziej szczegółowo

MECHANIKA PŁYNÓW Płyn

MECHANIKA PŁYNÓW Płyn MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 9. Matematyka 3, semestr zimowy 2011/2012 4 listopada 2011 W trakcie poprzedniego wykładu zdefiniowaliśmy pojęcie k-kowektora na przestrzeni wektorowej. Wprowadziliśmy także iloczyn zewnętrzny wielokowektorów

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,

Bardziej szczegółowo

Transport masy w ośrodkach porowatych

Transport masy w ośrodkach porowatych grudzień 2013 Dyspersja... dyspersja jest pojęciem niesłychanie uniwersalnym. Możemy zrekapitulować: dyspersja to w ogólnym znaczeniu rozproszenie, rozrzut, rozcieńczenie. Możemy nazywać dyspersją roztwór

Bardziej szczegółowo

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem

Bardziej szczegółowo

WYKŁAD 7 SIŁY WEWNĘTRZNE W PŁYNIE. ZWIĄZKI KONSTYTUTYWNE. PŁYN NEWTONOWSKI.

WYKŁAD 7 SIŁY WEWNĘTRZNE W PŁYNIE. ZWIĄZKI KONSTYTUTYWNE. PŁYN NEWTONOWSKI. WYKŁAD 7 SIŁY WEWNĘTRZNE W PŁYNIE. ZWIĄZKI KONSTYTUTYWNE. PŁYN NEWTONOWSKI. 1/1 OPIS SIŁ WEWNĘTRZNYCH W PŁYNIE. TENSOR NAPRĘŻEŃ. Zgodnie z hipotezą Cauchy ego, siły reakci dwóch części płynu wynikaące

Bardziej szczegółowo

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem

Bardziej szczegółowo

Kinematyka płynów - zadania

Kinematyka płynów - zadania Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

Wykład Temperatura termodynamiczna 6.4 Nierówno

Wykład Temperatura termodynamiczna 6.4 Nierówno ykład 8 6.3 emperatura termodynamiczna 6.4 Nierówność Clausiusa 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii 6.6 Entropia dla czystej substancji 6.8 Cykl Carnota 6.7 Entropia dla gazu

Bardziej szczegółowo

Tensory mały niezbędnik

Tensory mały niezbędnik 28 października 2013 Rozkład wektora V na współrzędne: α = (0x, V ), β = (0y, V ), γ = (0z, V ). Rozkład wektora r, r = (x, y) na współrzędne w dwóch różnych układach współrzędnych. x = x cos θ + y sin

Bardziej szczegółowo

przepływ Hagena-Poseuille a 22 października 2013 Hydrodynamika równanie Naviera-Stokesa przepły

przepływ Hagena-Poseuille a 22 października 2013 Hydrodynamika równanie Naviera-Stokesa przepły Hydrodynamika równanie Naviera-Stokesa przepływ Hagena-Poseuille a 22 października 2013 Ośrodki ciągłe równanie ruchu Zjawiska zachodzące w poruszających się płynach (cieczach lub gazach) traktujemy makroskopowo

Bardziej szczegółowo

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11 Spis treści Przedmowa... 10 1. WPROWADZENIE DO PRZEDMIOTU... 11 2. PODSTAWOWE OKREŚLENIA W TERMODYNAMICE... 13 2.1. Układ termodynamiczny... 13 2.2. Wielkości fizyczne, układ jednostek miary... 14 2.3.

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA

TERMODYNAMIKA PROCESOWA TERMODYNAMIKA PROCESOWA Wykład I Sprawy formalne Przypomnienie podstawowych definicji i pojęć termodynamicznych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 TERMODYNAMIKA PROCESOWA

Bardziej szczegółowo

Czego można się nauczyć z prostego modelu szyny magnetycznej

Czego można się nauczyć z prostego modelu szyny magnetycznej Czego można się nauczyć z prostego modelu szyny magnetycznej 1) Hamowanie magnetyczne I B F L m v L Poprzeczka o masie m może się przesuwać swobodnie po dwóch równoległych szynach, odległych o L od siebie.

Bardziej szczegółowo

W. Np. pole prędkości cieczy lub gazu, pole grawitacyjne, pole elektrostatyczne, magnetyczne.

W. Np. pole prędkości cieczy lub gazu, pole grawitacyjne, pole elektrostatyczne, magnetyczne. Elementy teorii pola - Wydział Chemiczny - 1 Wielkości fizyczne można klasyfikować na podstawie różnych kryteriów. Istnieją wielkości, które przy wyznaczonej jednostce miary są w zupełności określone przez

Bardziej szczegółowo

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje

Bardziej szczegółowo

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Dany jest stan naprężenia w układzie x 1,x 2,x 3 T 11 12 13 [ ] 21 23 31 32 33 Znaleźć wektor naprężenia w płaszczyźnie o normalnej

