Teoria sprężystości F Z - F Z
|
|
- Elżbieta Rosińska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Teoria sprężystości Ciało sprężyste bryła, która pod wpływem działających sił zewnętrznych ulega deformacji zmienia swój kształt i/lub objętość i wraca do pierwotnej postaci po ustaniu działania tych sił. F Z - F Z F Z - F Z F Z - F Z
2 Siły sprężystości Stan równowagi sił sprężystości - F Z F Z Naruszenie stanu równowagi - F Z F S - F S F Z Nowy stan równowagi F S - F S Naruszenie stanu równowagi Stan równowagi sił sprężystości
3 Naprężenia Naprężenie stosunek działającej siły do pola powierzchni na którą działa. F n Naprężenie normalne S F n S Naprężenie styczne S F s F s S
4 Przy braku oddziaływań zewnetrznych wewnętrzne siły spójności równoważą się co powoduje nadaniu ciała określonego kształtu i rozmiarów. Ciało znajduje się w równowadze. Zmiana naprężeń zewnętrznych powoduje reakcję sił wewnętrznych i ustalenie się nowego stanu równowagi. Związane jest to ze zmianą wymiarów geometrycznych ciała które nazywamy odkształceniem. Jeżeli odkształcenia znikają całkowicie po ustąpieniu naprężeń to ciało nazywamy idealnie sprężystym, jeśli nie to lepko-sprężystym. Ciało w którym następują odkształcenia trwałe nazywamy plastycznym.
5 Prawo Hooke a Jeśli wartości naprężeń nie przekraczają pewnych wartości granicznych wówczas odkształcenia są wprost proporcjonalne do działających naprężeń Związek pomiędzy przyłożonym naprężeniem zewnętrznym a deformacją określony jest przez własności sprężyste ośrodka, charakteryzowane modułami sprężystości.
6 Odkształcenie liniowe: przyłożone naprężenie jednoosiowe normalne boczne powierzchnie deformowanego elementu - swobodne wydłużenie elementu w skrócenie wymiarów w kierunku n kierunkach prostopadłych Wydłużenie dla danego n zależy od wielkości nazywanej modułem sprężystości podłużnej (Younga): l l 1 E E - moduł Younga Dl wydłużenie l długość elementu n Skrócenie boczne jest proporcjonalne do wydłużenia: h l h l - współczynnik Poissona 1 2
7 przyłożone naprężenie jednoosiowe normalne boczne powierzchnie deformowanego elementu sztywno zamocowane wydłużenie elementu w kierunku n Wydłużenie dla danego n zależy od wielkości nazywanej modułem sprężystości jednoosiowej l l 1 - moduł sprężystości jednoosiowej; Dl wydłużenie l długość elementu n
8 Odkształcenie objętościowe: przyłożone naprężenia normalne działające jednakowo ze wszystkich kierunków (naprężenia litostatyczne p ) izotropowa zmiana objętości ośrodka Zmiana objętości dla danego p zależy od wielkości nazywanej modułem ściśliwości V V 1 K p K moduł ściśliwości DV zmiana objętości V objętość elementu
9 Odkształcenie postaciowe: przyłożone naprężenia styczne t działające na parę przeciwległych ścianek elementu odchylenie ścianki wybranego elementu Zmiana kąta dla danego t zależy od wielkości nazywanej modułem sztywności 1 G t G moduł sztywności kąt odchylenia ścianki od jej początkowego położenia
10 W ciele sprężystym izotropowym i jednorodnym do scharakteryzowania jego sprężystości wystarczą dwa moduły sprężystości. Możemy wybrać dowolne dwa a pozostałe wyrazić jako ich funkcje np.: dla E i : G E 2 1 K E 31 2 E dla K i G: 4 K G 3
