Spl tanie i inne korelacje kwantowe w ukªadach zªo»onych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Spl tanie i inne korelacje kwantowe w ukªadach zªo»onych"

Transkrypt

1 Spl tanie i inne korelacje kwantowe w ukªadach zªo»onych Lech Jakóbczyk Instytut Fizyki Teoretycznej Uniwersytet Wrocªawski 1 / 17

2 Spl tanie stanów czystych Formalna denicja spl tania Ukªad zªo»ony: Hilberta co najmniej dwa podukªady. Przestrze«H AB = H A H B H A - przestrze«hilberta podukªadu A H B - przestrze«hilberta podukªadu B Stan czysty ψ H AB jest separowalny je±li ψ = ϕ A ϕ B, ϕ A H A, ϕ B H B Stan czysty jest spl tany, je±li nie jest separowalny. 2 / 17

3 Spl tanie stanów czystych Jak wykry stany spl tane? Kryterium separowalno±ci stanów czystych: stan ψ H AB jest separowalny jego ±lady cz ±ciowe tr A ψ ψ, tr B ψ ψ A zatem s stanami czystymi. ψ jest spl tany, gdy jego ograniczenia do podukªadów nie s stanami czystymi. 3 / 17

4 Spl tanie stanów czystych 'Fizyczna' denicja spl tania ukªad zyczny algebra obserwabli A stan ukªadu funkcjonaª liniowy ω : A C, który jest dodatni: ω(a A) 0, A A unormowany: ω(1) = 1 Przykªady stanów: ω ψ = ψ, Aψ - stan wektorowy ω ρ = tr(ρa) - stan mieszany 4 / 17

5 Spl tanie stanów czystych ukªad zªo»ony algebra obserwabli A tot zawiera podalgebry A oraz B takie»e: A i B s statystycznie niezale»ne: [A,B] = 0 A i B generuj A tot Stan czysty ω : A tot C jest (A, B) - separowalny, je±li ω(ab) = ω(a)ω(b), A A, B B Stan czysty ω jest (A, B) - spl tany, je±li powy»sza wªasno± nie zachodzi. 5 / 17

6 Spl tanie stanów czystych Uwaga: poj cie spl tania zale»y od mierzonych obserwabli, przy wyborze pary (A, B), spl tanie stanu oznacza istnienie korelacji mi dzy niezale»nymi obserwablami ka»dy stan czysty mo»e by spl tany (lub separowalny): zawsze istnieje wybór pary (A, B), taki»e stan ω jest (A, B) - separowalny b d¹ nie 6 / 17

7 Spl tanie stanów mieszanych Separowalno± stanów mieszanych - denicja Wernera (1989) Stan mieszany jest (A, B) - separowalny, je±li da si przedstawi jako kombinacja wypukªa czystych stanów (A, B) - separowalnych. Stan ω jest (A, B) - spl tany, je±li nie jest separowalny. Problem: Jak wykry takie spl tanie? 7 / 17

8 Spl tanie stanów mieszanych Kryterium Peresa (1996) Niech stan ω b dzie zadany przez operator stanu ρ. Je±li ρ jest separowalny, czyli ρ = p j P j Q j, j P j A, Q j B to po cz ±ciowej transpozycji Mamy wi c ρ PT = p j Pj T Q j 0 j ρ jest separowaly ρ jest PPT 8 / 17

9 Spl tanie stanów mieszanych czyli ρ jest NPPT (ρ PT 0) ρ jest spl tany dla dwóch qubitów (H AB = C 2 C 2 ), ρ jest NPPT ρ jest spl tany, dla ukªadów na przestrzeniach C d C d, d 3, istniej stany spl tane, które s PPT, s to przykªady stanów o spl taniu zwi zanym, które nie da si wydestylowa do spl tania stanów czystych, nie wiadomo, czy wszystkie stany NPPT s destylowalne 9 / 17

