Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne."

Transkrypt

1 Układ regularny Możliwe elementy symetrii: 3 osie 3- krotne m płaszczyzny równoległe do ścian m płaszczyzny przekątne 4 osie 4- krotne 2 osie 2- krotne Układ regularny Możliwe elementy symetrii: 3 osie 3- krotne (4) m płaszczyzny równoległe do ścian (3) m płaszczyzny przekątne(6) 4 osie 4- krotne (3) 2 osie 2- krotne (6) 1

2 Układ regularny Dużo elementów symetrii to dużo punktów równoważnych symetrycznie. Układ regularny: projekcje stereograficzne punktów równoważnych 2

3 Układ regularny: projekcje stereograficzne elementów symetrii Wszystkie grupy punktowe Układ Grupy punktowe krystalograficzny Trójskośny 1, -1 Jednoskośny 2, m, 2/m Rombowy 222, mm2, mmm Tetragonalny 4, -4, 4/m, 4222, 4mm, -42m, 4/mmm Trygonalny 3, -3, 32, 3m, -3 m Heksagonalny 6, -6, 6/m, 622, 6mm, -62m, 6/mmm Regularny 23, m-3, 432, -43m, m3m 3

4 Wszystkie grupy punktowe Układ regularny rozpoznaje się po 3-ce na drugiej pozycji; Tetragonalny po 4-ce na pierwszej pozycji; Trygonalny i heksagonalny odpowiednio po 3-ce i 6-ce na pierwszej pozycji; Rombowy i jednoskośny to 2-ki i m, z tym że rombowy ma trzy symbole; Wszystkie projekcje stereograficzne 4

5 5

6 6

7 Hierarchia symetrii Grupa przestrzenna Zespół operacji symetrii, które przekształcają trójwymiarowy, periodyczny obiekt (kryształ) w samego siebie. Inaczej: Kombinacje elementów symetrii makroskopowych, strukturalnych (otwarte) i sieci translacyjnych. 7

8 Grupa punktowa/grupa przestrzenna Grupa punktowa to wszystkie elementy symetrii np. komorki elementarnej; Grupa przestrzenna to wszystkie elementy symetrii nieskończonego kryształu; Grupy przestrzenne W ramach 7(6) układów krystalograficznych istnieje 14 sieci Bravais go. Kombinacja 32 punktowych grup symetrii z 14-toma sieciami Bravais go prowadzi do 73 grup przestrzennych. Są to tzw. Grupy symmorficzne. 8

9 Grupy przestrzenne Pozostałe grupy przestrzenne (w sumie jest ich 23) powstają poprzez zastąpienie osi symetrii osiami śrubowymi tej samej krotności oraz zastąpienie płaszczyzn symetrii płaszczyznami poślizgu. Zasady tworzenia symboli Pierwsza pozycja: typ sieci Bravais go: P: prymitywna, czyli niecentrowana w żaden sposób; F: ściennie centrowana; I: wewnętrznie centrowana; A, B lub C: centrowana tylko na ścianach prostopadłych do kierunku odpowiednia a, b i c. R: komórka romboedryczna 9

10 Zasady tworzenia symboli Dalsze pozycje (w zależności od układu krystalograficznego) oznaczają różne elementy symetrii tabelka. Zasady tworzenia symboli: symbole płaszczyzn poślizgu Płaszczyzny poślizgu, w zależności od kierunku translacji, oznacza się: a (translacja o ½ a); b (translacja o ½ b); c (translacja o ½ c); d (translacja o ¼ (a+b+c)); n (translacja o ½ (a+b)); 1

11 Zasady tworzenia symboli: osie śrubowe 11

12 Grupy przestrzenne: nomenklatura w systemie międzynarodowym Układ krystalograficzny trójskośny jednoskośny rombowy 2 Pozycja w symbolu 1 lub 1 2 lub 2 1 IIY albo m (lub płaszczyzna poślizgu) Y albo 2 lub 2 1 IIY i m (lub płaszczyzna poślizgu) 2 lub lub 2 1 IIX albo m lub płaszczyzna poślizgu) X 3 2 lub 2 1 IIY albo m (lub płaszczyzna poślizgu) Y 4 2 lub 2 1 IIZ albo m (lub płaszczyzna poślizgu) Z Grupy przestrzenne: nomenklatura w systemie międzynarodowym Układ krystalograficzny Pozycja w symbolu tetragonalny i heksagonalny główna oś symetrii* IIZ albo główna oś symetrii IIZ i m (lub płaszczyzna poślizgu) Z 2IIX lub Y albo m (lub płaszczyzna poślizgu) X lub Y 2II [111] albo m (lub płaszczyzna poślizgu) [11] * = 3, 4, 6, lub 3, 4, 6, lub 3 p, 4 p, 6 p 12

