Stacjonarność Integracja. Integracja. Integracja

Wielkość: px
Rozpocząć pokaz od strony:

Download "Stacjonarność Integracja. Integracja. Integracja"

Transkrypt

1

2 Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:

3 Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: 1 wartość oczekiwana szeregu jest skończona i stała w czasie E(y t ) = µ <

4 Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: 1 wartość oczekiwana szeregu jest skończona i stała w czasie E(y t ) = µ < 2 wariancja szeregu jest skończona i stała w czasie Var(y t ) = σ 2 <

5 Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: 1 wartość oczekiwana szeregu jest skończona i stała w czasie E(y t ) = µ < 2 wariancja szeregu jest skończona i stała w czasie Var(y t ) = σ 2 < 3 kowariancja między realizacjami nie zależy od czasu i jest jedynie funkcją odległości między obserwacjami cov(y t, y t+h ) = cov(y t, y t +h ) = γ h t, t, h

6 Biały szum AR(1) Szereg czasowy t

7 Biały szum AR(1) Szereg czasowy t

8 Biały szum AR(1) Szereg czasowy t

9 Biały szum AR(1) Proces białego szumu ma następujące własności:

10 Biały szum AR(1) Proces białego szumu ma następujące własności: E(y t ) = µ t

11 Biały szum AR(1) Proces białego szumu ma następujące własności: E(y t ) = µ t var(y t ) = σ 2 t

12 Biały szum AR(1) Proces białego szumu ma następujące własności: E(y t ) = µ t var(y t ) = σ 2 t { σ 2 t = s cov = 0 t s

13 Biały szum AR(1) Szereg czasowy t

14 Biały szum AR(1) Proces AR(1) dany jest wzorem y t = ρy t 1 + ε t ε t IID (0, σ 2 )

15 Biały szum AR(1) Proces AR(1) dany jest wzorem y t = ρy t 1 + ε t ε t IID (0, σ 2 ) Jest on stacjonarny dla ρ < 1

16 Biały szum AR(1) Proces AR(1) dany jest wzorem y t = ρy t 1 + ε t ε t IID (0, σ 2 ) Jest on stacjonarny dla ρ < 1 Dowód stacjonarności.

17 Biały szum AR(1) Proces AR(1) dany jest wzorem y t = ρy t 1 + ε t ε t IID (0, σ 2 ) Jest on stacjonarny dla ρ < 1 Dowód stacjonarności. Zapiszmy równanie dla t 1 y t 1 = ρy t 2 + ε t

18 Biały szum AR(1) Proces AR(1) dany jest wzorem y t = ρy t 1 + ε t ε t IID (0, σ 2 ) Jest on stacjonarny dla ρ < 1 Dowód stacjonarności. Zapiszmy równanie dla t 1 y t 1 = ρy t 2 + ε t Podstawiając do wzoru na AR(1) uzyskujemy y t = ρy t 1 + ε t = ρρy t 2 + ρε t 1 + ε t

19 Biały szum AR(1) Podstawiając rekurencyjnie uzyskamy y t = ρ i ε t i i=0

20 Biały szum AR(1) Podstawiając rekurencyjnie uzyskamy y t = ρ i ε t i i=0 Wobec tego E(y t ) = E ( ρ i ) ε t i = ρ i ε t i E(ε t i ) = 0 }{{} i=0 i=0 0

21 Biały szum AR(1) Podstawiając rekurencyjnie uzyskamy y t = ρ i ε t i i=0 Wobec tego E(y t ) = E ( ρ i ) ε t i = ρ i ε t i E(ε t i ) = 0 }{{} i=0 i=0 0 var(y t ) = var ( ρ i ) ε t i = i=0 i=0 ρ 2i var(ε t i ) = }{{} σ 2 σ 2 1 ρ 2

22 Biały szum AR(1) cov(y t, y t+h ) = cov ( ρ i ε t i, ρ i ) ε t i h i=0 i=0

23 Biały szum AR(1) cov(y t, y t+h ) = cov ( ρ i ε t i, ρ i ) ε t i h i=0 i=0 cov(y t, y t+h ) = cov ( n 1 ρ i ε t i + ρ h ε t i h, ρ i ) ε t i h i=0 i=0 i=0