10 Czy tylko spl tanie? Czy tylko spl tanie? Czy rzeczywi±cie separowalne stany mieszane nie zawieraj»adnych korelacji kwantowych? Odpowied¹ Wernera jest raczej formalna. Rozwa»my operacyjne podej±cie do problemu: {P A k } - zupeªny pomiar podukªadu A Pk A - projektory 1 - wymiarowe, Pk A = 1 k Podobnie deniujemy zupeªny pomiar podukªadu B. 10 / 17

11 Czy tylko spl tanie? Po lokalnym pomiarze ρ P AB (ρ) = Pk A PB l k,l ρ P A k PB l Je±li wszystkie lokalne pomiary zaburzaj stan ρ: P AB (ρ) ρ dla dowolnych projektorów {P A k PB l }, to naturalne jest stwierdzenie: Stan ρ jest czysto kwantowy - opisuje kwantowe korelacje mi dzy niezale»nymi podukªadami. W przeciwnym wypadku, stan ρ jest klasyczny. 11 / 17

12 Czy tylko spl tanie? Stan ρ jest klasyczny istniej projektory P A k PB l : ρ = p kl Pk A PB l, k,l p kl 0, p kl = 1 k,l wszystkie stany spl tane s czysto kwantowe, istniej separowalne stany czysto kwantowe np ρ = 1 [ ] jest czysto kwantowym stanem dwóch qubitów, 12 / 17

13 Czy tylko spl tanie? prawie wszystkie stany s czysto kwantowe. Rozwa»a si te» 'jednostronne' pomiary lokalne {P k A 1} lub {1 P k B}. Stan ρ jest klasyczno - kwantowy je±li istnieje pomiar lokalny (np P k A 1), taki»e P A (ρ) = Pk A 1ρPA 1 k = ρ k Stany klasyczno - kwantowe s postaci ρ = p k Pk A ρb k k gdzie {p k } jest pewnym rozkªadem probabilistycznym, a ρ B k s dowolnymi stanami ukªadu B. 13 / 17

14 Miara kwantowo±ci korelacji Miara kwantowo±ci korelacji: geometryczny 'kwantowy discord' (Daki, Vedral, Brukner ) Niech Ω AB - zbiór stanów klasycznych ukªadu zªo»onego AB. DG AB (ρ) = inf ρ χ 2 2 χ ΩAB - dwustronny geometryczny 'discord' gdzie m 2 = tr(mm ). Równowa»na denicja D AB G (ρ) = inf ρ P AB (ρ) 2 2 P AB 14 / 17

15 Miara kwantowo±ci korelacji Cz ±ciej analizuje si jednostronny geometryczny 'discord' DG A (ρ) = inf ρ P A (ρ) 2 2 P A maj cy bliski zwi zek z kwantowym 'discordem' (Ollivier, urek- 2002), wprowadzonym w kontek±cie analizy kwantowej miary 'informacji wzajemnej'. Co wiadomo o D A G? W przypadku dwóch qubitów: dla stanów czystych: D A G (ψ) = spl tanie ψ dla dowolnych stanów: D A G (ρ) spl tanie ρ (Girolami, Adesso ) istnieje zwarta formuªa na D G (ρ) dla dowolnego stanu 15 / 17

16 Miara kwantowo±ci korelacji W przypadku dwóch quditów: dla stanów czystych: DG A (ψ) spl tanie mierzone przez 'negativity' dla dowolnych stanów? Przykªad: Stan Wernera ρ = 1 1, P - projektor na stan Bella 4 Deniujemy stan Wernera ρ W = (1 p)ρ + p P, p [0,1] 16 / 17

17 Miara kwantowo±ci korelacji Dla stanu Wernera spl tanie mierzone przez 'negativity' N(ρ W ) wynosi { 0, p 1/3, N(ρ W ) = (3p 1)/2, p > 1/3 a z drugiej strony D A G (ρ W ) = p 2 Wida,»e: D G A(ρ W ) N(ρ W ), separowalny stan Wernera (p (0, 1/3]), ma czysto kwantowe korelacje 17 / 17

Wykłady z Mechaniki Kwantowej

Wykłady z Mechaniki Kwantowej Wykłady z Mechaniki Kwantowej Mechanika Kwantowa, Relatywistyczna Mechanika Kwantowa Wykład dla doktorantów (2017) Wykład 7 Jesteśmy uczniami w szkole natury i kształtujemy nasze pojęcia z lekcji na lekcję.