13 Grupy przestrzenne: nomenklatura w systemie międzynarodowym Układ krystalograficzny Pozycja w symbolu regularny 4,4,2 lub 2 1, 4 p IIX, Y lub Z, albo m lub płaszczyzna poślizgu X, Y lub Z 3II [111] 2II [11] albo m lub płaszczyzna poślizgu [11] Grupy symmorficzne i niesymmorficzne Jakie? 13

14 Grupa symmorficzna: P2/m xyz, -xy-z, x-yz, -x-y-z Grupa niesymmorficzna: P2 1 /m xyz, -x,y+1/2, -z, x-y+1/2,z, -x-y-z 14

15 Przykłady Przykłady 15

16 Przykład Jaki może być symbol grupy przestrzennej tego kryształu? Znajdowanie położeń symetrycznie rownoważnych Podobnie, jak w przypadku grup punktowych, przeksztalca się dowolny punkt przez wszystkie przeksztalcenia symetrii tak długo, aż wróci się do punktu wyjścia. Na przykładzie grupy P2 1 /c 16

17 17 Oś śrubowa równolegla do Y + = 2 1/ y P2 1 /c c a b Płaszczyzna poślizgu c prostopadła do y + = 2 1/ c P2 1 /c

18 Punkty równoważne: xyz 2 1 II Y -x, ½+y, -z P2 1 /c poślizg c x, -y, ½+z 2 1 -x, ½-y, ½-z Punkty równoważne krotność punktu o dowolnym położeniu x,y,z wynosi 4; ile wynosi krotność punktów szczególnych? ½ ½ ½ P2 1 /c 18

19 Krotność punktów równoważnych w grupie nr 23 96h1 x, y, z 48g , y,.25-y 48f 2.. x,,.25 32e.3. x, x, x 24d ,,.25 24c ,,.25 16b ,.125, a.-3.,, Międzynarodowe tablice krystalograficzne układ krystalografi czny położenia punktów równoważnych współrzędne punktów pełny symbol skrócony symbol położenie elementów symetrii informacje o refleksach dyfrakcyjnych 19

Konwersatorium z chemii ciała stałego Specjalność: chemia budowlana ZESTAW 3. Symetria makro- i mikroskopowa

Konwersatorium z chemii ciała stałego Specjalność: chemia budowlana ZESTAW 3. Symetria makro- i mikroskopowa Konwersatorium z chemii ciała stałego Specjalność: chemia budowlana ZESTAW 3 Symetria makro- i mikroskopowa Kombinacje elementów symetrii; grupy punktowe i grupy przestrzenne projekcje cyklograficzne grup

Bardziej szczegółowo

Wykład 5. Komórka elementarna. Sieci Bravais go

Wykład 5. Komórka elementarna. Sieci Bravais go Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,

Bardziej szczegółowo

Grupy przestrzenne i ich symbolika

Grupy przestrzenne i ich symbolika Grupy przestrzenne i ich symbolika Po co mi (chemikowi) znajomość symboli grup przestrzennych? Informacje zawarte w symbolu układ krystalograficzny obecność operacji symetrii punktowej (spektroskopia)

Bardziej szczegółowo

GRUPY SYMETRII Symetria kryształu

GRUPY SYMETRII Symetria kryształu GRUPY SYMETRII Smetria krstału Zamknięte (punktowe) operacje smetrii (minimum jeden punkt prestreni nie porusa się wskutek astosowania amkniętej operacji smetrii): Obrot i obrot inwersjne; Inwersja (smetria

Bardziej szczegółowo

Opracowanie: mgr inż. Antoni Konitz, dr hab inż. Jarosław Chojnacki Politechnika Gdańska, Gdańsk 2007, 2016

Opracowanie: mgr inż. Antoni Konitz, dr hab inż. Jarosław Chojnacki Politechnika Gdańska, Gdańsk 2007, 2016 4. Stosowanie międzynarodowych symboli grup przestrzennych. Zamiana skróconych symboli Hermanna - Mauguina na symbole pełne. Określanie układu krystalograficznego, klasy krystalograficznej oraz operacji

Bardziej szczegółowo

Krystalochemia białek 2016/2017

Krystalochemia białek 2016/2017 Zestaw zadań 4. Grupy punktowe. Składanie elementów symetrii. Translacyjne elementy symetrii grupy punktowe, składanie elementów symetrii, translacyjne elementy symetrii: osie śrubowe, płaszczyzny ślizgowe