24 Biały szum AR(1) cov(y t, y t+h ) = cov ( ρ i ε t i, ρ i ) ε t i h i=0 i=0 cov(y t, y t+h ) = cov ( n 1 ρ i ε t i + ρ h ε t i h, ρ i ) ε t i h cov(y t, y t+h ) = ρ h i=0 i=0 i=0 i=0 ρ 2i var(ε t i h ) = ρ h σ 2 1 ρ 2

25 Biały szum AR(1) cov(y t, y t+h ) = cov ( ρ i ε t i, ρ i ) ε t i h i=0 i=0 cov(y t, y t+h ) = cov ( n 1 ρ i ε t i + ρ h ε t i h, ρ i ) ε t i h cov(y t, y t+h ) = ρ h i=0 i=0 i=0 i=0 ρ 2i var(ε t i h ) = ρ h σ 2 1 ρ 2 W obliczeniach założono, że ρ < 1. Jest ono konieczne do udowodnienia stacjonarności

26 Biały szum AR(1) Szereg AR(1) t

27 Biały szum AR(1) Szereg trendostacjonarny Szereg czasowy nazywamy trendostacjonarnym, gdy szereg odchyleń jego wartości od trendu jest szeregiem stacjonarnym y t E(y t )

28 Biały szum AR(1) Niech y t = β 0 + βt + ε t

29 Biały szum AR(1) Niech wobec tego E(y t ) = β 0 + βt y t = β 0 + βt + ε t

30 Biały szum AR(1) Niech y t = β 0 + βt + ε t wobec tego E(y t ) = β 0 + βt a y t E(y t ) = ε t

31 Biały szum AR(1) Twierdzenie Wolda Jeżeli proces stochastyczny y t jest słabo stacjonarny to można go przedstawić jako sumę procesu deterministycznego i procesu MA( ) y t = E(y t y t 1,..., y t p ) + θ i ε t i i=0

32 Rozszerzony Przykładem procesu niestacjonarnego jest błądzenie przypadkowe y t = y t 1 + ε t ε t IID (0, σ 2 )

33 Rozszerzony Przykładem procesu niestacjonarnego jest błądzenie przypadkowe y t = y t 1 + ε t ε t IID (0, σ 2 ) Podstawiając y t 1 = y t 2 + ε t 1 otrzymujemy y t = y t 2 + ε t 1 + ε t

34 Rozszerzony Przykładem procesu niestacjonarnego jest błądzenie przypadkowe y t = y t 1 + ε t ε t IID (0, σ 2 ) Podstawiając y t 1 = y t 2 + ε t 1 otrzymujemy y t = y t 2 + ε t 1 + ε t Powtarzając czynność rekurencyjnie uzyskujemy y t = y 0 + t i=0 ε i

35 Rozszerzony zatem y t jest sumą niezależnych zmiennych o jednakowym rozkładzie

36 Rozszerzony zatem y t jest sumą niezależnych zmiennych o jednakowym rozkładzie E(y t ) = y 0 <

37 Rozszerzony zatem y t jest sumą niezależnych zmiennych o jednakowym rozkładzie E(y t ) = y 0 < ale var(y t ) = var(y 0 + t ε i ) = i=0 t var(ε i ) = tσ 2 i=0

38 Rozszerzony zatem y t jest sumą niezależnych zmiennych o jednakowym rozkładzie E(y t ) = y 0 < ale oraz var(y t ) = var(y 0 + t ε i ) = i=0 t var(ε i ) = tσ 2 i=0 t h cov(y t, y t+h ) = var(ε i ) = (t h)σ 2 i=1

39 Rozszerzony zatem y t jest sumą niezależnych zmiennych o jednakowym rozkładzie E(y t ) = y 0 < ale oraz var(y t ) = var(y 0 + t ε i ) = i=0 t var(ε i ) = tσ 2 i=0 t h cov(y t, y t+h ) = var(ε i ) = (t h)σ 2 i=1 zatem wariancja i kowariancja zależą od czasu

40 Rozszerzony Bladzenie przypadkowe t

41 Rozszerzony Jeżeli od procesu błądzenia przypadkowego odejmiemy y t 1 z obu stron uzyskamy y t = ε t

42 Rozszerzony Jeżeli od procesu błądzenia przypadkowego odejmiemy y t 1 z obu stron uzyskamy y t = ε t Taki proces będziemy nazywać procesem zintegrowanym