Bardziej szczegółowo

r = x x2 2 + x2 3.

r = x x2 2 + x2 3. Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni

Bardziej szczegółowo

Maªgorzata Murat. Modele matematyczne.

Maªgorzata Murat. Modele matematyczne. WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia

Bardziej szczegółowo

Jacek Jurkowski. Korelacje nieklasyczne Kwantowe splątanie i dyskord

Jacek Jurkowski. Korelacje nieklasyczne Kwantowe splątanie i dyskord Jacek Jurkowski Korelacje nieklasyczne Kwantowe splątanie i dyskord Toruń, 2014 Recenzenci: dr hab. Andrzej Jamiołkowski, prof. UMK prof. dr hab. Ryszard Horodecki Projekt okładki: Tomasz Jaroszewski c

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Miary splątania kwantowego

Miary splątania kwantowego kwantowego Michał Kotowski michal.kotowski1@gmail.com K MISMaP, Uniwersystet Warszawski Studenckie Koło Fizyki UW (SKFiz UW) 24 kwietnia 2010 kwantowego Spis treści 1 2 Stany czyste i mieszane Matematyczny

Bardziej szczegółowo

Wektory w przestrzeni

Wektory w przestrzeni Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«.

Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«. Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«. Alicja Czy» WFTiMS April 14, 2010 Spis tre±ci 1 Wprowadzenie Denicja prawdopodobie«stwa warunkowego Twierdzenie Bayesa Niezale»no±

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Logika formalna. Skªadnia rachunku zda« Skróty i priorytety. Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011

Podstawy matematyki dla informatyków. Logika formalna. Skªadnia rachunku zda« Skróty i priorytety. Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011 Podstawy matematyki dla informatyków Logika formalna Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011 Skªadnia rachunku zda«symbole (zmienne) zdaniowe (p, q, r,...), oraz znaki i s formuªami zdaniowymi.

Bardziej szczegółowo

Wykłady z Mechaniki Kwantowej

Wykłady z Mechaniki Kwantowej Wykłady z Mechaniki Kwantowej Mechanika Kwantowa, Relatywistyczna Mechanika Kwantowa Wykład dla doktorantów (2017) Wykład 3 Fakty nie są najważniejsze. Zresztą, aby je poznać, nie trzeba studiować na

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci

Bardziej szczegółowo

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów *** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów I.1 Przestrze«towarów Podstawowe poj cia Rynek towarów

Bardziej szczegółowo

Podstawy matematyki a mechanika kwantowa

Podstawy matematyki a mechanika kwantowa Podstawy matematyki a mechanika kwantowa Paweł Klimasara Uniwersytet Śląski 9 maja 2015 Paweł Klimasara (Uniwersytet Śląski) Podstawy matematyki a mechanika kwantowa 9 maja 2015 1 / 12 PLAN PREZENTACJI

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

Elementy geometrii analitycznej w przestrzeni

Elementy geometrii analitycznej w przestrzeni Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad

Bardziej szczegółowo

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017 i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_

Bardziej szczegółowo

Geometria Algebraiczna

Geometria Algebraiczna Geometria Algebraiczna Zadania domowe: seria 1 Zadania 1-11 to powtórzenie podstawowych poj z teorii kategorii. Zapewne rozwi zywali Pa«stwo te zadania wcze±niej, dlatego nie b d one omawiane na wiczeniach.