Bardziej szczegółowo

Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go

Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Komórki Bravais go Cel ćwiczenia: kształtowanie umiejętności: przyporządkowywania komórek translacyjnych Bravais

Bardziej szczegółowo

S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h

S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h Są tylko 32 grupy punktowe, które spełniają ten warunek, Można je pogrupować w 7 typów grup (spośród omówionych 12- tu), które spełniają powyższe własności S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h nazywają

Bardziej szczegółowo

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza

Bardziej szczegółowo

MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność

MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność MATERIA ciała stałe - kryształy - ciała bezpostaciowe (amorficzne) - ciecze - gazy KRYSZTAŁY Periodyczność Kryształ (idealny) struktura zbudowana z powtarzających się w przestrzeni periodycznie identycznych

Bardziej szczegółowo

STRUKTURA CIAŁA STAŁEGO

STRUKTURA CIAŁA STAŁEGO STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich

Bardziej szczegółowo

STRUKTURA KRYSTALICZNA

STRUKTURA KRYSTALICZNA PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais

Bardziej szczegółowo

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej

Bardziej szczegółowo

Wykład 5 Otwarte i wtórne operacje symetrii

Wykład 5 Otwarte i wtórne operacje symetrii Wykład 5 Otwarte i wtórne operacje symetrii 1.Otwarty iloczyn operacji symetrii 2.Osie śrubowe i płaszczyzny poślizgu 3.Sieci Bravais a 4.Wtórne operacje symetrii Przekształecenia izometryczne Zamknięte

Bardziej szczegółowo

3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów

3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów 3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów Opracowanie: dr hab. inż. Jarosław Chojnacki, Politechnika Gdańska, Gdańsk 207 Każda

Bardziej szczegółowo

Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.

Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej. 2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek

Bardziej szczegółowo

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza

Bardziej szczegółowo

Rozwiązanie: Zadanie 2

Rozwiązanie: Zadanie 2 Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn

Bardziej szczegółowo

Położenia, kierunki, płaszczyzny

Położenia, kierunki, płaszczyzny Położenia, kierunki, płaszczyzny Dalsze pojęcia Osie krystalograficzne; Parametry komórki elementarnej; Wskaźniki punktów kierunków i płaszczyzn; Osie krystalograficzne Osie krystalograficzne: układ osi

Bardziej szczegółowo

STRUKTURA MATERIAŁÓW

STRUKTURA MATERIAŁÓW STRUKTURA MATERIAŁÓW ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY ATOMAMI Siły oddziaływania między atomami

Bardziej szczegółowo

Elementy symetrii makroskopowej.

Elementy symetrii makroskopowej. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Elementy symetrii makroskopowej. 2 godz. Cel ćwiczenia: zapoznanie się z działaniem elementów symetrii makroskopowej

Bardziej szczegółowo

Wykład 1. Symetria Budowy Kryształów

Wykład 1. Symetria Budowy Kryształów Wykład Symetria Budowy Kryształów Ciała krystaliczne i amorficzne Każda substancja ciekła (z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe. Jednakże proces

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział

Uniwersytet Śląski w Katowicach str. 1 Wydział Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Krystalografia (016) Nazwa wariantu modułu (opcjonalnie): _wariantu ( wariantu) 1. Informacje ogólne koordynator

Bardziej szczegółowo

ROZDZIAŁ I. Symetria budowy kryształów

ROZDZIAŁ I. Symetria budowy kryształów ROZDZIAŁ I Symetria budowy kryształów I Ciała krystaliczne i amorficzne Każda substancja ciekła z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe Jednakże proces

Bardziej szczegółowo

Zastosowanie teorii grup. Grupy symetrii w fizyce i chemii.

Zastosowanie teorii grup. Grupy symetrii w fizyce i chemii. Zastosowanie teorii grup Grupy symetrii w fizyce i chemii Katarzyna Kolonko Streszczenie Usystematyzowanie grup punktowych, omówienie ich na przykładzie molekuł Przedstawienie wkładu teorii grup w badanie

Bardziej szczegółowo

Układy krystalograficzne

Układy krystalograficzne Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Układy krystalograficzne Cel ćwiczenia: kształtowanie umiejętności wyboru komórki elementarnej i przyporządkowywania

Bardziej szczegółowo

Krystalografia i krystalochemia Wykład 15 Repetytorium

Krystalografia i krystalochemia Wykład 15 Repetytorium Krystalografia i krystalochemia Wykład 15 Repetytorium 1. Czym zajmuje się krystalografia i krystalochemia? 2. Podsumowanie wiadomości z krystalografii geometrycznej. 3. Symbolika Kreutza-Zaremby oraz

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura

Bardziej szczegółowo

Metody badań monokryształów metoda Lauego

Metody badań monokryształów metoda Lauego Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii

Bardziej szczegółowo

Kombinacje elementów symetrii. Klasy symetrii.