43 Rozszerzony Jeżeli od procesu błądzenia przypadkowego odejmiemy y t 1 z obu stron uzyskamy y t = ε t Taki proces będziemy nazywać procesem zintegrowanym Procesy stacjonarne nazywa się procesami zintegrowanymi rzędu 0 i oznacza I(0)

44 Rozszerzony Jeżeli od procesu błądzenia przypadkowego odejmiemy y t 1 z obu stron uzyskamy y t = ε t Taki proces będziemy nazywać procesem zintegrowanym Procesy stacjonarne nazywa się procesami zintegrowanymi rzędu 0 i oznacza I(0) Proces który do d-krotnym różnicowaniu jest stacjonarny nazywamy zróżnicowanym stopnia d i oznaczamy I(d)

45 Rozszerzony Znaczenie szeregów I(1) w ekonomii

46 Rozszerzony Znaczenie szeregów I(1) w ekonomii Szeregi I(2) są stosowane do modelowania hiperinflacji

47 Rozszerzony Znaczenie szeregów I(1) w ekonomii Szeregi I(2) są stosowane do modelowania hiperinflacji Szeregi o wyższym stopniu integracji nie mają zastosowań w ekonomii

48 Rozszerzony Znaczenie szeregów I(1) w ekonomii Szeregi I(2) są stosowane do modelowania hiperinflacji Szeregi o wyższym stopniu integracji nie mają zastosowań w ekonomii Dla szeregu zintegrowanego funkcje ACF i PACF mają charakterystyczny przebieg

49 Rozszerzony Autocorrelations of e Lag Partial autocorrelations of e Lag Bartlett s formula for MA(q) 95% confidence bands 95% Confidence bands [se = 1/sqrt(n)]

50 Rozszerzony Chcemy zbadać czy zmienna jest stacjonarna

51 Rozszerzony Chcemy zbadać czy zmienna jest stacjonarna Zapisujemy model w postaci AR(1) y t = ρy t 1 + ε t ε t IID (0, σ 2 ) (1) jeżeli ρ = 1 to y t jest błądzeniem przypadkowym

52 Rozszerzony Chcemy zbadać czy zmienna jest stacjonarna Zapisujemy model w postaci AR(1) y t = ρy t 1 + ε t ε t IID (0, σ 2 ) (1) jeżeli ρ = 1 to y t jest błądzeniem przypadkowym jeżeli ρ < 1 to y t jest stacjonarny

53 Rozszerzony Chcemy zbadać czy zmienna jest stacjonarna Zapisujemy model w postaci AR(1) y t = ρy t 1 + ε t ε t IID (0, σ 2 ) (1) jeżeli ρ = 1 to y t jest błądzeniem przypadkowym jeżeli ρ < 1 to y t jest stacjonarny H 0 : y t jest niestacjonarny H 1 : y t jest stacjonarny

54 Rozszerzony Chcemy zbadać czy zmienna jest stacjonarna Zapisujemy model w postaci AR(1) y t = ρy t 1 + ε t ε t IID (0, σ 2 ) (1) jeżeli ρ = 1 to y t jest błądzeniem przypadkowym jeżeli ρ < 1 to y t jest stacjonarny H 0 : y t jest niestacjonarny H 1 : y t jest stacjonarny dla ρ > 1 to y t jest eksplozywny

55 Rozszerzony Jeżeli od (1) odejmiemy y t 1 z obu stron to y t = (ρ 1)y t 1 + ε t y t = γy t 1 + ε t

56 Rozszerzony Jeżeli od (1) odejmiemy y t 1 z obu stron to y t = (ρ 1)y t 1 + ε t y t = γy t 1 + ε t Zatem aby przeprowadzić test wystarczy przeprowadzić regresję zmiennej zróżnicowanej na jej wartość opóźnioną

57 Rozszerzony Ale przy prawdziwej H 0 y t jest zmienną niestacjonarną

58 Rozszerzony Ale przy prawdziwej H 0 y t jest zmienną niestacjonarną Zatem statystyka testowa nie ma rozkładu t-studenta

59 Rozszerzony Ale przy prawdziwej H 0 y t jest zmienną niestacjonarną Zatem statystyka testowa nie ma rozkładu t-studenta Dickey i Fuller wyprowadzili wartości krytyczne testu