11 F n S Wytrzymałość materiałów l l F usztywnienie R S SL Sprężystość nieliniowa płynięcie zniszczenie - F Sprężystość liniowa
12 i F ni S Wytrzymałość materiałów V V 1 kompresja dylatancja F 1 F 2 R S SL - F 3 F 3 zniszczenie - F 2 - F 1 Sprężystość liniowa
13 Płynięcie materiałów F kr zniszczenie = const. t
14 Ciągły ośrodek sprężysty Naprężenie całkowite działające na nieskończenie mały element ośrodka ciągłego o objętości dv i powierzchni ds można opisać jeśli znamy rozkład naprężeń działających na ścianki tego elementu. Rozkład ten nazywamy lokalnym tensorem naprężeń. Znajomość tensora pozwala określić naprężenie w dowolnym kierunku opisanym wektorem jednostkowym n n n
15 Tensor naprężeń jest symetrycznym tensorem drugiego rzędu i zawiera dziewięć składowych, z których trzy opisują naprężenia działające prostopadle do trzech wzajemnie prostopadłych płaszczyzn rozpiętych pomiędzy osiami układu współrzędnych, a pozostałe sześć trzy pary naprężeń stycznych do tych płaszczyzn. x x 1 x
16 Stan naprężeń i deformacji w ośrodku ciągłym Naprężenia lokalne działające na wybrany element z zewnątrz równoważone przez działające, wewnętrzne siły spójności powodują, że znajduje się on w równowadze. Zmiana naprężeń lokalnych powoduje reakcję sił wewnętrznych i ustalenie się nowego stanu równowagi oraz deformację danego elementu. Zmiana stanu naprężeń działających na dany element ośrodka ciągłego będzie w wyniku działania sił sprężystości przenosić się na sąsiednie elementy zaburzając ich stan równowagi. W ośrodku powstaje układ naprężeń i deformacji lokalnych.
17 Naprężenia ściskające i rozciągające W geomechanice przyjęto konwencję, że naprężenia ściskające mają znak dodatni a rozciągające ujemny. W materiałoznawstwie przyjęto konwencję, że naprężenia rozciągające mają znak dodatni a ściskające ujemny.
18 Tensor naprężeń, jak każdy tensor symetryczny drugiego rzędu wyznacza trzy wzajemnie prostopadłe kierunki zwane kierunkami własnymi tensora. Wybierając układ współrzędnych zgodny z tymi kierunkami redukujemy liczbę składowych tensora do trzech W układzie współrzędnych zgodnym z kierunkami własnymi tensora do opisu stanu naprężeń wystarczą trzy naprężenia normalne zwane naprężeniami głównym. Osie układu współrzędnych numerujemy tak aby 1 było największym naprężeniem głównym a 3 najmniejszym naprężeniem głównym.
19 Równoważne układy naprężeń
20 Naprężenia różnicowe Zgodnie z regułą dodawania tensorów każdy tensor można przedstawić jako sumę dwóch tensorów. W geomechanice najczęstszym sposobem dekompozycji tensora naprężeń jest rozkład na tensor naprężenia okólnego (izotropowego) i tensor naprężeń różnicowych. śr śr śr I śr śr śr r śr
21 Naprężenia różnicowe śr 3 3 śr naprężenie ściskające naprężenie rozciągające 2 2 śr 2 2 śr naprężenie ściskające lub rozciągające
22 Powstawanie uskoków D 1 D 3 Uskok normalny
23 Powstawanie uskoków D 3 D 1 Uskok odwrócony
24 Powstawanie uskoków D 1 D 3 D 3 D 1 Uskok przesuwczy lewoskrętny Uskok przesuwczy prawoskrętny