Kombinacje elementów symetrii. Klasy symetrii. Uniwersytet Śląski Instytut Cheii Zakład Krystalografii Laboratoriu z Krystalografii Kobinacje eleentów syetrii. Klasy syetrii. 2 godz. Cel ćwiczenia: tworzenie kobinacji eleentów syetrii akroskopowej

Bardziej szczegółowo

Rodzina i pas płaszczyzn sieciowych

Rodzina i pas płaszczyzn sieciowych Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Rodzina i pas płaszczyzn sieciowych Cel ćwiczenia: kształtowanie umiejętności posługiwania się modelami komórek

Bardziej szczegółowo

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza

Bardziej szczegółowo

KRYSTALOGRAFIA Studia pierwszego stopnia, stacjonarne II rok

KRYSTALOGRAFIA Studia pierwszego stopnia, stacjonarne II rok Akademia Górniczo-Hutnicza Wydział Odlewnictwa Katedra Inżynierii Stopów i Kompozytów Odlewanych Nr ćwiczenia: 1 Opracowała Temat: Cel ćwiczenia: Zakres wymaganego materiału Przebieg ćwiczenia Materiały

Bardziej szczegółowo

Fizyka Ciała Stałego

Fizyka Ciała Stałego Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,

Bardziej szczegółowo

ELEMENTY I OPERACJE SYMETRII Symbol Element symetrii Operacja symetrii

ELEMENTY I OPERACJE SYMETRII Symbol Element symetrii Operacja symetrii ELEMENTY I OPERACJE SYMETRII Symbol Element symetrii Operacja symetrii C n oś symetrii n-krotna (oś główna - oś o obrót wokół osi symetrii o kąt równy 360 0 /n najwyższej krotności) σ płaszczyzna symetrii

Bardziej szczegółowo

Kombinacje elementów symetrii. Klasy symetrii.

Kombinacje elementów symetrii. Klasy symetrii. Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn

Bardziej szczegółowo

Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych

Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Budowa ciał stałych sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Ciała stałe to substancje o regularnej, przestrzennej budowie krystalicznej, czyli regularnym

Bardziej szczegółowo

Wstęp. Krystalografia geometryczna

Wstęp. Krystalografia geometryczna Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.

Bardziej szczegółowo

Sieć przestrzenna. c r. b r. a r. komórka elementarna. r r

Sieć przestrzenna. c r. b r. a r. komórka elementarna. r r Sieć przestrzenna c r b r r r u a r vb uvw = + + w c v a r komórka elementarna V = r r a ( b c) v Układy krystalograficzne (7) i Sieci Bravais (14) Triclinic (P) a b c, α β γ 90 ο Monoclinic (P) a b c,

Bardziej szczegółowo

Natęż. ężenie refleksu dyfrakcyjnego

Natęż. ężenie refleksu dyfrakcyjnego Natęż ężenie refleksu dyfrakcyjnego Wskaźnikowanie dyfraktogramów 1. Natężenie refleksu dyfrakcyjnego - od czego i jak zależy 1. Wskaźnikowanie dyfraktogramów -metoda różnic 3. Wygaszenia systematyczne

Bardziej szczegółowo

= a (a c-c )x(3) 1/2. Grafit i nanorurki węglowe Grafen sieć rombowa (heksagonalna) z bazą dwuatomową

= a (a c-c )x(3) 1/2. Grafit i nanorurki węglowe Grafen sieć rombowa (heksagonalna) z bazą dwuatomową Grafit i nanorurki węglowe Grafen sieć rombowa (heksagonalna) z bazą dwuatomową a 1 = a (a c-c )x(3) 1/ ( 3 a, ), ( 3 a a a = a, ) wektory bazowe sieci odwrotnej definiuje się inaczej niż w 3D musi zachodzić

Bardziej szczegółowo

STRUKTURA IDEALNYCH KRYSZTAŁÓW

STRUKTURA IDEALNYCH KRYSZTAŁÓW BUDOWA WEWNĘTRZNA MATERIAŁÓW METALICZNYCH Zakres tematyczny y 1 STRUKTURA IDEALNYCH KRYSZTAŁÓW 2 1 Sieć przestrzenna kryształu TRANSLACJA WĘZŁA TRANSLACJA PROSTEJ SIECIOWEJ TRANSLACJA PŁASZCZYZNY SIECIOWEJ