60 Rozszerzony Ale przy prawdziwej H 0 y t jest zmienną niestacjonarną Zatem statystyka testowa nie ma rozkładu t-studenta Dickey i Fuller wyprowadzili wartości krytyczne testu Aby procedura była prawidłowa składnik losowy nie może podlegać autokorelacji

61 Rozszerzony Rozszerzenie polega na uwzględnieniu po prawej stronie równania opóźnionych wartości zmiennej zależnej y t = γy t 1 + k γ i y t i + ε t i=1

62 Rozszerzony Rozszerzenie polega na uwzględnieniu po prawej stronie równania opóźnionych wartości zmiennej zależnej y t = γy t 1 + k γ i y t i + ε t stała k to najmniejsza liczba przy której reszty nie podlegają autokorelacji i=1

63 Rozszerzony Rozszerzenie polega na uwzględnieniu po prawej stronie równania opóźnionych wartości zmiennej zależnej y t = γy t 1 + k γ i y t i + ε t stała k to najmniejsza liczba przy której reszty nie podlegają autokorelacji i=1 test przeprowadza się w sposób analogiczny do testu DF

64 Rozszerzony Dickey-Fuller test for unit root Number of obs = Interpolated Dickey-Fuller Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value Z(t) MacKinnon approximate p-value for Z(t) =

65 Rozszerzony ma hipotezy zapisane w sposób tradycyjny

66 Rozszerzony ma hipotezy zapisane w sposób tradycyjny H 0 : y t jest stacjonarny H 1 : y t jest niestacjonarny

67 Rozszerzony KPSS test for inflacja Maxlag = 12 chosen by Schwert criterion Autocovariances weighted by Bartlett kernel Critical values for H0: inflacja is trend stationary 10%: % : %: % : Lag order Test statistic

68 Eksperyment Newbolda-Davisa Rozszerzony Generujemy obserwacje dla dwóch niezależnych zmiennych y t = y t 1 + ε t1 ε t1 N (0, 1) x t = x t 1 + ε t2 ε t2 N (0, 1) cov(ε t1, ε t2 ) = 0

69 Eksperyment Newbolda-Davisa Rozszerzony Generujemy obserwacje dla dwóch niezależnych zmiennych y t = y t 1 + ε t1 ε t1 N (0, 1) x t = x t 1 + ε t2 ε t2 N (0, 1) cov(ε t1, ε t2 ) = 0 Szacujemy parametry regresji ε t1 na ε t2 oraz y t na x t

70 Eksperyment Newbolda-Davisa Rozszerzony Generujemy obserwacje dla dwóch niezależnych zmiennych y t = y t 1 + ε t1 ε t1 N (0, 1) x t = x t 1 + ε t2 ε t2 N (0, 1) cov(ε t1, ε t2 ) = 0 Szacujemy parametry regresji ε t1 na ε t2 oraz y t na x t zapamiętujemy statystykę t oraz DW dla każdej regresji

71 Eksperyment Newbolda-Davisa Rozszerzony Generujemy obserwacje dla dwóch niezależnych zmiennych y t = y t 1 + ε t1 ε t1 N (0, 1) x t = x t 1 + ε t2 ε t2 N (0, 1) cov(ε t1, ε t2 ) = 0 Szacujemy parametry regresji ε t1 na ε t2 oraz y t na x t zapamiętujemy statystykę t oraz DW dla każdej regresji powtarzamy duża liczbę razy np. 1000

72 Rozszerzony teoretyczne ε t1 na ε t2 y na x średnia 0,000 0,0036 0,0048 5% percentyl 1,677 1,564 8,293 % istotnych 5 4,33 63,24 DW 2,00 2,01 0,33

73 Rozszerzony Zignorowanie zjawiska regresji pozornej może prowadzić do zbudowania błędnego modelu

74 Rozszerzony Zignorowanie zjawiska regresji pozornej może prowadzić do zbudowania błędnego modelu Aby temu zapobiec można różnicować zmienne

75 Rozszerzony Zignorowanie zjawiska regresji pozornej może prowadzić do zbudowania błędnego modelu Aby temu zapobiec można różnicować zmienne Ale różnicowanie powoduje utratę informacji i uniemożliwia wyznaczenie relacji długookresowej

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1

Bardziej szczegółowo

Przyczynowość Kointegracja. Kointegracja. Kointegracja

Przyczynowość Kointegracja. Kointegracja. Kointegracja korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli

Bardziej szczegółowo

O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym

O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Sezonowość O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Na przykład zmienne kwartalne charakteryzuja się zwykle sezonowościa kwartalna a zmienne

Bardziej szczegółowo

1 Modele ADL - interpretacja współczynników

1 Modele ADL - interpretacja współczynników 1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać

Bardziej szczegółowo

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią

Bardziej szczegółowo

Modele warunkowej heteroscedastyczności

Modele warunkowej heteroscedastyczności Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16 Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 5 & 6 Szaeregi

Bardziej szczegółowo

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria szeregów czasowych Procesy stochastyczne Stacjonarność i biały szum Niestacjonarność:

Bardziej szczegółowo

0.1 Modele Dynamiczne

0.1 Modele Dynamiczne 0.1 Modele Dynamiczne 0.1.1 Wprowadzenie Często konkretne działanie czy zjawisko ekonomiczne nie tylko zależy od bieżących wartości pewnych wskaźników - zmiennych objaśniających modelu, ale również od

Bardziej szczegółowo

Analiza Szeregów Czasowych. Egzamin

Analiza Szeregów Czasowych. Egzamin Analiza Szeregów Czasowych Egzamin 12-06-2018 Zadanie 1: Zadanie 2: Zadanie 3: Zadanie 4: / 12 pkt. / 12 pkt. / 12 pkt. / 14 pkt. Projekt zaliczeniowy: Razem: / 100 pkt. / 50 pkt. Regulamin egzaminu 1.

Bardziej szczegółowo

Analiza szeregów czasowych bezrobocia i inflacji w Danii

Analiza szeregów czasowych bezrobocia i inflacji w Danii Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Analiza szeregów czasowych bezrobocia i inflacji w Danii Projekt zaliczeniowy z przedmiotu: Analiza Szeregów Czasowych

Bardziej szczegółowo

0.1 Modele Dynamiczne

0.1 Modele Dynamiczne 0.1 Modele Dynamiczne 0.1.1 Wprowadzenie Często konkretne działanie czy zjawisko ekonomiczne nie tylko zależy od bieżących wartości pewnych wskaźników - zmiennych objaśniających modelu, ale również od

Bardziej szczegółowo

Czasowy wymiar danych

Czasowy wymiar danych Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji

Bardziej szczegółowo

2.6 Zmienne stacjonarne i niestacjonarne 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33. RYSUNEK 2.6: PKB w wyrażeniu realnym

2.6 Zmienne stacjonarne i niestacjonarne 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33. RYSUNEK 2.6: PKB w wyrażeniu realnym 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33 tale. Rysunek 2.6 ilustruje sezonowość w logarytmie PKB w wyrażeniu realnym. Realny PKB został uzyskany poprzez zdeflowanie nominalnego PKB przez indeks cen

Bardziej szczegółowo

Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.

Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne. opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi

Bardziej szczegółowo

Autoregresyjne modele o rozłożonych opóźnieniach - Autoregressive Distributed Lags models

Autoregresyjne modele o rozłożonych opóźnieniach - Autoregressive Distributed Lags models Autoregresyjne modele o rozłożonych opóźnieniach - Autoregressive Distributed Lags models ADL ADL Ogólna postać modelu ADL o p-opóźnieniach zmiennej zależnej i r-opóźnieniach zmiennej/zmiennych objaśniających

Bardziej szczegółowo

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych. Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład VI. Niestacjonarne szeregi czasowe

Prognozowanie i Symulacje. Wykład VI. Niestacjonarne szeregi czasowe Prognozowanie i Symulacje. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści Analiza stacjonarności szeregów czasowych 1 Analiza stacjonarności szeregów czasowych Modele niestacjonarne Szeregi TS i DS

Bardziej szczegółowo

Testy pierwiastka jednostkowego

Testy pierwiastka jednostkowego 2 listopada 2017 Proces generujący ceny Wnioski Słaba efektywność rynkowa i błądzenie przypadkowe Załóżmy, że rynek jest słabo efektywny Logarytmicznej stopy zwrotu ( p t = ln ( Pt P t 1 )) w czasie t

Bardziej szczegółowo

WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego

WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego WYKŁAD: Szeregi czasowe I Zaawansowane Metody Uczenia Maszynowego Szereg czasowy (X t ) - ciąg zmiennych losowych indeksowany parametrem t (czas). Z reguły t N lub t Z. Dotąd rozpatrywaliśmy: (X t )- ciąg