25 Fałdowania D 3 D 1
26 u Drgania sprężyste A Wychylenie maksymalne t = ¼ T => u = A Położenie równowagi t = => u = t = T => u = -A Wychylenie maksymalne t = ¾ T => u = - A Parametry drgań A amplituda drgań T okres drgań
27 Parametry drgań f 1 T częstotliwość drgań 2 2 T f częstość kątowa drgań 2 t T t faza drgań przesunięcie fazowe
28 Drgania sprężyste u Asin ( t ) v du dt A cos( t ) a d 2 dt u 2 A 2 sin( t ) u t
29 Drgania tłumione x Ae t sin ( t ) x t
30 Fale sprężyste Przyłożenie naprężeń zewnętrznych w danym fragmencie ośrodka powoduje jego odkształcenie, które z kolei powoduje zmianę stanu naprężenia w sąsiedztwie. Zmiana naprężenia w jednym punkcie ośrodka sprężystego powoduje zmianę stanu naprężenia w całym ośrodku. Jeśli naprężenia zewnętrzne będą zmienne w czasie wówczas zmiany naprężeń wewnątrz ośrodka będą przemieszczały się w ośrodku z określoną prędkością v. Rozchodzenie się naprężeń w ośrodku nazywamy falą sprężystą
31 Gdy fala rozchodzi się ze źródła wzbudzenia cząsteczki ośrodka wykonujące drgania w tej samej fazie tworzą powierzchnię fazową. Promieniem fali nazywamy linię wychodzącą z punktu wzbudzenia w każdym swym punkcie prostopadłą do określonej w tym punkcie powierzchni fazowej. Fala płaska Fala kulista powierzchnia fazowa promień fali
32 Prawa rządzące ruchem fal w ośrodku sprężystym Zasada Huygensa Każdy punkt ośrodka do którego dotrze fala staje się źródłem fali kulistej. W chwili t front fali tworzy obwiednia wszystkich fal generowanych przez punkty ośrodka. Zasada Fermata Pomiędzy dwoma punktami ośrodka fala rozchodzi się po takiej drodze by czas propagacji był ekstremalny (najkrótszy lub najdłuższy).
33 Ilustracja zasady Huygensa punkty do których dotarła fala punkty które tworzą nowy front fali Fala kulista Fala płaska
34 Konsekwencja zasady Fermata: w ośrodku w którym prędkość fali jest stała promień fali jest linią prostą, jeśli prędkość fali zmienia się od punktu do punktu to promień fali jest linią krzywą. V= const V= f(x,y) Y Y X X
35 Fale sprężyste u 15 1 A 5 U x Parametry fali A amplituda drgań długość fali x
36 Parametry fali f v T v v f k 2 2 Długość fali Liczba falowa T t x A t x k A u 2 sin sin f T 2 2 Częstość kątowa drgań Równanie fali płaskiej
37 Fale podłużne P Gdy przyłożone naprężenia zewnętrzne będą naprężeniami normalnymi wówczas w ośrodku rozchodzić się będą fale, powodujące deformacje o kierunku zgodnym z kierunkiem rozchodzenia się fali. Ich prędkość zależy od modułu i gęstości ośrodka : 4 K V 3 p G Rozchodząc się powodują one lokalne zwiększenie lub zmniejszenie gęstości ośrodka, nazywamy je zagęszczeniowo-rozrzedzeniowymi lub kompresyjno-dylatacyjnymi.
38 Fale poprzeczne S Gdy przyłożone naprężenia zewnętrzne będą naprężeniami stycznymi wówczas w ośrodku rozchodzić się będą fale powodujące deformacje o kierunku prostopadłym do kierunku rozchodzenia się fali. Ich prędkość zależy od modułu sztywności G i gęstości ośrodka : V s G Rozchodząc się powodują one lokalne zmiany kształtu fragmentów ośrodka stąd nazywamy je falami odkształceniowymi.
