Bayesowskie prognozy migracji zagranicznych w Europie: wybrane propozycje metodologiczne
|
|
- Bronisław Andrzejewski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Bayesowske rognozy mgracj zagrancznych w Euroe: wybrane roozycje metodologczne Jakub Bjak Badań Mgracyjnych Ludnoścowych w Warszawe Ogólnoolske Semnarum Naukowe Dynamczne Modele Ekonometryczne Toruń, 4 6 wrześna 2007 r. Projekt fnansowany z grantu badawczego Fundacj na rzecz Ludnośc, Mgracj Środowska BMU-PME z Zurychu
2 Plan rezentacj 1. Wybór model w ujęcu bayesowskm: wrowadzene 2. Ilustracja emryczna: rognoza mgracj mędzy Polską a Nemcam na lata Proste rocesy stochastyczne z klasy ARMA1,1 Modele ze zmenną warancją warunkową Prognozowane rzez analogę 3. Odorność rognoz na zmany wybranych rozkładów a ror 4. Podsumowane wnosk
3 1. Wybór model w ujęcu bayesowskm Teora: neewność dotycząca secyfkacj modelu Nech M 1,, M m będą wzajemne wykluczającym sę modelam składającym sę na skończoną rzestrzeń M Nech M 1,, M m oznaczają rawdoodobeństwa a ror tych model, n.: Jednakowe rozkład jednostajny: M 1 M m Rozkład tyu brzytwy Ockhama faworyzujący rostsze modele z mnejszą lczbą arametrów, l : M 2 l Do rognozowana wyberany jest model o najwyższym rawdoodobeństwe a osteror, z twerdzena Bayesa: M x M xm /Σ k M {M k xm k } [Hoetng n., 1999; Osewalsk, 2001]
4 Praktyka: oblczena numeryczne 1. Wybór model w ujęcu bayesowskm Wybór modelu za omocą metod MCMCMC, [Carln Chb, 1995] mlementacja w akece WnBUGS 1.4 [Segelhalter n., 2003] Metoda: teracyjne róbkowane z ełnych rozkładów warunkowych dla arametrów oraz ndeksu modelu : Parametry są losowane z ełnych rozkładów warunkowych gdy, lub z gęstośc łączących seudo-a ror w.. Iteracje rzed osągnęcem zbeżnośc są odrzucane. ], [,, for for,,, M M M x x x x x k j j k k j j j k M k M
5 1. Wybór model w ujęcu bayesowskm Uzasadnene dla zastosowań w rognozach mgracj Cechy odejśca bayesowskego: Stochastyczny charakter zaewna formalzm wnoskowana, ze szczególnym zwrócenem uwag na kwestę neewnośc Douszczona jest wedza eksercka a ror, która może uzuełnć nformację z róby stotne dla krótkch szeregów danych o mgracjach w Euroe [n. Wllekens, 1994] Metody formalnego wyboru model: Sosób na uwzględnene neewnośc secyfkacyjnej Użyte z odowednm rozkładam a ror tyu brzytwy Ockhama dostarczają rzesłanek odnośne stona złożonośc model rognostycznych [n. Ahlburg, 1995; Smth, 1997]
6 2. Prognozy mgracj olsko-nemeckch Cel Prognoza długookresowych mgracj mędzy Polską a Nemcam na lata dla różnych klas model Dane Prognozowana zmenna logarytmy wsółczynnków emgracj na 1,000 ludnośc kraju ochodzena: m t lnmg t / Po t * 1,000 Szereg danych dla lat Źródła danych: stany ludnośc Eurostat mgracje Destats dane nemecke Stany ludnośc w Polsce skorygowane o NSP 2002
7 2. Prognozy mgracj olsko-nemeckch a Proste rocesy stochastyczne z klasy ARMA1,1 M 1 : m t c + ε t [losowe oscylacje wokół stałej] M 2 : m t c + m t 1 + ε t [błądzene rzyadkowe z dryfem] M 3 : m t c + φ m t 1 + ε t ; φ {0, 1} [roces AR1] M 4 : m t c ε t 1 + ε t ; 0 [roces MA1] M 5 : m t c + φ m t 1 ε t 1 + ε t ; φ, 0 [ARMA1,1] Składnk losowy: ε t ~ N0, σ 2 Próba: N14 A ror: stałe c ~ N0, rozroszone mało nformacyjne φ, ~ N0.5, 1 2 : rocesy raczej stacjonarne / odwracalne Nska recyzja: τ PL DE σ 2 ~ Γ0.25, 0.25; τ DE PL ~ Γ4, 0.4