Bardziej szczegółowo

STRUKTURA MATERIAŁÓW. Opracowanie: Dr hab.inż. Joanna Hucińska

STRUKTURA MATERIAŁÓW. Opracowanie: Dr hab.inż. Joanna Hucińska STRUKTURA MATERIAŁÓW Opracowanie: Dr hab.inż. Joanna Hucińska ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY

Bardziej szczegółowo

NOWA STRONA INTERNETOWA PRZEDMIOTU: http://xrd.ceramika.agh.edu.pl/

NOWA STRONA INTERNETOWA PRZEDMIOTU: http://xrd.ceramika.agh.edu.pl/ Wskaźnikowanie rentgenogramów i wyznaczanie parametrów sieciowych Wykład 8 1. Wskaźnikowanie rentgenogramów. 2. Metoda róŝnic wskaźnikowania rentgenogramów substancji z układu regularnego. 3. Metoda ilorazów

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii

Bardziej szczegółowo

Wykład 4: Struktura krystaliczna

Wykład 4: Struktura krystaliczna Wykład 4: Struktura krystaliczna Wg Blicharskiego, Wstęp do materiałoznawstwa http://webmineral.com/ Komórka elementarna Geometria komórki Dla zdefiniowania trójwymiarowej komórki elementarnej należy podać

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska Struktura materiałów UKŁAD ATOMÓW W PRZESTRZENI CIAŁA KRYSTALICZNE Układ atomów/cząstek (a/cz) w przestrzeni jest statystyczne

Bardziej szczegółowo

Wykład II Sieć krystaliczna

Wykład II Sieć krystaliczna Wykład II Sieć krystaliczna Podstawowe definicje Wiele z pośród ciał stałych ma budowę krystaliczną. To znaczy, Ŝe atomy z których się składają ułoŝone są w określonym porządku. Porządek ten daje się stosunkowo

Bardziej szczegółowo

Krystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów

Krystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów Krystalografia Dyfrakcja na monokryształach. Analiza dyfraktogramów Wyznaczanie struktury Pomiar obrazów dyfrakcyjnych Stworzenie modelu niezdeformowanej sieci odwrotnej refleksów Wybór komórki elementarnej

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna. Struktura krystaliczna

S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna. Struktura krystaliczna S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna Struktura krystaliczna Kwarc (SiO2) (źródło: Wikipedia) Piryt (FeS2) (źródło: Wikipedia) Halit/Sól kamienna (NaCl) (źródło: Wikipedia)

Bardziej szczegółowo

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

Symetria w fizyce materii

Symetria w fizyce materii Symetria w fizyce materii - Przekształcenia symetrii w dwóch i trzech wymiarach - Wprowadzenie w teorię grup; grupy symetrii - Wprowadzenie w teorię reprezentacji grup - Teoria grup a mechanika kwantowa

Bardziej szczegółowo

Podstawowe pojęcia opisujące sieć przestrzenną

Podstawowe pojęcia opisujące sieć przestrzenną Uniwersytet Śląski Instytut Chemii akład Krystalografii Laboratorium z Krystalografii 2 godz. Podstawowe pojęcia opisujące sieć przestrzenną Cel ćwiczenia: kształtowanie umiejętności posługiwania się modelami

Bardziej szczegółowo

Elementy symetrii. obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii.

Elementy symetrii. obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii. ELEMENTY SYMETRII Element symetrii obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii. ELEMENTY SYMETRII Elementy symetrii PŁASZZYZNA peracje symetrii

Bardziej szczegółowo

Materiałoznawstwo optyczne. KRYSZTAŁY Y cz. 2

Materiałoznawstwo optyczne. KRYSZTAŁY Y cz. 2 Materiałoznawstwo optyczne KRYSZTAŁY Y cz. 2 Komórki elementarne Bravais Grupy translacyjne Bravais Układ Grupa translacyjna regularny P, I, F tetragonalny P, I rombowy P, C, I, F jednoskośny P, C, trójskośny

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca

Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 2015 Materia skondensowana OC 6 H 13 H 13 C 6 O OC 6 H 13 H 17 C 8 O H 17 C 8 O N N Cu O O H 21