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 3

Stanisław Cichocki Natalia Nehrebecka. Wykład 3 Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 2 1. Zmienne sacjonarne

Bardziej szczegółowo

Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu

Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 3

Stanisław Cichocki Natalia Nehrebecka. Wykład 3 Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Regresja pozorna 2. Funkcje ACF i PACF 3. Badanie sacjonarności Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) 2 1. Regresja pozorna 2. Funkcje

Bardziej szczegółowo

1.1 Opis danych Dekompozycja szeregu ARIMA Prognoza Podsumowanie Opis danych...

1.1 Opis danych Dekompozycja szeregu ARIMA Prognoza Podsumowanie Opis danych... 1 Szereg niesezonowy... 3 1.1 Opis danych... 3 1.2 Dekompozycja szeregu... 3 1.3... 3 1.4 ARIMA... 10 1.5 Prognoza... 12 1.6 Podsumowanie... 15 2 Szereg sezonowy... 15 2.1 Opis danych... 15 2.2 Dekompozycja

Bardziej szczegółowo

Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Estymacja modeli ARIMA przy uŝyciu Staty oraz Integracja i kointegracja. Grzegorz Ogonek KSiE WNE UW

Estymacja modeli ARIMA przy uŝyciu Staty oraz Integracja i kointegracja. Grzegorz Ogonek KSiE WNE UW Estymacja modeli ARIMA przy uŝyciu Staty oraz Integracja i kointegracja Grzegorz Ogonek KSiE WNE UW 26.02.2005 * Materiały opracowano w wersji 7 Staty. Tam gdzie zauwaŝyłem rozbieŝności z kolejną wersją

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12 Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne

Bardziej szczegółowo

Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2

Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and

Bardziej szczegółowo

Heteroskedastyczość w szeregach czasowyh

Heteroskedastyczość w szeregach czasowyh Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem

Bardziej szczegółowo

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. 1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące

Bardziej szczegółowo

Sprawy organizacyjne

Sprawy organizacyjne Sprawy organizacyjne forma zajęć warunki uczestnictwa warunki zaliczenia Modelowanie Rynków Finansowych 1 Hipoteza Random Walk na wschodzących rynkach Europejskich Graham Smith, Hyun-Jung Ryoo (2003) Variance

Bardziej szczegółowo

Ekonometria egzamin 31/01/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 31/01/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 31/01/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Wprowadzenie do szeregów czasowych i modelu ARIMA

Wprowadzenie do szeregów czasowych i modelu ARIMA Wprowadzenie do szeregów czasowych i modelu ARIMA 25.02.2011 Plan 1 Pojęcie szeregu czasowego 2 Stacjonarne szeregi czasowe 3 Model autoregresyjny - AR 4 Model średniej ruchomej - MA 5 Model ARMA 6 ARIMA

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

Testowanie stopnia zintegrowania. czasowego. Wst p do ekonometrii szeregów czasowych wiczenia 1. Andrzej Torój. 19 lutego 2010

Testowanie stopnia zintegrowania. czasowego. Wst p do ekonometrii szeregów czasowych wiczenia 1. Andrzej Torój. 19 lutego 2010 szeregu czasowego Wst p do ekonometrii szeregów czasowych wiczenia 1 19 lutego 2010 Plan prezentacji 1 Szereg czasowy, poj cie stacjonarno±ci 2 3 4 5 6 7 Plan prezentacji 1 Szereg czasowy, poj cie stacjonarno±ci

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 1 REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 2 DOTYCHCZASOWE MODELE Regresja liniowa o postaci: y

Bardziej szczegółowo

Heteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów

Heteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów Formy heteroscedastyczności Własności estymatorów MNK wydatki konsumpcyjne 0 10000 20000 30000 40000 14.4 31786.08 dochód rozporz¹dzalny Zródlo: Obliczenia wlasne, dane BBGD 2004 Formy heteroscedastyczności

Bardziej szczegółowo

Dr Łukasz Goczek. Uniwersytet Warszawski

Dr Łukasz Goczek. Uniwersytet Warszawski Dr Łukasz Goczek Uniwersytet Warszawski 10000 2000 4000 6000 8000 M3 use C:\Users\as\Desktop\Money.dta, clear format t %tm (oznaczamy tsset t tsline M3 0 1960m1 1970m1 1980m1 1990m1 2000m1 2010m1 t tsline

Bardziej szczegółowo

1.1 Klasyczny Model Regresji Liniowej

1.1 Klasyczny Model Regresji Liniowej 1.1 Klasyczny Model Regresji Liniowej Klasyczny model Regresji Liniowej jest bardzo użytecznym narzędziem służącym do analizy danych empirycznych. Analiza regresji zajmuje się opisem zależności między

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13 Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych

Bardziej szczegółowo

TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.

TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe

Bardziej szczegółowo

WYKŁAD: Szeregi czasowe II. Zaawansowane Metody Uczenia Maszynowego

WYKŁAD: Szeregi czasowe II. Zaawansowane Metody Uczenia Maszynowego WYKŁAD: Szeregi czasowe II Zaawansowane Metody Uczenia Maszynowego Zwroty indeksów finansowych Y t : indeks finansowy w momencie t (wartość waloru, kurs walutowy itp). Określimy zwrot indeksu finansowego

Bardziej szczegółowo

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,

Bardziej szczegółowo

2.2 Autokorelacja Wprowadzenie

2.2 Autokorelacja Wprowadzenie 2.2 Autokorelacja 2.2.1 Wprowadzenie Przy wyprowadzaniu estymatorów Klasycznego Modelu Regresji Liniowej (KMRL) zakładaliśmy, że są spełnione założenia Gaussa-Markowa, tzn. składniki losowe są homoscedastyczne

Bardziej szczegółowo

Stanisław Cihcocki. Natalia Nehrebecka

Stanisław Cihcocki. Natalia Nehrebecka Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach

Bardziej szczegółowo

Definicja danych panelowych Typy danych panelowych Modele dla danych panelowych. Dane panelowe. Część 1. Dane panelowe

Definicja danych panelowych Typy danych panelowych Modele dla danych panelowych. Dane panelowe. Część 1. Dane panelowe Część 1 to dane, które jednocześnie posiadają cechy danych przekrojowych i szeregów czasowych to dane, które jednocześnie posiadają cechy danych przekrojowych i szeregów czasowych Czyli obserwujemy te

Bardziej szczegółowo

Modelowanie ekonometryczne

Modelowanie ekonometryczne Modelowanie ekonometryczne Kamil Skoczylas Kamilskoczylas@wp.pl 1. Wstęp Otaczający nas świat to zbiór różnych zjawisk. W zależności od zainteresowań człowiek staje się obserwatorem niektórych z nich.

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie

Bardziej szczegółowo

Ekonometria. wiczenia 5 i 6 Modelowanie szeregów czasowych. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 5 i 6 Modelowanie szeregów czasowych. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 5 i 6 Modelowanie szeregów czasowych (5-6) Ekonometria 1 / 30 Plan prezentacji 1 Regresja pozorna 2 Testowanie stopnia zintegrowania szeregu 3 Kointegracja 4 Modele dynamiczne (5-6)

Bardziej szczegółowo

Modele zapisane w przestrzeni stanów

Modele zapisane w przestrzeni stanów Modele zapisane w przestrzeni stanów Modele Przestrzeni Stanów (State Space Models) sa to modele, w których część parametrów jest nieobserwowalna i losowa. Zachowanie wielowymiarowej zmiennej y t zależy

Bardziej szczegółowo

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności

Bardziej szczegółowo

Finansowe szeregi czasowe

Finansowe szeregi czasowe 24 kwietnia 2009 Modelem szeregu czasowego jest proces stochastyczny (X t ) t Z, czyli rodzina zmiennych losowych, indeksowanych liczbami całkowitymi i zdefiniowanych na pewnej przestrzeni probabilistycznej

Bardziej szczegółowo

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość?