39 Ośrodek jest nieograniczony - rozchodzi się fala poprzeczna niespolaryzowana (w płaszczyźnie prostopadłej do kierunku rozchodzenia się fali możliwe jest nieskończenie wiele kierunków drgań) Ośrodek jest półprzestrzenią ograniczoną płaszczyzną - rozchodzą się dwie spolaryzowane fale poprzeczne: o drganiach równoległych do płaszczyzny granicznej (SH) o drganiach prostopadłych do płaszczyzny granicznej (SV) Prędkość fali SV jest większa od fali SH SV SH
40 Fale powierzchniowe W półprzestrzeni rozchodzą się fale charakteryzujące się złożonym ruchem drgającym elementów ośrodka, których amplituda maleje eksponencjalnie z odległością od płaszczyzny granicznej fale powierzchniowe. Fala Reyleigh a (R) cząsteczki ośrodka poruszają się po elipsach prostopadłych do powierzchni granicznej a równoległych do kierunku propagacji fali Prędkość fali R jest o ok. 1% mniejsza od prędkości fali S
41 Fala Love a (L) Pojawia się przy granicy dwóch ośrodków, różniących się wartościami prędkości fali S. Rozchodzi się w ośrodku o mniejszej prędkości. Jej prędkość jest pośrednia pomiędzy prędkościami fal S w obu ośrodkach. W czasie propagacji fali drgania cząsteczek ośrodka są złożeniem dwóch prostopadłych ruchów drgających - równoległego do powierzchni granicznej, - prostopadłego do powierzchni granicznej. Oba drgania zachodzą w kierunku poprzecznym do kierunku fali.
42 Prędkości fal sejsmicznych w ośrodkach skalnych Prędkości fal podłużnych są zawsze większe od prędkości fal poprzecznych. Stosunek V P / V S zależy od współczynnika Poissona: V V p s Średnia wartość dla skonsolidowanych skał wynosi ¼ stąd średnio: V V p s 3 Stosunek V P /V S maleje ze stopniem konsolidacji skały, przykładowo: dla gleb i nieskonsolidowanych skał V S =,4 V P dla skał osadowych zdiagenezowanych V S =,5 V P dla skał krystalicznych V S =,6 V P
43 Prawa odbicia i załamania fali Prawa te ogólnie określa się mianem praw Snelliusa Na granicy dwóch ośrodków różniących się własnościami sprężystymi fala dochodząca do granicy może ulec częściowo odbiciu a częściowo przejść przez granicę i propagować w drugim ośrodku. Jeśli do granicy dotrze fala P lub S, na granicy tej zawsze generowane są oba typy fal tzn. zarówno fale podłużne jak i poprzeczne. Sinus kąta pod jakim fala wychodzi z granicy zależy od sinusa kąta pod jakim fala pada na granicę i stosunku prędkości fali padającej i wychodzącej z granicy - kąt padania - kąt wyjścia sin sin ' V p V p V prędkość fali padającej ' V prędkość fali wychodzącej (kąty mierzone od normalnej do granicy)
44 Fala padająca na granicę pod kątem a o P S P V 1P, V 1S V 1 < V 2 P V 2P, V 2S S
45 Fala odbita od granicy 1. fala padająca i fala odbita są tego samego typu (V = V ) sin V P V P sin ' sin V S V S sin ' = tzn. kąt padania równa się kątowi odbicia
46 Fala odbita od granicy 2. fala padająca i fala odbita są różnego typu (V V ) sin sin V P V S V S < V P < ' sin sin V S VP V P > V S > ' P S S P
47 Fala załamana na granicy Fala przechodzi przez granicę pomiędzy ośrodkami różniącymi się prędkościami fal sprężystych sin 1 sin V V V 1 < V 2 1 < 2 fala odchyla się w stronę granicy ośrodka V 1 > V 2 1 > 2 fala odchyla się od granicy ośrodka 1 1 V 1 2 V 2 2
48 Fala załamana na granicy ugięcie krytyczne W przypadku przechodzenia fali z ośrodka o mniejszej prędkości do ośrodka o większej prędkości istnieje taki kąt 1 zwany kątem krytycznym ( i ) przy którym kąt = 9 (tzn. fala propaguje wzdłuż granicy ośrodków) sin V 1 i sin9 V 2 sin i V V 1 2 i V 1 V 2
49 Całkowite wewnętrzne odbicie fali Jeśli kąt padania jest większy od i wówczas następuje tzw. całkowite wewnętrzne odbicie i fala nie przechodzi przez granicę dwóch ośrodków. Kąt padania równy jestkątowi odbicia. V 1 > i V 2
50
51
GEOFIZYKA STOSOWANA wykład 2. Podstawy sejsmiki
GEOFIZYKA STOSOWANA wykład Podstawy sejsmiki Naprężenie całkowite działające na nieskończenie mały element ośrodka ciągłego o objętości dv i powierzchni ds można opisać jeśli znamy rozkład naprężeń działających