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej

Bardziej szczegółowo

AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium

AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium AM II.1 2018/2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium Normy w R n, iloczyn skalarny sprawd¹ czy dana funkcja jest norm sprawd¹, czy dany zbiór jest kul w jakiej± normie i oblicz norm wybranego

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012 Podstawy matematyki dla informatyków Wykªad 3 Funkcje 18 pa¹dziernika 2012 Deniowanie funkcji Funkcje caªkowite i cz ±ciowe Denicja wprost: f (x) = x + y f = λx. x + y Denicja warunkowa: { n/2, je±li n

Bardziej szczegółowo

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006 Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ Marek Majewski Aktualizacja: 1 pa¹dziernika 006 Spis tre±ci 1 Macierze dziaªania na macierzach. Wyznaczniki 1 Macierz odwrotna. Rz d macierzy

Bardziej szczegółowo

Elementarna statystyka

Elementarna statystyka Elementarna statystyka Alexander Bendikov 26 marca 2017 Klasyczny model: eksperyment o jednakowo prawdopodobnych wynikach Zaªo»enia: 1 Przestrze«próbek S ma sko«czenie wiele wyników ω 1, ω 2,..., ω n,

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Biostatystyka, # 4 /Weterynaria I/

Biostatystyka, # 4 /Weterynaria I/ Biostatystyka, # 4 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Ukªady równa«liniowych

Ukªady równa«liniowych dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Bifurkacje. Ewa Gudowska-Nowak Nowak. Plus ratio quam vis

Bifurkacje. Ewa Gudowska-Nowak Nowak. Plus ratio quam vis Bifurkacje Nowak Plus ratio quam vis M. Kac Complex Systems Research Center, M. Smoluchowski Institute of Physics, Jagellonian University, Kraków, Poland 2008 Gªówna idea.. Pozornie "dynamika" ukªadów

Bardziej szczegółowo

O spl ataniu kwantowym s lów kilka

O spl ataniu kwantowym s lów kilka O spl ataniu kwantowym s lów kilka Krzysztof Byczuk Instytut Fizyki Teoretycznej, Uniwersytet Warszawski http://www.physik.uni-augsburg.de/theo3/kbyczuk/index.html 30 styczeń 2006 Rozważania Einsteina,

Bardziej szczegółowo

Algebroidy i grupoidy Liego i wspóªczesna teoria Liego

Algebroidy i grupoidy Liego i wspóªczesna teoria Liego Algebroidy i grupoidy Liego i wspóªczesna teoria Liego Wykªad habilitacyjny Andriy Panasyuk Katedra Metod Matematycznych Fizyki, Uniwersytet Warszawski oraz Instytut Matematyczny PAN Wst p: Grupy symetrii

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Aproksymacja cz. II, wielomiany ortogonalne zastosowania PWSZ Gªogów, 2009 Iloczyn skalarny Funkcja okre±lona na przestrzeni liniowej (, ) R iloczyn skalarny wektorów

Bardziej szczegółowo

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010 WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna

Bardziej szczegółowo

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych: Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow

Bardziej szczegółowo

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie

Bardziej szczegółowo

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie

Bardziej szczegółowo

Arkusz 4. Elementy geometrii analitycznej w przestrzeni

Arkusz 4. Elementy geometrii analitycznej w przestrzeni Arkusz 4. Elementy geometrii analitycznej w przestrzeni Zadanie 4.1. Obliczy dªugo±ci podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13

Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13 Elementarna statystyka Wnioskowanie o regresji (Inference for regression) Alexander Bendikov Uniwersytet Wrocªawski 2 czerwca 2016 Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for

Bardziej szczegółowo

O RELACJACH KOMUTACJI I NIEOZNACZONOŚCI W TEORII KWANTOWEJ

O RELACJACH KOMUTACJI I NIEOZNACZONOŚCI W TEORII KWANTOWEJ O RELACJACH KOMUTACJI I NIEOZNACZONOŚCI W TEORII KWANTOWEJ Andrzej Herdegen Instytut Fizyki UJ 3 grudnia 2015 Przypomnę matematyczne i fizyczne tło tytułowych zagadnień. Pokażę dlaczego spacer przez algebrę