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Wykres stopy bezrobocia rejestrowanego w okresie 01.1998 12.2008, dane Polskie 22 20 18 16 stopa 14 12

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12 Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk

Bardziej szczegółowo

Elementy statystyki STA - Wykład 5

Elementy statystyki STA - Wykład 5 STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Część 2 Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład statystyki testowej Hipoteza łączna H 0 : Rβ = q Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład

Bardziej szczegółowo

ZASTOSOWANIE DYNAMICZNEGO MODELU ZGODNEGO W ANALIZIE GOSPODARKI GÓRNEGO ŚLĄSKA

ZASTOSOWANIE DYNAMICZNEGO MODELU ZGODNEGO W ANALIZIE GOSPODARKI GÓRNEGO ŚLĄSKA Uniwersytet Ekonomiczny w Katowicach ZASTOSOWANIE DYNAMICZNEGO MODELU ZGODNEGO W ANALIZIE GOSPODARKI GÓRNEGO ŚLĄSKA Wprowadzenie W opracowaniu podjęto próbę porównania jakości modelu ekonometrycznego gospodarki

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, Biomatematyka

EGZAMIN MAGISTERSKI, Biomatematyka Biomatematyka 91...... Zadanie 1. (8 punktów) Liczebność pewnej populacji jest opisana równaniem różniczkowym: dn = r N(α N)(N β), (1) dt w którym, N(t) oznacza liczebność populacji w chwili t, a r > 0

Bardziej szczegółowo

ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSAMI RYNKÓW AKCJI NA GIEŁDZIE POLSKIEJ I AMERYKAŃSKIEJ. Indeksy giełdowe

ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSAMI RYNKÓW AKCJI NA GIEŁDZIE POLSKIEJ I AMERYKAŃSKIEJ. Indeksy giełdowe B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 2007 Grzegorz PRZEKOTA* ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSAMI RYNKÓW AKCJI NA GIEŁDZIE POLSKIEJ I AMERYKAŃSKIEJ W artykule skonstruowano dwa modele

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie

Bardziej szczegółowo

Dr Łukasz Goczek. Uniwersytet Warszawski

Dr Łukasz Goczek. Uniwersytet Warszawski Dr Łukasz Goczek Uniwersytet Warszawski Dane krótko i długookresowe stopy procentowe Co wiemy z teorii? Krótkookresowe stopy powodują stopami długookresowymi (toteż taka jest idea bezpośredniego celu

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji Model jako : Stosowana Analiza Regresji Wykład XI 21 Grudnia 2011 1 / 11 Analiza kowariancji Model jako : Oprócz czynnika o wartościach nominalnych chcemy uwzględnić wpływ predyktora o wartościach ilościowych

Bardziej szczegółowo

Egzamin z ekonometrii - wersja ogólna

Egzamin z ekonometrii - wersja ogólna Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9 Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Metody Ekonometryczne

Metody Ekonometryczne Metody Ekonometryczne Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Metody Ekonometyczne Wykład 4 Uogólniona Metoda Najmniejszych Kwadratów (GLS) 1 / 19 Outline 1 2 3 Jakub Mućk Metody Ekonometyczne

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla

Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla Bogumiła Koprowska Elżbieta Kukla 1 Wstęp Czym są efekty losowe? Przykłady Model mieszany 2 Estymacja Jednokierunkowa klasyfikacja (ANOVA) Metoda największej wiarogodności (ML) Metoda największej wiarogodności

Bardziej szczegółowo

5. Model sezonowości i autoregresji zmiennej prognozowanej

5. Model sezonowości i autoregresji zmiennej prognozowanej 5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =

Bardziej szczegółowo

Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).

Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y). Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych

Bardziej szczegółowo

Własności statystyczne regresji liniowej. Wykład 4

Własności statystyczne regresji liniowej. Wykład 4 Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 13

Stanisław Cichocki. Natalia Nehrebecka. Wykład 13 Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Testowanie autokorelacji 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji 3.Problemy z danymi Zmienne pominięte

Bardziej szczegółowo

Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła

Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła autokorelacji Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN autokorelacji p. 1/25 Zarys referatu Co to sa procesy

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Ekonometria egzamin 07/03/2018

Ekonometria egzamin 07/03/2018 imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r

Bardziej szczegółowo

Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera.

Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera. 1 Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera. Pojęcie stacjonarności i niestacjonarności zmiennych Szereg

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Analiza szeregów czasowych: 5. Liniowe modele stochastyczne

Analiza szeregów czasowych: 5. Liniowe modele stochastyczne Analiza szeregów czasowych: 5. Liniowe modele stochastyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Dwa rodzaje modelowania 1. Modelowanie z pierwszych zasad. Znamy prawa

Bardziej szczegółowo

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody

Bardziej szczegółowo

Natalia Nehrebecka Stanisław Cichocki. Wykład 10

Natalia Nehrebecka Stanisław Cichocki. Wykład 10 Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej

Bardziej szczegółowo