ZASADY ZALICZANIA PRZEDMIOTU:
|
|
- Jacek Jarosz
- 8 lat temu
- Przeglądów:
Transkrypt
1 WYKŁADOWCA: dr hab. inż. Katarzyna ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, paw. C-1, p. 317, III p. tel , tel. kom zak@agh.edu.pl /2013, zima 1 ZASADY ZALICZANIA PRZEDMIOTU: Obecność i aktywność na zajęciach (wykłady, ćwiczenia, laboratorium) Pozytywna ocena końcowa ( 3.0) z ćwiczeń rachunkowych i laboratorium Egzamin pisemny i ustny po każdym semestrze. Na ocenę końcową przedmiotu wpływają wszystkie oceny oraz wyniki testów na wykładzie (egz/cw/testy: 50/35/15) 2012/2013, zima 2 1
2 MATERIAŁY DO WYKŁADU: TEKST WYKŁADU PODRĘCZNIKI: 1. D.Halliday, R. Resnick, J.Walker, Podstawy Fizyki, PWN W-wa, tomów (w skrócie HRW) 2. C.Kittel, W.D. Knight, M.A. Ruderman Mechanika, PWN W-wa /2013, zima 3 RACHUNEK WEKTOROWY W FIZYCE 2012/2013, zima 4 2
3 Plan Pojęcie wektora Działania na wektorach Wektor w kartezjańskim układzie współrzędnych Przykłady wykorzystania wektorów i działań na nich w fizyce 2012/2013, zima 5 Pojęcie wektora Wektor ma trzy cechy: 1. Kierunek 2. Zwrot 3. Wartość (długość) 2012/2013, zima 6 3
4 DŁUGOŚĆ WEKTORA Oś liczbowa Długość wektora Ogólnie: Wersor jest to wektor jednostkowy 2012/2013, zima 7 A punkt przyłożenia? Ruch postępowy Ruch obrotowy 2012/2013, zima 8 4
5 Działania na wektorach Dodawanie Odejmowanie Mnożenie: Iloczyn wektora przez liczbę Iloczyn skalarny dwóch wektorów Iloczyn wektorowy dwóch wektorów 2012/2013, zima 9 Dodawanie wektorów 2012/2013, zima 10 5
6 Odejmowanie wektorów Wektor przeciwny 2012/2013, zima 11 Reguła równoległoboku 2012/2013, zima 12 6
7 WEKTOR WYPADKOWY np. wypadkowe przemieszczenie, wypadkowa siła 2012/2013, zima 13 Rozkład wektora k l 2012/2013, zima 14 7
8 ILOCZYN WEKTORA PRZEZ LICZBĘ Wynik działania jest wektorem 2012/2013, zima 15 a r Wektory i są równoległe (mają ten sam kierunek) Gdy k>0, zwroty zgodne Gdy k<0, zwroty przeciwne Wartość (długość) wektora: 2012/2013, zima 16 8
9 ILOCZYN SKALARNY - DEFINICJA φ Wynik działania jest liczbą: dodatnią, ujemną (kiedy?) lub nawet zero Działanie jest przemienne 2012/2013, zima 17 ILOCZYN SKALARNY - KONSEKWENCJE φ=90 0 Jeżeli wektory są prostopadłe to ich iloczyn skalarny jest równy 0 Służy do sprawdzania prostopadłości wektorów 2012/2013, zima 18 9
10 ILOCZYN SKALARNY - KONSEKWENCJE φ=0 0 Służy do określenia długości wektora 2012/2013, zima 19 ILOCZYN WEKTOROWY - DEFINICJA φ Wynik działania jest wektorem. Należy zatem podać trzy jego cechy, nie tylko wartość ale przede wszystkim kierunek (!!!!) i zwrot 2012/2013, zima 20 10
11 Iloczyn wektorowy - definicja 1. Kierunek wektora jest prostopadły do płaszczyzny utworzonej przez wektory i czyli i 2012/2013, zima 21 Iloczyn wektorowy - definicja 2. Zwrot wektora określamy regułą prawej ręki lub śruby prawoskrętnej Działanie to nie jest przemienne 2012/2013, zima 22 11