Bardziej szczegółowo

Autoreferat. Wydziaª Fizyki i Chemii Uniwersytetu Šódzkiego,

Autoreferat. Wydziaª Fizyki i Chemii Uniwersytetu Šódzkiego, Autoreferat. Imi i nazwisko: Zbigniew Walczak 2. Posiadane dyplomy, stopnie naukowe: magister zyki w zakresie zyki teoretycznej Wydziaª Matematyki, Fizyki i Chemii Uniwersytetu Šódzkiego, 993 O q-deformacji

Bardziej szczegółowo

Estymacja parametru gªadko±ci przy u»yciu falek splajnowych

Estymacja parametru gªadko±ci przy u»yciu falek splajnowych Estymacja parametru gªadko±ci przy u»yciu falek splajnowych Politechnika Gda«ska Wydziaª Fizyki Technicznej i Matematyki Stosowanej Wisªa, 3-7.12.2012 Przestrze«Biesowa Przestrze«Biesowa B s p,q, 1 p,

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

Zadania. 4 grudnia k=1

Zadania. 4 grudnia k=1 Zadania 4 grudnia 205 Zadanie. Poka»,»e dla dowolnych liczb zespolonych z,..., z n istnieje zbiór B {,..., n}, taki,»e n z k π z k. k B Zadanie 2. Jakie warunki musz speªnia ci gi a n i b n, aby istniaªy

Bardziej szczegółowo

Postulaty interpretacyjne mechaniki kwantowej Wykład 6

Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 19 września 2014 Karol Kołodziej Postulaty interpretacyjne mechaniki

Bardziej szczegółowo

Strategia czy intuicja?

Strategia czy intuicja? Strategia czy intuicja czyli o grach niesko«czonych Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 29 sierpnia 2009 Denicja gry Najprostszy przypadek: A - zbiór (na ogóª co najwy»ej przeliczalny),

Bardziej szczegółowo

Przeksztaªcenia liniowe

Przeksztaªcenia liniowe Przeksztaªcenia liniowe Przykªady Pokaza,»e przeksztaªcenie T : R 2 R 2, postaci T (x, y) = (x + y, x 6y) jest przeksztaªceniem liniowym Sprawdzimy najpierw addytywno± przeksztaªcenia T Niech v = (x, y

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Schematy blokowe ukªadów automatyki

Schematy blokowe ukªadów automatyki Rozdziaª 1 Schematy blokowe ukªadów automatyki Autorzy: Marcin Stachura 1.1 Algebra schematów blokowych 1.1.1 Zasady przeksztaªcania schematów blokowych W celu uproszczenia wypadkowej transmitancji operatorowej

Bardziej szczegółowo

Mierzalne liczby kardynalne

Mierzalne liczby kardynalne czyli o miarach mierz cych wszystko Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 26 stycznia 2007 Ogólny problem miary Pytanie Czy na pewnym zbiorze X istnieje σ-addytywna miara probabilistyczna,

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Model obiektu w JavaScript

Model obiektu w JavaScript 16 marca 2009 E4X Paradygmat klasowy Klasa Deniuje wszystkie wªa±ciwo±ci charakterystyczne dla wybranego zbioru obiektów. Klasa jest poj ciem abstrakcyjnym odnosz cym si do zbioru, a nie do pojedynczego

Bardziej szczegółowo

Ekstremalnie maªe zbiory

Ekstremalnie maªe zbiory Maªe jest pi kne Instytut Matematyki Uniwersytetu Warszawskiego Nadarzyn, 27.08.2011 Zbiory silnie miary zero Przypomnienie Zbiór X [0, 1] jest miary Lebesgue'a zero, gdy dla ka»dego ε > 0 istnieje ci