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
5.1. Powstawanie i rozchodzenie się fal mechanicznych.
5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami
Podstawy fizyki wykład 7
Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.
ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem
- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)
37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał
Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami
6.4. Dyfrakcja fal mechanicznych.
6.4. Dyfrakcja fal mechanicznych. W danym ośrodku fale rozchodzą soę po liniach prostych. Gdy jednak fala trafi na jakąś przeszkodę, kierunek jej rozchodzenia się ulega na ogół zmianie. Zmienia się też
Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne.
Drania i fale 1. Drgania W ruchu drgającym ciało wychyla się okresowo w jedną i w drugą stronę od położenia równowagi (cykliczna zmiana). W położeniu równowagi siły działające na ciało równoważą się. Przykład
11. WŁASNOŚCI SPRĘŻYSTE CIAŁ
11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego
0 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 0. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego Wprowadzenie Światło widzialne jest
Materiały Reaktorowe. Właściwości mechaniczne
Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie
Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski
Fale dźwiękowe Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Podstawowe cechy dźwięku Ze wzrostem częstotliwości rośnie wysokość dźwięku Dźwięk o barwie złożonej składa się
Fala EM w izotropowym ośrodku absorbującym
Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów
Wprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)
RUCH FALOWY 1 Fale sejsmiczne Fale morskie Kamerton Interferencja RÓWNANIE FALI Fala rozchodzenie się zaburzeń w ośrodku materialnym lub próżni: fale podłużne i poprzeczne w ciałach stałych, fale podłużne
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ
Ruch falowy Parametry: Długość Częstotliwość Prędkość Częstotliwość i częstość kołowa Opis ruchu falowego Równanie fali biegnącej (w dodatnim kierunku osi x) v x t f 2 2 2 2 2 x v t Równanie różniczkowe
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne
Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne
Fale akustyczne Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość ciśnienie atmosferyczne Fale podłużne poprzeczne długość fali λ = v T T = 1/ f okres fali
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami
4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)
Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu
2. Rodzaje fal. Fale te mogą rozchodzić się tylko w jakimś ośrodku materialnym i podlegają prawom Newtona.
. Rodzaje fal Wykład 9 Fale mechaniczne, których przykładem są fale wzbudzone w długiej sprężynie, fale akustyczne, fale na wodzie. Fale te mogą rozchodzić się tylko w jakimś ośrodku materialnym i podlegają
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Prawo odbicia światła. dr inż. Romuald Kędzierski
Prawo odbicia światła dr inż. Romuald Kędzierski Odbicie fal - przypomnienie Kąt padania: Jest to kąt pomiędzy tzw. promieniem fali padającej (wskazującym kierunek i zwrot jej propagacji), a prostą prostopadłą
Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia
Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Fale mechaniczne i akustyka
Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera
Jucatan, Mexico, February 005 W-10 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa
Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów
17. 17. Modele materiałów
7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie
Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:
Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest
Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s.