Bardziej szczegółowo

Ćwiczenie nr 8 WYZNACZANIE GRUPY DYFRAKCYJNEJ KRYSZTAŁU Z WYKORZYSTANIEM KAMERY CCD

Ćwiczenie nr 8 WYZNACZANIE GRUPY DYFRAKCYJNEJ KRYSZTAŁU Z WYKORZYSTANIEM KAMERY CCD Ćwiczenie nr 8 WYZNACZANIE GRUPY DYFRAKCYJNEJ KRYSZTAŁU Z WYKORZYSTANIEM KAMERY CCD Wprowadzenie Proces analizy rentgenowskiej monokryształów można podzielić na dwa etapy: a) wyznaczenie parametrów komórki

Bardziej szczegółowo

Metody badań monokryształów metoda Lauego

Metody badań monokryształów metoda Lauego Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii

Bardziej szczegółowo

Projekt współfinansowany z Europejskiego Funduszu Społecznego i BudŜetu Państwa. Krystalografia. Instrukcje do ćwiczeń laboratoryjnych

Projekt współfinansowany z Europejskiego Funduszu Społecznego i BudŜetu Państwa. Krystalografia. Instrukcje do ćwiczeń laboratoryjnych Projekt współfinansowany z Europejskiego Funduszu Społecznego i BudŜetu Państwa Krystalografia Instrukcje do ćwiczeń laboratoryjnych Rok akademicki 2009/2010 SPIS TREŚCI WPROWADZENIE... 4 1. KRYSZTAŁY

Bardziej szczegółowo

Struktura energetyczna ciał stałych. Fizyka II, lato

Struktura energetyczna ciał stałych. Fizyka II, lato Struktura energetyczna ciał stałych Fizyka II, lato 016 1 Stany związane Studnia potencjału o nieskończończonej głębokości jest idealizacją. W praktyce realizowalna jest skończona studnia, w której energia

Bardziej szczegółowo

1. Elementy (abstrakcyjnej) teorii grup

1. Elementy (abstrakcyjnej) teorii grup 1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 4. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 4. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Struktury i symetrie ciała stałego Rok akademicki: 2013/2014 Kod: JFT-2-011-s Punkty ECTS: 4 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Techniczna Specjalność: Poziom studiów:

Bardziej szczegółowo

Prof. nzw. dr hab. Jarosław Mizera & dr inż. Joanna Zdunek

Prof. nzw. dr hab. Jarosław Mizera & dr inż. Joanna Zdunek Prof. nzw. dr hab. Jarosław Mizera & dr inż. Joanna Zdunek Krystalografia to nauka zajmująca się opisem i badaniem periodycznej budowy wewnętrznej materiałów krystalicznych oraz ich klasyfikacją. Plan

Bardziej szczegółowo

WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych

WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych Prof. dr hab. Halina Abramczyk Dr inż. Beata Brożek-Płuska POLITECHNIKA ŁÓDZKA Wydział Chemiczny, Instytut Techniki Radiacyjnej Laboratorium

Bardziej szczegółowo

WYZNACZANIE GRUPY DYFRAKCYJNEJ KRYSZTAŁU Z WYKORZYSTANIEM KAMERY CCD. Instrukcja do ćwiczeń

WYZNACZANIE GRUPY DYFRAKCYJNEJ KRYSZTAŁU Z WYKORZYSTANIEM KAMERY CCD. Instrukcja do ćwiczeń WYZNACZANIE GRUPY DYFRAKCYJNEJ KRYSZTAŁU Z WYKORZYSTANIEM KAMERY CCD Instrukcja do ćwiczeń K. Ślepokura Zakład Krystalografii Wydział Chemii Uniwersytetu Wrocławskiego Wrocław, 2018 Wprowadzenie Proces

Bardziej szczegółowo

Struktura energetyczna ciał stałych. Fizyka II dla EiT oraz E, lato

Struktura energetyczna ciał stałych. Fizyka II dla EiT oraz E, lato Struktura energetyczna ciał stałych Fizyka II dla EiT oraz E, lato 016 1 Struktura kryształu Doskonały kryształ składa się z uporządkowanych atomów w sieci krystalicznej, opisanej przez trzy podstawowe

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

Struktura kryształów. Kittel, rozdz. 1 (Uwaga błędna terminologia!) Ashcroft, Mermin, rozdz.