Bardziej szczegółowo

Notacja Diraca. Rozdział Abstrakcyjna przestrzeń wektorów stanu

Notacja Diraca. Rozdział Abstrakcyjna przestrzeń wektorów stanu 3.10.2004 7. Notacja Diraca 84 Rozdział 7 Notacja Diraca 7.1 Abstrakcyjna przestrzeń wektorów stanu Do tej pory posługiwaliśmy się postulatem, że stan układu fizycznego jest w mechanice kwantowej w pełni

Bardziej szczegółowo

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a,

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a, Ciaªo Denicja. Zbiór K z dziaªaniami dodawania + oraz mno»enia (których argumentami s dwa elementy z tego zbioru, a warto±ciami elementy z tego zbioru) nazywamy ciaªem, je±li zawiera co najmniej dwa elementy

Bardziej szczegółowo

Re(x 2 y 2 ) Im(x 2 + y 2 ) 2Re(xy) Im(x 2 y 2 ) Re(x 2 + y 2 ) 2Im(xy)

Re(x 2 y 2 ) Im(x 2 + y 2 ) 2Re(xy) Im(x 2 y 2 ) Re(x 2 + y 2 ) 2Im(xy) Zadania domowe z Metod Matematycznych Fizyki (2012/2013 Zad. 1 Wypisa tabel dziaªania grupy obrotów czworo±cianu A 4. Zad. 2 Znale¹ podgrupy grupy kwaternionów Q. Z jakimi grupami s izomorczne? Sprawdzi,»e

Bardziej szczegółowo

Postulaty mechaniki kwantowej

Postulaty mechaniki kwantowej 3.10.2004 11. Postulaty mechaniki kwantowej 120 Rozdział 11 Postulaty mechaniki kwantowej Mechanika kwantowa, jak zresztą każda teoria fizyczna, bazuje na kilku postulatach, które przyjmujemy "na wiarę".

Bardziej szczegółowo

Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe

Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2011-18-02 Motywacja Liczby

Bardziej szczegółowo

Aproksymacja funkcji metod najmniejszych kwadratów

Aproksymacja funkcji metod najmniejszych kwadratów Aproksymacja funkcji metod najmniejszych kwadratów Teoria Interpolacja polega na znajdowaniu krzywej przechodz cej przez wszystkie w zªy. Zdarzaj si jednak sytuacje, w których dane te mog by obarczone

Bardziej szczegółowo

Wektor. Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D).

Wektor. Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D). Wektor Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D). Adam Szmagli«ski (IF PK) Wykªad z Fizyki dla I roku WIL Kraków, 10.10.2015 1 / 13 Wektor Uporz dkowany

Bardziej szczegółowo

Algebra i jej zastosowania ćwiczenia

Algebra i jej zastosowania ćwiczenia Algebra i jej zastosowania ćwiczenia 13 stycznia 013 1 Reprezentacje liniowe grup skończonych 1. Pokazać, że zbiór wszystkich pierwiastków stopnia n z jedności jest grupa abelowa wzgle dem mnożenia.. Pokazać,

Bardziej szczegółowo

Matematyczne podstawy kognitywistyki

Matematyczne podstawy kognitywistyki Matematyczne podstawy kognitywistyki Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM pogon@amu.edu.pl Rachunek zbiorów Jerzy Pogonowski (MEG) Matematyczne podstawy kognitywistyki Rachunek zbiorów 1

Bardziej szczegółowo

Logika intuicjonistyczna

Logika intuicjonistyczna 9 listopada 2011 Plan 1 2 3 4 Plan 1 2 3 4 Intuicjonizm Pogl d w lozoi matematyki wprowadzony w 1912 L. E. J. Brouwera. Twierdzenia matematyczne powstaj dzi ki intuicjom naszego umysªu. Skupienie si na

Bardziej szczegółowo

Macierz A: macierz problemów liniowych (IIII); Macierz rozszerzona problemów liniowych (IIII): a 11 a 1m b 1 B = a n1 a nm b n

Macierz A: macierz problemów liniowych (IIII); Macierz rozszerzona problemów liniowych (IIII): a 11 a 1m b 1 B = a n1 a nm b n Plan Spis tre±ci 1 Problemy liniowe 1 2 Zadania I 3 3 Formy biliniowe 3 3.1 Odwzorowania wieloliniowe..................... 3 3.2 Formy biliniowe............................ 4 4 Formy kwadratowe 4 1 Problemy

Bardziej szczegółowo

Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?

Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo? Modelowanie Preferencji a Ryzyko Dlaczego w dylemat więźnia warto grać kwantowo? Marek Szopa U n iwe r s y t e t Ś l ą s k i INSTYTUT FIZYKI im. Augusta Chełkowskiego Zakład Fizyki Teoretycznej Klasyczny

Bardziej szczegółowo

Strategie kwantowe w teorii gier

Strategie kwantowe w teorii gier Uniwersytet Jagielloński adam.wyrzykowski@uj.edu.pl 18 stycznia 2015 Plan prezentacji 1 Gra w odwracanie monety (PQ penny flip) 2 Wojna płci Definicje i pojęcia Równowagi Nasha w Wojnie płci 3 Kwantowanie

Bardziej szczegółowo

Splątanie w algorytmach kwantowych ukrytej podgrupy

Splątanie w algorytmach kwantowych ukrytej podgrupy PRACA MAGISTERSKA Splątanie w algorytmach kwantowych ukrytej podgrupy Autor: Jarosław A. Miszczak Promotor: dr hab. Sławomir Bugajski Zakład Fizyki Teoretycznej Wydział Matematyki, Fizyki i Chemii Uniwersytet

Bardziej szczegółowo

Metody probablistyczne i statystyka stosowana

Metody probablistyczne i statystyka stosowana Politechnika Wrocªawska - Wydziaª Podstawowych Problemów Techniki - 011 Metody probablistyczne i statystyka stosowana prowadz cy: dr hab. in». Krzysztof Szajowski opracowanie: Tomasz Kusienicki* κ 17801

Bardziej szczegółowo

2 Podstawowe obiekty kombinatoryczne

2 Podstawowe obiekty kombinatoryczne 2 Podstawowe obiety ombinatoryczne Oznaczenia: N {0, 1, 2,... } zbiór liczb naturalnych. Dla n N przyjmujemy [n] {1, 2,..., n}. W szczególno±ci [0] jest zbiorem pustym. Je±li A jest zbiorem so«czonym,

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

Klasyczna teoria informacji

Klasyczna teoria informacji Klasyczna teoria informacji. Mamy monetę dającą wyniki z prawdopodobieństwami (, 3 ) Znajdź liczbę 4 4 średnią pytań na wynik w optymalnym systemie identyfikacji potrzebną do zidentyfikowania wyniku losowania

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

c Marcin Sydow Planarno± Grafy i Zastosowania Tw. Eulera 7: Planarno± Inne powierzchnie Dualno± Podsumowanie

c Marcin Sydow Planarno± Grafy i Zastosowania Tw. Eulera 7: Planarno± Inne powierzchnie Dualno± Podsumowanie 7: Spis zagadnie«twierdzenie Kuratowskiego Wªasno±ci planarno±ci Twierdzenie Eulera Grafy na innych powierzchniach Poj cie dualno±ci geometrycznej i abstrakcyjnej Graf Planarny Graf planarny to taki graf,

Bardziej szczegółowo

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski WYKŁAD 1 Witold Bednorz, Paweł Wolff Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Wprowadzenie Gry hazardowe Wprowadzenie Gry hazardowe Klasyczna definicja prawdopodobieństwa.

