SZTUCZNA INTELIGENCJA
|
|
- Alicja Szymczak
- 9 lat temu
- Przeglądów:
Transkrypt
1 SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska
2 TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej osobnk, genotyp, struktura, łańcuch lub cąg kodowy) zakodowane zmenne/parametry zadana, fenotyp - zdekodowane zmenne/parametry zadana, rozwązane, gen - (naczej cecha, znak, dekoder) zakodowana wartość pojedynczej zmennej/parametru, generacja - populacja w wymarze czasowym (w kolejnych teracjach), krzyżowane - (naczej rekombnacja, krosowane) operator genetyczny dwu lub weloargumentowy, łączący cechy osobnków rodzcelskch w osobnkach potomnych, locus - pozycja genu w chromosome, mutacja - operator genetyczny jednoargumentowy, wprowadzający perturbację chromosomu, napór selekcyjny - wymagana środowska względem osobnków populacj, populacja - zbór chromosomów przetwarzany w procese ewolucyjnym, przystosowane - ocena chromosomu, pula rodzcelska - tymczasowa populacja chromosomów utworzona w wynku selekcj, selekcja - (naczej reprodukcja) proces powelana chromosomów w stosunku zależnym od ch przystosowana.
3 ALGORYTM GENETYCZNY JAKO METODA OPTYMALIZACJI Zasadncze różnce mędzy tradycyjnym metodam optymalzacj a algorytmam genetycznym * : AG ne przetwarzają bezpośredno parametrów zadana, lecz ch zakodowaną postać, AG prowadz poszukwana, wychodząc ne z pojedynczego punktu, lecz z całej ch populacj, AG korzystają tylko z funkcj celu (zwanej funkcją przystosowana), ne zaś z jej pochodnych lub nnych pomocnczych nformacj, AG stosują probablstyczne, a ne determnstyczne reguły wyboru. Probablstyczny oparty na teor prawdopodobeństwa Determnstyczny neprzypadkowy, uznający zasadę prawdłowośc, przyczynowego uwarunkowana zjawsk, określony, jednoznaczny Stochastyczny częścowo losowy lub nepewny, probablstyczny * Goldberg D.E.: Algorytmy genetyczne ch zastosowana. WNT, Warszawa
4 SCHEMAT AG 4
5 SCHEMAT AG/AE 1. Zdefnuj zmenne ustal ch reprezentację.. Ustal parametry AG/AE. 3. Wygeneruj początkową populację osobnków P(0). 4. Oceń populację początkową P(0). 5. Dla t = 1,,... powtarzaj do momentu spełnena warunku zatrzymana: 5.1. Reprodukcja: wyberz osobnk z populacj P(t) do P(t-1) korzystając z metody selekcj. 5.. Zmodyfkuj P(t) używając operatorów genetycznych Oceń populację P(t). 5
6 KLASYCZNY AG W AKCJI Zadane Znaleźć maksmum funkcj f(x) = x + 1 dla x N x [0, 15]. Przestrzeń poszukwań {0, 1,..., 15} 6
7 KLASYCZNY AG W AKCJI 1. Zdefnuj zmenne ustal ch reprezentację Zmenna - x Dzedzna x obejmuje 16 wartośc 0, 1,..., 15 Do zakodowana 16-tu wartośc potrzeba 4 btów Sposób kodowana reprezentacja bnarna: x chromosom Osobnk (chromosomy) składają sę z jednego genu, allele przyjmują wartośc 16 warantów. 7
8 . Ustal parametry AE Lczebność populacj (lczba osobnków) N = 4 Lczba generacj (teracj AG) L gen = 10 Metoda krzyżowana krzyżowane jednopunktowe Prawdopodobeństwo krzyżowana p c = 0,9 Metoda mutacj bnarna równomerna Prawdopodobeństwo mutacj p m = 0,1 3. Wygeneruj populację początkową P(0) Generacja jest często losowa, np:
9 4. Oceń populację P(0) Aby ocenć chromosomy trzeba je zdekodować, czyl wyznaczyć ch fenotypy x, a następne podstawć x do funkcj celu oblczyć przystosowane f(x ). Genotypy Fenotypy Przystosowane Dla t = 1,,... powtarzaj do momentu spełnena warunku zatrzymana Warunek zatrzymana osągnęce optmum, przekroczene zadanej lczby teracj, brak postępów 9
10 KLASYCZNY AG W AKCJI 5.1. Reprodukcja: wyberz osobnk z populacj P(t) do P(t-1) korzystając z metody selekcj. Selekcja metodą koła ruletk Prawdopodobeństwo selekcj chromosomu ch : p ( ch ) s = N j= 1 f ( ch ) f ( ch ) v(ch j ) - wycnek koła odpowadający chromosomow ch : W naszym przykładze: v ( ch ) p ( ch ) 100% 4 j= 1 = s f ( ch j ) = 848 j 10
11 KLASYCZNY AG W AKCJI p s (ch 1 ) = 73/848 = 0,09 v(ch 1 ) = 9% p s (ch ) = 89/848 = 0,33 v(ch 1 ) = 33% p s (ch 3 ) = 43/848 = 0,9 v(ch 3 ) = 9% p s (ch 4 ) = 43/848 = 0,9 v(ch 4 ) = 9% 0% 9% Po 4-krotnym zakręcenu kołem (czyl wylosowanu lczb z zakresu [0, 100]), do pul rodzcelskej wytypowano osobnk nr,, % 9% 9% 33% 1 9% 51 4% 41 11