8 2. Prognozy mgracj olsko-nemeckch b Rozszerzena AR1: zmenne warancje warunkowe Model ogólny: m t c + φ m t 1 + ε t, gdze ε t ~ N0, σ t2 M 5 : σ t2 σ 2 [model referencyjny o stałej warancj] M 6 : σ t2 k + α ε 2 t 1 [roces AR1 ARCH1] M 7 : σ t2 k + α ε t 12 + β σ 2 t 1 [model AR1 GARCH1,1] M 8 : lnσ t2 k + γ lnσ t 12 + ζ t [stochastyczna zmenność, SV] Zmenność determnstyczna M 6 M 7 vs. stochastyczna M 8 2. składnk losowy: ζ t ~ N0, ρ 2 Próba: N20 A ror: c, φ jak wyżej; z rzyczyn techncznych skuone rozkłady dla: α, β, γ ~ Γ10, 20; k ~ Γ1, 0.1; 1/ρ 2 ~ Γ10, 1
9 2. Prognozy mgracj olsko-nemeckch c Modele z analogą do mgracj w krajach beryjskch Idea na uchwycene zman nstytucjonalnych, n. akcesj do UE otwarca zachodnch rynków racy [Kuszewsk, 1998] M 10 : m t c + ε t [model referencyjny, bez analog] M 11 : m t c + a m PT t 18 + b 1 t ε t [Portugala] M 12 : m t c + a m ES t 18 + ε t [Hszana] M 13 : m t c + a m IB t 18 + b 1 t ε t [oba kraje] Uzasadnena: chronologa akcesj, transformacje systemowe Składnk losowy: ε t ~ AR1 Próba: N13 A ror: c, φ, τ jak wyżej, a ~ N0.5, 1 2 dodatna analoga
10 2. Prognozy mgracj olsko-nemeckch Bayesowsk wybór model dla roonowanych klas M Prawdoodobeństwa M x dla brzytwy Ockhama, M 2 l Przeływ mgracyjny Modele z klasy ARMA1,1 M 1 M 2 M 3 M 4 M 5 Zmenna warancja M 6 M 7 M 8 M 9 Modele z analogą M 10 M 11 M 12 M 13 Polska Nemcy Nemcy Polska Rozkład a ror M Proste modele losowe: oscylacje / błądzene rzyadkowe Warunkowa warancja stała lub zmenna stochastyczne Lnowe analoge ne mają uzasadnena w danych
11 2. Prognozy mgracj olsko-nemeckch Przegląd wybranych wynków emrycznych Mgracje z Polsk do Nemec: rozkłady wybranych arametrów, rognoza na 2005 r. Mgracje z Nemec do Polsk: rozkłady wybranych arametrów, rognoza na 2005 r. Szare lne rozkłady a ror, czarne a osteror. Najwększe błędy ex ost dla M 1, najmnejsze M 2
12 2. Prognozy mgracj olsko-nemeckch Prognozy exm t dla wybranych model, Model M 1 : oscylacje M 9 : AR1 SV M 10 : bez analog M 2 : RWD M 6 : AR1 M 9 : AR1 SV M 10 : bez analog Prognozowane exm 2005 Prognozowane exm % Medana 90% 10% Medana 90% Polska Nemcy: exm ; exm Nemcy Polska: exm ; exm Prognozowane exm % Medana 90% Trajektore dla medan douszczalne, sugerują stablzację Grance 80-rocentowych rzedzałów równeż zasadne, za wyjątkem model nestacjonarnych RWD / AR z φ >1
13 3. Odorność na zmany rozkładów a ror a Jednostajny rozkład M zamast brzytwy Ockhama Wynk dla model klasy ARMA1,1: wybrane zostały te same modele, ale z nnym rawdoodobeństwam M x b Alternatywne, referencyjne rozkłady a ror dla arametrów : rozkłady nenformacyjne [Jeffreys, 1961] W zastosowanach raktycznych, dla wygody oblczeń mogą być wykorzystane rozkłady mało nformacyjne : [Congdon, 2003] Dla arametrów strukturalnych: N0, D 2 rzy dużych D Dla recyzj τ σ 2 : Γa, a z małym arametram a Przy D 100 oraz a rognozy z model oscylacj, błądzena losowego AR1 różną sę od nformacyjnych rognoz zwłaszcza w odnesenu do oszacowań neewnośc
14 3. Odorność na zmany rozkładów a ror Wynk: nformacyjne oraz mało nformacyjne rozkłady a ror 7,2 6,0 4,8 3,6 2,4 1,2 Mgraton from Poland to Germany, oscllaton rates er 1,000 oulaton of a sendng country 0, ,8 4,0 3,2 2,4 1,6 0,8 Mgraton from Germany to Poland, RWD rates er 1,000 oulaton of a sendng country 0, ,2 6,0 4,8 3,6 2,4 1,2 Mgraton from Poland to Germany, AR1 rates er 1,000 oulaton of a sendng country 0, ,8 4,0 3,2 2,4 1,6 0,8 Mgraton from Germany to Poland, AR1 rates er 1,000 oulaton of a sendng country 0, Bez założena a ror nskej recyzj τ σ 2 80-rocentowe rzedzały redykcyjne są często węższe od zakresu zmennośc m t w róbe