1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 2. Dwie kulki, zawieszone na niciach o jednakowej długości, wychylono o niewielkie kąty tak, jak pokazuje
Falowa natura światła
Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna
Fal podłużna. Polaryzacja fali podłużnej
Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale
4. Elementy liniowej Teorii Sprężystości
4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.
obszary o większej wartości zaburzenia mają ciemny odcień, a
Co to jest fala? Falę stanowi rozchodzące się w ośrodku zaburzenie, zmiany jakiejś wielkości (powtarzające się wielokrotnie i cyklicznie zmieniające swoje wychylenie). Fala pojawia się w ośrodkach, których
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
2.6.3 Interferencja fal.
RUCH FALOWY 1.6.3 Interferencja fal. Pojęcie interferencja odnosi się do fizycznych efektów nie zakłóconego nakładania się dwóch lub więcej ciągów falowych. Doświadczenie uczy, że fale mogą przebiegać
Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku.
Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Definicje: promień fali kierunek rozchodzenia się fali powierzchnia falowa powierzchnia,
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Integralność konstrukcji w eksploatacji
1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE
W S E i Z W WARSZAWIE WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE Ćwiczenie Nr 2 Temat: WYZNACZNIE CZĘSTOŚCI DRGAŃ WIDEŁEK STROIKOWYCH METODĄ REZONANSU Warszawa 2009 1 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU ZA POMOCĄ
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
W tym module rozpoczniemy poznawanie właściwości fal powstających w ośrodkach sprężystych (takich jak fale dźwiękowe),
Fale mechaniczne Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Ruch falowy jest bardzo rozpowszechniony w przyrodzie. Na co dzień doświadczamy obecności fal dźwiękowych i fal świetlnych. Powszechnie też wykorzystujemy
Wyznaczanie modułu sztywności metodą Gaussa
Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z
Fale elektromagnetyczne w dielektrykach
Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między
Wstęp teoretyczny. Więcej na: dział laboratoria
Więcej na: www.treolo.prv.pl, www.treolo.eu dział laboratoria Wstęp teoretyczny Sprężystość, własność polegająca na powrocie odkształconego ciała do jego pierwotnej fory po zniknięciu sił wywołujących
Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton
Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika
Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)
Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z izyki -Zestaw 13 -eoria Drgania i ale. Ruch drgający harmoniczny, równanie ali płaskiej, eekt Dopplera, ale stojące. Siła harmoniczna, ruch drgający harmoniczny Siłą harmoniczną (sprężystości)
Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis
Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia
WSTĘP DO TEORII PLASTYCZNOŚCI
13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży
STAN NAPRĘŻENIA dr hab. inż. Tadeusz Chyży 1 SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE Rozważmy ciało o objętości V 0 ograniczone powierzchnią S 0, poddane działaniu sił będących w równowadze. Rozróżniamy tutaj
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
STATYCZNA PRÓBA ROZCIĄGANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej
Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali
Wytrzymałość Materiałów
Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.
Podstawy fizyki sezon 1 VIII. Ruch falowy
Podstawy fizyki sezon 1 VIII. Ruch falowy Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Gdzie szukać fal? W potocznym
Wykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład IX: Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada dynamiki Siły
6. ZWIĄZKI FIZYCZNE Wstęp
6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe
Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:
Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa
WŁASNOŚCI FAL (c.d.)
RUCH FALOWY Własności i rodzaje fal. Prędkość rozchodzenia się fal. Fala harmoniczna płaska. Fala stojąca. Zasada Huygensa. Dyfrakcja fal. Obraz dyfrakcyjny. Kryterium Rayleigha. Interferencja fal. Doświadczenie
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Prędkośd rozchodzenia się sprężystych fal podłużnych w ciałach stałych, cieczach i
1 S t r o n a 6. Prędkośd rozchodzenia się sprężystych fal podłużnych w ciałach stałych, cieczach i gazach. Prawo Hooke a: Siła sprężystości: F Xsp = k. 0) Co do wartości bezwzględnej jest ona równa (lub
Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017
Optyka Wykład VII Krzysztof Golec-Biernat Prawa odbicia i załamania Uniwersytet Rzeszowski, 22 listopada 2017 Wykład VII Krzysztof Golec-Biernat Optyka 1 / 20 Plan Zachowanie pola elektromagnetycznego
Ruch drgający i falowy
Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch
PODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)