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X. 1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X

Bardziej szczegółowo

Kwantowa teoria wzgl dno±ci

Kwantowa teoria wzgl dno±ci Instytut Fizyki Teoretycznej Uniwersytetu Warszawskiego Festiwal Nauki, 16 wrze±nia 2006 Plan wykªadu Grawitacja i geometria 1 Grawitacja i geometria 2 3 Grawitacja Grawitacja i geometria wedªug Newtona:

Bardziej szczegółowo

Koªo Naukowe Robotyków KoNaR. Plan prezentacji. Wst p Rezystory Potencjomerty Kondensatory Podsumowanie

Koªo Naukowe Robotyków KoNaR. Plan prezentacji. Wst p Rezystory Potencjomerty Kondensatory Podsumowanie Plan prezentacji Wst p Rezystory Potencjomerty Kondensatory Podsumowanie Wst p Motto W teorii nie ma ró»nicy mi dzy praktyk a teori. W praktyce jest. Rezystory Najwa»niejsze parametry rezystorów Rezystancja

Bardziej szczegółowo

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v) Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla

Bardziej szczegółowo

Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1

Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji

Bardziej szczegółowo

Liniowe zadania najmniejszych kwadratów

Liniowe zadania najmniejszych kwadratów Rozdziaª 9 Liniowe zadania najmniejszych kwadratów Liniowe zadania najmniejszych kwadratów polega na znalezieniu x R n, który minimalizuje Ax b 2 dla danej macierzy A R m,n i wektora b R m. Zauwa»my,»e

Bardziej szczegółowo

ODPOWIEDŹ NA PYTANIA NR 1

ODPOWIEDŹ NA PYTANIA NR 1 ODPOWIEDŹ NA PYTANIA NR 1 ZP/PN/ 4/2015 Szczecin, dnia 13 kwietnia 2015 r.. dotyczy: postępowania prowadzonego w trybie przetargu nieograniczonego dla zadania: Kompleksowe utrzymanie czystości w budynkach

Bardziej szczegółowo

WYKŠAD 3. di dt. Ġ = d (r v) = r P. (1.53) dt. (1.55) Przyrównuj c stronami (1.54) i (1.55) otrzymujemy wektorowe równanie

WYKŠAD 3. di dt. Ġ = d (r v) = r P. (1.53) dt. (1.55) Przyrównuj c stronami (1.54) i (1.55) otrzymujemy wektorowe równanie WYKŠAD 3 Równania Gaussa dla e, I, Ω, ω, M. Ω, di 1.3.3 Od caªki ól do ė, W odró»nieniu od skalarnej caªki siª»ywych, wektorowa caªka ól mo»e nam osªu»y do otrzymania a» trzech kolejnych równa«gaussa.

Bardziej szczegółowo

Wykªad 6: Model logitowy

Wykªad 6: Model logitowy Wykªad 6: Model logitowy Ekonometria Stosowana SGH Model logitowy 1 / 18 Plan wicze«1 Modele zmiennej jako±ciowej idea 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3

Bardziej szczegółowo

Analiza i aproksymacja nieliniowego modelu elastycznego ograniczaj cego odksztaªcenie

Analiza i aproksymacja nieliniowego modelu elastycznego ograniczaj cego odksztaªcenie Analiza i aproksymacja nieliniowego modelu elastycznego ograniczaj cego odksztaªcenie Wojciech O»a«ski 9 Kwi 2015 Przykªad ukªadu mechanicznych o ograniczaj cym odksztaªceniu: nierozciagliwa struna σ spreżyna

Bardziej szczegółowo

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka EGZAMIN MAGISTERSKI, 26.06.2017 Biomatematyka 1. (8 punktów) Rozwój wielko±ci pewnej populacji jest opisany równaniem: dn dt = rn(t) (1 + an(t), b gdzie N(t) jest wielko±ci populacji w chwili t, natomiast

Bardziej szczegółowo

Wnioskowanie Boolowskie i teoria zbiorów przybli»onych

Wnioskowanie Boolowskie i teoria zbiorów przybli»onych Wnioskowanie Boolowskie i teoria zbiorów przybli»onych 4 Zbiory przybli»one Wprowadzenie do teorii zbiorów przybli»onych Zªo»ono± problemu szukania reduktów 5 Wnioskowanie Boolowskie w obliczaniu reduktów

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

Ekstremalnie fajne równania

Ekstremalnie fajne równania Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów

Bardziej szczegółowo