Bardziej szczegółowo

POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko

Bardziej szczegółowo

wymiana energii ciepła

wymiana energii ciepła wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

PRINCIPIA I ELEMENTY

PRINCIPIA I ELEMENTY P R I N C I P I A N E W TO N A - C Z Y D Z I Ś TO T Y L K O H I S TO R I A? PRINCIPIA I ELEMENTY ELEMENTY 80 wydań w 20 językach 1500 nowe wydanie co 6 lat 1900 PRINCIPIA 2 przekłady 1687 w ciągu 200 lat

Bardziej szczegółowo

Podstawy robotyki wykład VI. Dynamika manipulatora

Podstawy robotyki wykład VI. Dynamika manipulatora Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

Modelowanie wybranych zjawisk fizycznych

Modelowanie wybranych zjawisk fizycznych Ryszard Myhan Modelowanie zjawiska tarcia suchego Suwaka porusza się w poziomych prowadnicach, gdzie x=x(t) oznacza przesunięcie suwaka względem nieruchomej prowadnicy w kierunku zgodnym z kierunkiem siły

Bardziej szczegółowo

J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i

J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym

Bardziej szczegółowo

Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak

Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji Roman Kuziak Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak Instytut Metalurgii Żelaza DICTRA jest pakietem komputerowym

Bardziej szczegółowo

Fala EM w izotropowym ośrodku absorbującym

Fala EM w izotropowym ośrodku absorbującym Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

Zasady zachowania, równanie Naviera-Stokesa. Mariusz Adamski

Zasady zachowania, równanie Naviera-Stokesa. Mariusz Adamski Zasady zachowania, równanie Naviera-Stokesa Mariusz Adamski 1. Zasady zachowania. Znaczna część fizyki, a w szczególności fizyki klasycznej, opiera się na sformułowaniach wypływających z zasad zachowania.

Bardziej szczegółowo

WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA 1/17

WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA 1/17 WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA /7 Zaczniemy od wyprowadzenia równania ruchu dla płynu newtonowskiego. Wcześniej wyprowadziliśmy z -ej Zasady Dynamiki ogólne równanie ruchu, którego postać indeksowa

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych 6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych

Bardziej szczegółowo

reakcja niespontaniczna reakcja w równowadze

reakcja niespontaniczna reakcja w równowadze Warunek spontaniczności proces. Zdecydowana większość przemian o znaczeniu biologicznym w których zachodzą duże zmiany energii wewnętrznej i entalpii zachodzą przy stałym ciśnieniu i temperaturze. Dotychczas

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na

Bardziej szczegółowo

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu w postaci

Bardziej szczegółowo

z pokryciem (O i ) i I rozkładu jedności (α i ) i I. Zauważmy najpierw, że ( i I α i )ω dω = d(1 ω) = d d(α i ω). Z drugiej jednak strony

z pokryciem (O i ) i I rozkładu jedności (α i ) i I. Zauważmy najpierw, że ( i I α i )ω dω = d(1 ω) = d d(α i ω). Z drugiej jednak strony Dowód: Niech M będzie jak w założeniach twierdzenia. Weźmy skończony atlas O i, ϕ i ) na M zgodny z orientacją. Zbiór indeksów I może być skończony, gdyż rozmaitość M jest zwarta. Õi, ϕ i ) oznaczać będzie

Bardziej szczegółowo

ROZDZIAŁ 2 RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW KONFIGURACJA OSIOWA. σ = (2.1a) ε = (2.1b) σ = i, j = 1,2,...6 (2.2a) ε = i, j = 1,2,...6 (2.

ROZDZIAŁ 2 RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW KONFIGURACJA OSIOWA. σ = (2.1a) ε = (2.1b) σ = i, j = 1,2,...6 (2.2a) ε = i, j = 1,2,...6 (2. ROZDZIAŁ J. German: PODTAWY MCHANIKI KOMPOZYTÓW WŁÓKNITYCH ROZDZIAŁ RÓWNANIA FIZYCZN DLA KOMPOZYTÓW KONFIGURACJA OIOWA W rozdziale tym zostaną przedstawione równania fizyczne dla materiałów anizotropowych,

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

Metoda mnożników Lagrange a i jej zastosowania w ekonomii

Metoda mnożników Lagrange a i jej zastosowania w ekonomii Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do

Bardziej szczegółowo

TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI

TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI Ćwiczenie nr 7 TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI Celem ćwiczenia jest zapoznanie się z podstawami teorii procesów transportu nieelektrolitów przez błony.

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

Termodynamika defektów sieci krystalicznej

Termodynamika defektów sieci krystalicznej Termodyamika defektów sieci krystaliczej Defekty sieci krystaliczej puktowe (wakasje, atomy międzywęzłowe, obce atomy) jedowymiarowe (dyslokacje krawędziowe i śrubowe) dwuwymiarowe (graice międzyziarowe,

Bardziej szczegółowo

Krótki przegląd termodynamiki

Krótki przegląd termodynamiki Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.

Bardziej szczegółowo

4. Elementy liniowej Teorii Sprężystości

4. Elementy liniowej Teorii Sprężystości 4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez

Bardziej szczegółowo