15 4. Podsumowane wnosk Metody bayesowske ozwalają na dentyfkację model najbardzej zgodnych z danym oraz na ocenę neewnośc na welu ozomach, w tym dotyczącej secyfkacj modelu Wynk emryczne: referencje dla model rostych Wybór oscylacj, błądzena losowego oraz stochastycznej zmennośc wskazuje na słabo rzewdywalny charakter zarówno samych mgracj, jak ch mar neewnośc Ze względu na krótke szereg, wynk ne są odorne na zmany rozkładów a ror zwłaszcza dla recyzj Z drugej strony, bez założena a ror o nskej recyzj rzedzały redykcyjne byłyby w welu rzyadkach zbyt wąske, jak na tak neewne zjawsko, jakm są mgracje
16 Dzękuję za uwagę! Podzękowana za część omysłów oraz cenne uwag dyskusje dotyczące rzedstawonego materału należą sę rof. Jackow Osewalskemu
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
Weryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
Funkcje i charakterystyki zmiennych losowych
Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych
) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
FINANSOWE SZEREGI CZASOWE WYKŁAD 3
FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =
Natalia Nehrebecka. Zajęcia 3
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a
Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci
Zadane. Macerz radoodobeńst rzejśca ojedynczym kroku dla łańcucha Markoa...... o trzech stanach { } jest ostac 0 n 0 0 (oczyśce element stojący -tym erszu j -tej kolumne tej macerzy oznacza P( = j. Wtedy
EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.
EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc
Statystyka. Zmienne losowe
Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu
Finansowe szeregi czasowe wykład 7
Fnansowe szereg czasowe wykład 7 dr Tomasz Wójowcz Wydzał Zarządzana AGH 38 33 28 23 18 13 8 1 11 21 31 41 51 61 71 Kraków 213 Noowana ndeksu WIG w okrese: 3 marca 29 31 syczna 211 55 5 45 4 35 3 25 2
Natalia Nehrebecka. Wykład 2
Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad
( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X
Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
Stanisław Cichocki Natalia Nehrebecka. Wykład 2
Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 3 Szereg
Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
Natalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych
Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00
Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych
dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m
6. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO
Różnce mędzy obserwacjam statystycznym ruchu kolejowego a samochodowego 7. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO.. Obserwacje odstępów mędzy kolejnym wjazdam na stację
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU
Ewa Szymank Katedra Teor Ekonom Akadema Ekonomczna w Krakowe ul. Rakowcka 27, 31-510 Kraków STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Abstrakt Artykuł przedstawa wynk badań konkurencyjnośc
Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ
WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego
Statystyka Inżynierska
Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej
Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej
Ekonometryczne modele nieliniowe
Ekonomeryczne modele nelnowe Wykład 5 Progowe modele regrej Leraura Hanen B. E. 997 Inference n TAR Model, Sude n Nonlnear Dynamc and Economerc,. Tek na rone nerneowej wykładu Dodakowa leraura Hanen B.