Struktura kryształów.  Kittel, rozdz. 1 (Uwaga błędna terminologia!) Ashcroft, Mermin, rozdz. Struktur krysztłów http://www.uncp.edu/home/mcclurem/ptble/crbon.htm Kittel, rozdz. 1 (Uwg błędn terminologi!) Ashcroft, Mermin, rozdz. 4,7 1 Obserwowne włsności Ksztłt ogrniczony płszczyznmi. (1) Kierunki

Bardziej szczegółowo

Struktura energetyczna ciał stałych

Struktura energetyczna ciał stałych 011-05-0 Struktura energetyczna ciał stałych Fizyka II dla Elektroniki, lato 011 1 Stany związane Studnia potencjału o nieskończończonej głębokości jest idealizacją. W praktyce realizowalna jest skończona

Bardziej szczegółowo

Wybrane metody analizy strukturalnej związków małocząsteczkowych i biomakrocząsteczek. Od biologii, przez fizykę, do chemii.

Wybrane metody analizy strukturalnej związków małocząsteczkowych i biomakrocząsteczek. Od biologii, przez fizykę, do chemii. Wybrane metody analizy strukturalnej związków małocząsteczkowych i biomakrocząsteczek. Od biologii, przez fizykę, do chemii. Prof. dr hab. Andrzej Wojtczak Dr Anna Kozakiewicz UMK Toruń 214 Część I Prof.

Bardziej szczegółowo

SUROWCE I RECYKLING. Wykład 2

SUROWCE I RECYKLING. Wykład 2 SUROWCE I RECYKLING Wykład 2 Układ krystalograficzny grupuje kryształy o pewnych wspólnych cechach symetrii geometrycznej Postacie krystalograficzne Kryształy ograniczone ścianami jednoznacznymi stanowią

Bardziej szczegółowo

Właściwości optyczne kryształów

Właściwości optyczne kryształów Właściwości optyczne kryształów -ośrodki jedno- (n x =n y n z ) lub dwuosiowe (n x n y n z n x ) - oś optyczna : w tym kierunku rozchodzą się dwie takie same fale (z tą samą prędkością); w ośrodkach jednoosiowych

Bardziej szczegółowo

Przykład zastosowania poleceń 3DWYRÓWNAJ i RÓŻNICA

Przykład zastosowania poleceń 3DWYRÓWNAJ i RÓŻNICA Przykład zastosowania poleceń 3DWYRÓWNAJ i RÓŻNICA Polecenie 3DWYRÓWNAJ umożliwia precyzyjne przemieszczanie bryły 3D w przestrzeni projektowej Przykład poniżej pokazuje jak z pomocą poleceń - 3DWYRÓWNAJ

Bardziej szczegółowo

STRUKTURA KRYSZTAŁÓW

STRUKTURA KRYSZTAŁÓW STRUKTURA KRYSZTAŁÓW Skala wielkości spotykanych w krystalografii: Średnica atomu wodoru: 10 Rozmiar komórki elementarnej: od kilku do kilkudziesięciu Å o D = 1*10 m = 1A 1 Struktura = sieć + baza atomowa

Bardziej szczegółowo

Wykład 4. Kryształy aperiodyczne

Wykład 4. Kryształy aperiodyczne Wykład 4 Kryształy aperiodyczne Zgodnie z tradycyjnymi przedstawieniami podstawową cecha kryształu jest jego okresowość, która powoduje, że jedynymi możliwymi osiami symetrii w kryształach są osie obrotowe

Bardziej szczegółowo

Chemiateoretyczna. Monika Musiał. Elementy teorii grup

Chemiateoretyczna. Monika Musiał. Elementy teorii grup Chemiateoretyczna Monika Musiał Elementy teorii grup Grup a G nazywamy zbiór elementów {A,B,C,...} o nastȩpuja cych własnościach: zdefiniowane jest działanie przyporza dkowuja ce każdej parze elementów

Bardziej szczegółowo

1. Podstawowe pojęcia. Stechiometria w komórce elementarnej. Wyznaczanie gęstości teoretycznej kryształu. Zamiana baz w układach współrzędnych

1. Podstawowe pojęcia. Stechiometria w komórce elementarnej. Wyznaczanie gęstości teoretycznej kryształu. Zamiana baz w układach współrzędnych 1. Podstawowe pojęcia. Stechiometria w komórce elementarnej. Wyznaczanie gęstości teoretycznej kryształu. Zamiana baz w układach współrzędnych Opracowanie: dr hab. inż. Jarosław Chojnacki i mgr inż. Antoni

Bardziej szczegółowo

Krystalografia. Symetria a właściwości fizyczne kryształów

Krystalografia. Symetria a właściwości fizyczne kryształów Krystalografia Symetria a właściwości fizyczne kryształów Właściwości fizyczne kryształów a ich symetria Grupy graniczne Piroelektryczność Piezoelektryczność Właściwości optyczne kryształów Właściwości

Bardziej szczegółowo

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Narzędzia do geometrycznej charakteryzacji granic ziaren. K. Głowioski