12 KLASYCZNY AG W AKCJI 5.. Zmodyfkuj P(t) używając operatorów genetycznych Krzyżowane jednopunktowe 1. Losowo kojarzymy chromosomy z pul rodzcelskej w pary tworząc N/ par. Para podlega krzyżowanu z prawdopodobeństwem p c lub przechodz do następnej populacj bez krzyżowana (z prawdopodobeństwem 1 p c ).. Dla każdej pary wyberamy losowo punkt cęca k {1,,..., n-1}, gdze n lczba btów w chromosome. 3. Zamenamy mejscam wszystke bty od pozycj k+1 do n w obu chromosomach rodzcelskch, tworząc w ten sposób dwa osobnk potomne. Po krzyżowanu populacja potomków zastępuje populację rodzców. 1
13 KLASYCZNY AG W AKCJI Osobnk rodzcelske Osobnk potomne punkt cęca W naszym przykładze: Losowane par rodzców: 1 3, 1 Losowane punktów cęca:
14 KLASYCZNY AG W AKCJI Mutacja Zmana wybranych losowo genów chromosomów (btów). W naszym przykładze: Dla każdego btu kolejnych chromosomów losujemy z rozkładem jednostajnym lczbę r [0, 1]. Jeśl r < p m zmenamy wartość btu. Prawdopodobeństwo mutacj btu p m jest znaczne mnejsze od p c. Tylko dla btu 4 osobnka otrzymano r < p m
15 KLASYCZNY AG W AKCJI 5.3. Oceń populację P(t) Genotypy Fenotypy W następnej generacj: 4 Selekcja: f ( ch j ) = 1160 j= 1 Przystosowane p s (ch 1 ) = 339/1160 = 0,9 v(ch 1 ) = 9% p s (ch ) = 43/1160 = 0,1 v(ch 1 ) = 1% p s (ch 3 ) = 89/1160 = 0,5 v(ch 3 ) = 5% p s (ch 4 ) = 89/1160 = 0,5 v(ch 4 ) = 5% Metodą koła ruletk wybrano chromosomy do pul rodzcelskej: 1101, 1011, 1011,
16 KLASYCZNY AG W AKCJI Krzyżowane Losowane par rodzców: 4 3, 3 Losowane punktów cęca: Mutacja: ne zachodz. Nowa populacja Genotypy Fenotypy Przystosowane najlepsze rozwązane
17 KODOWANIE BINARNE ZMIENNYCH RZECZYWISTYCH Znaleźć maksmum funkcj f(x 1, x,..., x n ) dla x R x [a, b ]. Szukamy rozwązana z dokładnoścą do q mejsc po przecnku dla zmennej x. Wymagana długość m łańcucha btów do zakodowana zmennej x : ( b ) a q m m = q cel(log (( b a ) ) gdze cel operator zaokrąglana w górę do najblższej lczby całkowtej Dekodowane: x = a + y ( b m a ) 1 gdze y wartość dzesętna łańcucha btów kodującego x 17
18 KODOWANIE BINARNE ZMIENNYCH RZECZYWISTYCH Przykład f(x 1, x ) = x 1 +x, x 1 [-1, 1], x [, 5], q 1 =, q = 4. m m 1 q1 = cel(log (( b a ) ) = cel(log (1 + 1) )) = cel(7.65) = q 4 = cel(log (( b a ) ) = cel(log (5 ) )) = cel(14.87) = 15 Dla ch 1 = => y 1 = 105, y = 681 x 1 y ( b 1 1 = a1 + m 1 a ) (1 + 1) = = 0.18 x y ( b = a + m a 1 ) 681 (5 ) = =
Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba
Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
6. Klasyczny algorytm genetyczny. 1
6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
ALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 18. ALGORYTMY EWOLUCYJNE - ZASTOSOWANIA Częstochowa 2014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska ZADANIE ZAŁADUNKU Zadane załadunku plecakowe
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
ALGORYTMY GENETYCZNE (wykład + ćwiczenia)
ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
Obliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni
Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny
Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata
Algorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
Algorytmy genetyczne w optymalizacji
Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy
LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS
Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,
METODY HEURYSTYCZNE wykład 3
SCHEMAT DZIAŁANIA AG: METODY HEURYSTYCZNE wykład 3 procedure Algorytm_genetyczny t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do t:=t+ wybierz P(t) z P(t-) (selekcja)
METODY HEURYSTYCZNE wykład 3
METODY HEURYSTYCZNE wykład 3 1 Przykład: Znaleźć max { f (x)=x 2 } dla wartości całkowitych x z zakresu 0-31. Populacja w chwili t: P(t)= {x t 1,...x t n} Założenia: - łańcuchy 5-bitowe (x=0,1,...,31);
Algorytmy genetyczne (AG)
Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,
Równoważność algorytmów optymalizacji
Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych
Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.
Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane
Zadanie 5 - Algorytmy genetyczne (optymalizacja)
Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania
Minimalizacja globalna. Algorytmy genetyczne i ewolucyjne.
Mnmalzacja globalna Algorytmy genetyczne ewolucyjne. Lnearyzacja nelnowego operatora g prowadz do przyblżonych metod rozwązywana zagadnena odwrotnego. Wynk takej nwersj jest slne uzależnony od wyboru modelu
Standardowy algorytm genetyczny
Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria
Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
Algorytmy ewolucyjne. wprowadzenie
Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i
Strategie ewolucyjne (ang. evolu4on strategies)
Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA Wykład 2 dr inż. Agnieszka Bołtuć Historia Zadania Co odróżnia od klasycznych algorytmów Nazewnictwo Etapy Kodowanie, inicjalizacja, transformacja funkcji celu Selekcja
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
ALGORYTMY GENETYCZNE
ALGORYTMY GENETYCZNE Algorytmy Genetyczne I. Co to są algorytmy genetyczne? II. Podstawowe pojęcia algorytmów genetycznych III. Proste algorytmy genetyczne IV. Kodowanie osobników i operacje genetyczne.
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony
LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność
Algorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
LICZEBNOŚĆ POPULACJI OBLICZENIA EWOLUCYJNE. wykład 3. Istotny parametr AG...
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f. value
Minimalizacja globalna, algorytmy genetyczne i zastosowanie w geotechnice
Mnmalzacja globalna, algorytmy genetyczne zastosowane w geotechnce Metoda sejsmczna Metoda geoelektryczna Podstawowy podzał ZAGADNIENIE PROSTE (ang. forward problem) model + parametry modelu dane (ośrodek,
Przykład: Znaleźć max { f (x)=x 2 } Nr osobnika Po selekcji: Nr osobnika
Przykład: Znaleźć max { f (x)=x } METODY HEURYSTYCZNE wykład 3 dla wartośc całkowtych x z zakresu -3. Populacja w chwl t: P(t)= {x t,...x t n} Założena: - łańcuchy 5-btowe (x=,,...,3); - lczebność populacj
ALGORYTMY EWOLUCYJNE. INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 011. Napór selekcyjny (selektywny nacisk. Superosobniki: SELEKCJA
INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 0 ALGORYTMY EWOLUCYJNE 2 Dla danego problemu można określić wiele sposobów kodowania i zdefiniować szereg operatorów (np. zadanie komiwojażera). AE to rozwinięcie
Modyfikacje i ulepszenia standardowego algorytmu genetycznego
Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t
Strategie ewolucyjne (ang. evolution strategies)
Strategie ewolucyjne (ang. evolution strategies) 1 2 Szybki przegląd Rozwijane w Niemczech w latach 60-70. Wcześni badacze: I. Rechenberg, H.-P. Schwefel (student Rechenberga). Typowe zastosowanie: Optymalizacja
Optymalizacja parametryczna (punkt kartezjańskim jest niewypukła).
METODY INTELIGENCJI OBLICZENIOWEJ wykład RODZAJE ZADAŃ OPTYMALIZACJI (w zależno ności od przestrzeni szukiwań) Optymalizacja parametryczna (punkt U jest wektorem zm. niezależnych nych):. Zadania ciągłe
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne
Komputerowe generatory liczb losowych
. Perwszy generator Komputerowe generatory lczb losowych 2. Przykłady zastosowań 3. Jak generuje sę lczby losowe przy pomocy komputera. Perwszy generator lczb losowych L. H. C. Tppet - 927 Ksąż ążka -
ALHE Z11 Jarosław Arabas wykład 11
ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement
ALGORYTMY GENETYCZNE I EWOLUCYJNE
http://wazniak.mimuw.edu.pl INTELIGENTNE TECHNIKI KOMPUTEROWE wykład Karol Darwin (59 On the origin of species ): ALGORYTMY GENETYCZNE I EWOLUCYJNE Gregor Johann Mel (-) - austriacki zakonnik, augustianin,
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW
STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW Źródło Kompresja Kanał transmsj sek wdeo 60 Mbt 2 mn muzyk (44 00 próbek/sek, 6 btów/próbkę) 84 Mbt Dekompresja Odborca. Metody bezstratne 2. Metody stratne 2 Kodowane
Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB
Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe
1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej...