Dobór zmiennych objaśniających
Dobór zmennych objaśnających Metoda grafowa: Należy tak rozpąć graf na werzchołkach opsujących poszczególne zmenne, aby występowały w nm wyłączne łuk symbolzujące stotne korelacje pomędzy zmennym opsującym.
Pattern Classification
attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter
Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane
Bayesowskie testowanie modeli tobitowych w analizie spłaty kredytów detalicznych
Jerzy Marzec, Katedra Ekonometr Badań Oeracyjnych, Unwersytet Ekonomczny w Krakowe 1 Bayesowske testowane model tobtowych w analze słaty kredytów detalcznych Wstę Podstawowym narzędzem wsomagającym racę
Stanisław Cichocki Natalia Nehrebecka. Wykład 2
Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 3 Szereg czasowy jes pojedynczą realzacją pewnego
Dywersyfikacja portfela poprzez inwestycje alternatywne. Prowadzący: Jerzy Nikorowski, Superfund TFI.
Dywersyfkacja ortfela orzez nwestycje alternatywne. Prowadzący: Jerzy Nkorowsk, Suerfund TFI. Część I. 1) Czym jest dywersyfkacja Jest to technka zarządzana ryzykem nwestycyjnym, która zakłada osadane
Procedura normalizacji
Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne
Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3
Stansław Cchock Natala Nehrebecka Katarzyna Rosak-Lada Zajęca 3 1. Dobrod dopasowana równana regresj. Współczynnk determnacj R 2 Dekompozycja warancj zmennej zależnej Współczynnk determnacj R 2 2. Zmenne
EKONOMETRIA I Spotkanie 1, dn. 05.10.2010
EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych
= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
Stanisław Cichocki. Natalia Nehrebecka. Wykład 11
Stansław Cchock Natala Nehrebecka Wykład 11 1 1. Testowane hpotez łącznych 2. Testy dagnostyczne Testowane prawdłowośc formy funkcyjnej: test RESET Testowane normalnośc składnków losowych: test Jarque-Berra
Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)
Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz
Heteroskedastyczość w szeregach czasowyh
Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem
EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnienia
EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnena dr Dorota Cołek Katedra Ekonometr Wydzał Zarządzana UG http://wzr.pl/dorota-colek/ dorota.colek@ug.edu.pl 1 Wpływ skalowana danych na MNK
1.1. Uprość opis zdarzeń: 1.2. Uprościć opis zdarzeń: a) A B A Uprościć opis zdarzeń: 1.4. Uprościć opis zdarzeń:
.. Uprość ops zdarzeń: a) A B, A \ B b) ( A B) ( A' B).. Uproścć ops zdarzeń: a) A B A b) A B, ( A B) ( B C).. Uproścć ops zdarzeń: a) A B A B b) A B C ( A B) ( B C).4. Uproścć ops zdarzeń: a) A B, A B
Natalia Nehrebecka. Dariusz Szymański
Natala Nehrebecka Darusz Szymańsk . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl
Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa
Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)
Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB
Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe
Stacjonarność Integracja. Integracja. Integracja
Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Ekonometria Wykład 4 Prognozowanie, sezonowość. Dr Michał Gradzewicz Katedra Ekonomii I KAE
Ekonometria Wykład 4 Prognozowanie, sezonowość Dr Michał Gradzewicz Katedra Ekonomii I KAE Plan wykładu Prognozowanie Założenia i własności predykcji ekonometrycznej Stabilność modelu ekonometrycznego
Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Modelowanie zmiennej jakościowej Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 8 Zmienna jakościowa 1 / 25 Zmienna jakościowa Zmienna ilościowa może zostać zmierzona
Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.
Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można
0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4
Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (
PARAMETRY ELEKTRYCZNE CYFROWYCH ELEMENTÓW PÓŁPRZEWODNIKOWYCH
ARAMETRY ELEKTRYZNE YFROWYH ELEMENTÓW ÓŁRZEWODNIKOWYH SZYBKOŚĆ DZIAŁANIA wyrażona maksymalną częsolwoścą racy max MO OBIERANA WSÓŁZYNNIK DOBROI D OBIĄŻALNOŚĆ ELEMENTÓW N MAKSYMALNA LIZBA WEJŚĆ M ODORNOŚĆ
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Guy Meredith (2003) Medium-Term Exchange Rate Forecasting: What We Can Expect IMF Working Paper WP 03/021.
Guy Meredith (2003) Medium-Term Exchange Rate Forecasting: What We Can Expect IMF Working Paper WP 03/021. Celem artykułu jest porównanie różnych modeli używanych w prognozowaniu kursów walutowych. Modelowanie
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcena Geologa Informacje ogólne 2 Nazwa jednostk prowadzącej moduł Państwowa Szkoła Wyższa m. Papeża Jana Pawła II,Katedra Nauk Techncznych, Zakład Budownctwa
KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej
Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16
Value at Risk (VaR) Jerzy Mycielski WNE 2018 Jerzy Mycielski (Institute) Value at Risk (VaR) 2018 1 / 16 Warunkowa heteroskedastyczność O warunkowej autoregresyjnej heteroskedastyczności mówimy, gdy σ
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
Geometryczna zbieżność algorytmu Gibbsa
Geometryczna zbieżność algorytmu Gibbsa Iwona Żerda Wydział Matematyki i Informatyki, Uniwersytet Jagielloński 6 grudnia 2013 6 grudnia 2013 1 / 19 Plan prezentacji 1 Algorytm Gibbsa 2 Tempo zbieżności
Szeregi czasowe, analiza zależności krótkoi długozasięgowych
Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t
WYKORZYSTANIE SYMULACJI STOCHASTYCZNEJ DO BADANIA WRAŻLIWOŚCI SKŁADU OPTYMALNYCH PORTFELI AKCJI
ZESZYTY AUKOWE UIWERSYTETU SZCZECIŃSKIEGO R 768 FIASE, RYKI FIASOWE, UBEZPIECZEIA R 63 2013 IWOA KOARZEWSKA Unwersytet Łódzk WYKORZYSTAIE SYMULACJI STOCHASTYCZEJ DO BADAIA WRAŻLIWOŚCI SKŁADU OPTYMALYCH
Testowanie hipotez statystycznych cd.
Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Joanna Górka WŁASNOŚCI PROGNOSTYCZNE MODELI KLASY RCA *
ACTA UNIVERSITATIS NICOLAI COPERNICI EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ 2009 Uniwersytet Mikołaja Kopernika w Toruniu Katedra Ekonometrii i Statystyki Joanna Górka WŁASNOŚCI PROGNOSTYCZNE
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 13 Mkołaj Czajkowsk Wktor Budzńsk Symulacje Analogczne jak w przypadku cągłej zmennej zależnej można wykorzystać metody Monte Carlo do analzy różnego rodzaju problemów w modelach gdze zmenna
Badanie optymalnego poziomu kapitału i zatrudnienia w polskich przedsiębiorstwach - ocena i klasyfikacja
Jacek Batóg Unwersytet Szczecńsk Badane optymalnego pozomu kaptału zatrudnena w polskch przedsęborstwach - ocena klasyfkacja Prowadząc dzałalność gospodarczą przedsęborstwa kerują sę jedną z dwóch zasad
Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1
Rozkład dwupunktowy Zmenna losowa przyjmuje tylko dwe wartośc: wartość 1 z prawdopodobeństwem p wartość 0 z prawdopodobeństwem 1- p x p 0 1-p 1 p suma 1 Rozkład dwupunktowy Funkcja rozkładu prawdopodobeństwa
1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ
Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz
Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe
Numeryczne metody optymalizacji Optymalizacja w kierunku informacje dodatkowe Numeryczne metody optymalizacji x F x = min x D x F(x) Problemy analityczne: 1. Nieliniowa złożona funkcja celu F i ograniczeń