Narzędzia do geometrycznej charakteryzacji granic ziaren. K. Głowioski Narzędzia do geometrycznej charakteryzacji granic ziaren K. Głowioski Plan prezentacji Wprowadzenie do granic ziaren Cel badao Przykłady zastosowania rozwijanych metod i narzędzi: - Rozkłady granic i ich

Bardziej szczegółowo

Prosta i płaszczyzna w przestrzeni

Prosta i płaszczyzna w przestrzeni Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego

Bardziej szczegółowo

Translacja jako operacja symetrii. Wybór komórki elementarnej wg A. Bravais, połowa XIX wieku wybieramy komórkę. Symetria sieci translacyjnej

Translacja jako operacja symetrii. Wybór komórki elementarnej wg A. Bravais, połowa XIX wieku wybieramy komórkę. Symetria sieci translacyjnej Trnslcj jko opercj symetrii Wykłd trzeci W obrębie figur nieskończonych przesunięcie (trnslcję) możn trktowć jko opercję symetrii Jest tk np. w szlkch ornmentcyjnych (bordiurch) i siecich krysztłów polimerów

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Wydział Matematyki Stosowanej Zestaw zadań nr 10 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus maja 018r. 1 Działania na wektorach Zadanie 1. Oblicz długość wektorów: Geometria

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Dyfrakcja wysokoenergetycznych elektronów RHEED

Dyfrakcja wysokoenergetycznych elektronów RHEED Dyfrakcja wysokoenergetycznych elektronów RHEED Ryszard Zdyb Cel ćwiczenia Wyznaczenie stałej sieci monokryształu krzemu. Poznanie powierzchniowo czułej techniki dyfrakcyjnej odbiciowej dyfrakcji wysokoenergetycznych

Bardziej szczegółowo

Nanotechnologia. Wykład IV

Nanotechnologia. Wykład IV Universitas Jagellonica Cracoviensis Nanotechnologia Wykład IV J.J. Kołodziej Pokój: G-0-11, IFUJ Łojasiewicza 11 Tel.+12 664 4838 jj.kolodziej@uj.edu.pl http://users.uj.edu.pl/~jkolodz Wykłady dla 1 roku

Bardziej szczegółowo

Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów.

Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów. RZUTOWANIE AKSONOMETRYCZNE Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów. W metodzie aksonometrycznej rzutnią jest płaszczyzna dowolnie ustawiona względem trzech osi,, układu prostokątnego

Bardziej szczegółowo

Tradycyjny podział stanów skupienia: fazy skondensowane

Tradycyjny podział stanów skupienia: fazy skondensowane Tradycyjny podział stanów skupienia: o o o stały (ciało stałe) zachowuje objętość i kształt ciekły (ciecz) zachowuje objętość, łatwo zmienia kształt gazowy (gaz) łatwo zmienia objętość i kształt lód woda

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,

Bardziej szczegółowo

UNIWERSYTET im. ADAMA MICKIEWICZA w POZNANIU WYDZIAŁ FIZYKI. specjalność: Fizyka z Informatyką Zakład Fizyki Kryształów PRACA MAGISTERSKA

UNIWERSYTET im. ADAMA MICKIEWICZA w POZNANIU WYDZIAŁ FIZYKI. specjalność: Fizyka z Informatyką Zakład Fizyki Kryształów PRACA MAGISTERSKA UNIWERSYTET im. ADAMA MICKIEWICZA w POZNANIU WYDZIAŁ FIZYKI specjalność: Fizyka z Informatyką Zakład Fizyki Kryształów PRACA MAGISTERSKA PRZEMIANY FAZOWE NA POWIERZCHNIACH KRYSZTAŁÓW FERROICZNYCH JUSTYNA

Bardziej szczegółowo

C h można przedstawić w bazie wektorów bazowych grafenu (*) (**) Nanorurki węglowe (jednościenne)

C h można przedstawić w bazie wektorów bazowych grafenu (*) (**) Nanorurki węglowe (jednościenne) Nanorurki węglowe (jednościenne) zwinięte paski arkusza grafenu (wstęgi grafenowej) (węzły sieciowe Bravais i węzły podsieci) wstęgi: chiralna fotelowa zykzak komórka elementarna jednoznacznie definiuje

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:

Bardziej szczegółowo

Podstawy krystalochemii pierwiastki

Podstawy krystalochemii pierwiastki Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Podstawy krystalochemii pierwiastki Cel ćwiczenia: określenie pełnej charakterystyki wybranych struktur pierwiastków

Bardziej szczegółowo