1 Metody optymalzacj welokryteralnej.... 1 1.1 Ogólna charakterystyka problemu.... 1 1.2 Tradycyjne metody optymalzacj welokryteralnej.... 3 1.2.1 Metoda ważonych kryterów.... 3 1.2.2 Metoda optymalzacj
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE. Adrian Horzyk. Akademia Górniczo-Hutnicza
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
WikiWS For Business Sharks
WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace
MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5
MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając
Zadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
METODY HEURYSTYCZNE 3
METODY HEURYSTYCZNE wykład 3 1 ALGORYTMY GENETYCZNE 2 SCHEMAT DZIAŁANIA ANIA AG: procedure algorytm_genetyczny begin t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do
Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA
Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
OBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3fitness f. value EVOLUTIONARY
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
Weryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
METODY SZTUCZNEJ INTELIGENCJI W ROZWI ZYWANIU ZADA OPTYMALIZACJI
METODY SZTUCZNEJ INTELIGENCJI W ROZWI ZYWANIU ZADA OPTYMALIZACJI Izabela Skorupska Studium Doktoranckie, Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski e-mail: iskorups
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań
OBLICZENIA EWOLUCYJNE
METODY ANALITYCZNE kontra AG/AE OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING
Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)
Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz
Techniki ewolucyjne - algorytm genetyczny i nie tylko
Reprezentacja binarna W reprezentacji binarnej wybór populacji początkowej tworzymy poprzez tablice genotypów (rys.1.), dla osobników o zadanej przez użytkownika wielkości i danej długości genotypów wypełniamy
Algorytmy genetyczne służą głównie do tego, żeby rozwiązywać zadania optymalizacji
Kolejna metoda informatyczna inspirowana przez Naturę - algorytmy genetyczne Struktura molekuły DNA nośnika informacji genetycznej w biologii Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania
BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Wykład 7 PLAN: - Repetitio (brevis) -Algorytmy miękkiej selekcji: algorytmy ewolucyjne symulowane wyżarzanie
Algorytmy ewolucyjne (2)
Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 2 communication
Funkcje i charakterystyki zmiennych losowych
Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
Procedura normalizacji
Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny
ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH
ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH KLAUDIUSZ MIGAWA 1 Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy Streszczenie Zagadnienia przedstawione w artykule
Inteligencja obliczeniowa
Intelgencja oblczenowa Ćwczene nr 6 Algorytmy Genetyczne Schemat blokowy podstawowego algorytmu genetycznego; Reprezentacja osobnków Kodowane rozwązań; Funkcja celu; Podstawowe operacje: selekcja, krzyżowane,
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.
Techniki optymalizacji
Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą
Statystyka. Zmienne losowe
Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu
Systemy Inteligentnego Przetwarzania wykład 4: algorytmy genetyczne, logika rozmyta
Systemy Inteligentnego Przetwarzania wykład 4: algorytmy genetyczne, logika rozmyta Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Wprowadzenie Problemy
Programowanie genetyczne, gra SNAKE
STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer
Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,
0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4
Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (
Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek
Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania
SZTUCZNA INTELIGENCJA
ZTUCZNA INTELIGENCJA WYKŁAD 6. ALGORYTMY GENETYCZNE - CHEMATY, METODY ELEKCJI Częstochowa 204 Dr hab. inż. Grzegorz Dude Wydział Eletryczny Politechnia Częstochowsa CHEMATY chemat zbór chromosomów o wspólnych
Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne. Adam Bobrowski, IM PAN Katowice
Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne Adam Bobrowski, IM PAN Katowice 1 Tematyka cyklu referatów Dryf genetyczny Matematyczne modele równowagi między mutacja
Obliczenia Naturalne - Algorytmy genetyczne
Literatura Obliczenia Naturalne - Algorytmy genetyczne Paweł Paduch Politechnika Świętokrzyska 20 marca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy genetyczne 1 z 45 Plan wykładu Literatura 1 Literatura
Fizyka w symulacji komputerowej i modelowaniu komputerowym Metody Monte Carlo Algorytmy Genetyczne. Łukasz Pepłowski
Fizyka w symulacji komputerowej i modelowaniu komputerowym Metody Monte Carlo Algorytmy Genetyczne Łukasz Pepłowski Plan Metody Stochastyczne Łańcuchy Markowa Dynamika Brownowska Metoda Monte Carlo Symulowane