2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7
Spis treści Spis treści 1 Przedziały ufności 1 1.1 Przykład wstępny.......................... 1 1.2 Określenie i konstrukcja...................... 3 1.3 Model dwupunktowy........................ 5 1.4
Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla
Bogumiła Koprowska Elżbieta Kukla 1 Wstęp Czym są efekty losowe? Przykłady Model mieszany 2 Estymacja Jednokierunkowa klasyfikacja (ANOVA) Metoda największej wiarogodności (ML) Metoda największej wiarogodności
Badanie energetyczne płaskiego kolektora słonecznego
Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 5 Mkołaj Czajkowsk Wktor Budzńsk Uogólnone modele lnowe Uogólnone modele lnowe (ang. Generalzed Lnear Models GLM) Różną sę od standardowego MNK na dwa sposoby: Rozkład zmennej objaśnanej
Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA
Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA
V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH
Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów
Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu
PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 . Zmenne dyskretne Kontrasty: efekty progowe, kontrasty w odchylenach Interakcje. Przyblżane model nelnowych Stosowane do zmennych dyskretnych o uporządkowanych
Matematyka ubezpieczeń majątkowych r.
Maemayka ubezpeczeń mająkowych 7.05.00 r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny
Analiza zależności zmiennych ilościowych korelacja i regresja
Analza zależnośc zmennych loścowych korelacja regresja JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Plan wykładu 1. Lnowa zależność mędzy dwoma zmennym: Prosta regresja Metoda najmnejszych
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
mę, nazwsko, nr ndeksu: Ekonometra egzamn 1//19 1. Egzamn trwa 9 mnut.. Rozwązywane zadań należy rozpocząć po ogłoszenu początku egzamnu a skończyć wraz z ogłoszenem końca egzamnu. Złamane tej zasady skutkuje
Testowanie hipotez statystycznych
Temat Testowanie hipotez statystycznych Kody znaków: Ŝółte wyróŝnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Idea i pojęcia teorii testowania hipotez
KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL W standardowym modelu lnowym zakładamy,
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Przykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
DYNAMICZNE MODELE EKONOMETRYCZNE
DYNAICZNE ODELE EKONOETRYCZNE X Ogólnopolske Semnarum Naukowe, 4 6 wrześna 7 w Torunu Kaedra Ekonomer Saysyk, Unwersye kołaja Kopernka w Torunu Jacek Kwakowsk Unwersye kołaja Kopernka w Torunu odele RCA
WSHiG Karta przedmiotu/sylabus
WSHG Karta przedmotu/sylabus KIERUNEK SPECJALNOŚĆ TRYB STUDIÓW SEMESTR Turystyka Rekreacja Zarządzane marketng Stacjonarny / nestacjonarny I / I stopna Nazwa przedmotu ELEMENTY PRAWA GOSPODARCZEGO ZM_MKPR_S_8
WSHiG Karta przedmiotu/sylabus. Prawo pracy i ubezpieczeń społecznych. Studia stacjonarne 16 godz. Studia niestacjonarne 30 godz.
WSHG Karta przedmotu/sylabus KIERUNEK SPECJALNOŚĆ TRYB STUDIÓW SEMESTR Turystyka Rekreacja Zarządzane marketng Stacjonarny / nestacjonarny III/I stopna Nazwa przedmotu Wymar godznowy poszczególnych form
65120/ / / /200
. W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego
Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
Analiza i zarządzanie ryzykiem inwestycyjnym przedsiębiorstwa w przedsięwzięciach międzynarodowych
Analza zarządzane ryzykem nwestycyjnym przedsęborstwa w przedsęwzęcach mędzynarodowych Projekt Enterprse Europe Network Central Poland jest współfnansowany przez Komsję Europejską ze środków pochodzących