12 Iloczyn wektorowy - definicja 3. Długość wektora to liczba: Uwaga: Jeżeli przynajmniej jeden z wektorów jest zerowy lub wektory mają ten sam kierunek (pokrywają się lub są równoległe) to W szczególności 2012/2013, zima 23 DLACZEGO? Bo jeżeli jest tylko jeden wektor to nie można utworzyć płaszczyzny, do której wektor będący wynikiem iloczynu wektorowego byłby prostopadły. Jak widać, jest to problem kierunku a nie wartości wektora. 2012/2013, zima 24 12
13 Iloczyn wektorowy - konsekwencje 1. Jeżeli 2. Służy do sprawdzania równoległości wektorów 2012/2013, zima 25 Algebra wektorów Rozdzielność mnożenia skalarnego i wektorowego względem dodawania (odejmowania) Dzielić przez wektor nie wolno!!! 2012/2013, zima 26 13
14 Przykład 1. Algebra wektorów Dane jest równanie wektorowe: Znaleźć wektor Rozwiązanie: 2012/2013, zima 27 Algebra wektorów Rozwiązanie: 1. Z rozdzielności mnożenia względem dodawania: 3. Dodając i odejmując stronami jak w zwykłym równaniu: 4. Mamy prawo podzielić przez wyrażenie w nawiasie po upewnieniu się, że jest liczbą: 2. Ale: 2012/2013, zima 28 14
15 Dowodzenie twierdzeń Rachunek wektorowy ułatwia dowodzenie twierdzeń geometrycznych. Przykład 2. Udowodnić, że dwa wektory muszą mieć równe długości jeżeli ich suma jest prostopadła do ich różnicy. 2012/2013, zima 29 Dowód 1. Jeżeli: 2. To (z definicji iloczynu skalarnego): 3. Korzystając z rozdzielności mnożenie względem dodawania: 2012/2013, zima 30 15
16 4. Iloczyn skalarny jest przemienny, a zatem: Dowód 5. I: redukuje się do: 6. Zatem: c.n.d. 2012/2013, zima 31 Zadanie 2-1 Stosując rachunek wektorowy udowodnić twierdzenie kosinusów. 2012/2013, zima 32 16
17 Wektor w kartezjańskim układzie współrzędnych przypadek dwuwymiarowy y Tw. Pitagorasa φ x Trygonometria 2012/2013, zima 33 Wektor w kartezjańkim układzie współrzędnych 3D a z z a y a x y x 2012/2013, zima 34 17
18 Zadanie 2-2 Stosując definicje iloczynów skalarnego i wektorowego oblicz: oraz 2012/2013, zima 35 Działania na wektorach w układzie kartezjańskim 2012/2013, zima 36 18
19 1. Dodawanie wektorów Wynik jest wektorem 2012/2013, zima Równość wektorów Wynik 2012/2013, zima 38 19
20 3. Iloczyn skalarny Wynik OBOWIĄZUJE TYLKO W UKŁADZIE KARTEZJAŃSKIM DLACZEGO? 2012/2013, zima Iloczyn wektorowy Wynik 2012/2013, zima 40 20
21 ZASTOSOWANIE RACHUNKU WEKTOROWEGO W FIZYCE 2012/2013, zima 41 Wielkości fizyczne Długość, czas, siła, masa, prędkość, przyspieszenie, temperatura, ciśnienie, natężenie pola elektrycznego, natężenie prądu elektrycznego, strumień pola magnetycznego SKALARY WEKTORY 2012/2013, zima 42 21
22 Mnożenie wektora przez liczbę: Pęd: definicja Pytanie: Jaki jest kierunek wektora pędu? masa m v wektor prędkości p Odpowiedź: 2012/2013, zima 43 Iloczyn skalarny Praca F Wektor siły W = F s cos φ φ A B Wektor przesunięcia 2012/2013, zima 44 22
23 Iloczyn wektorowy: 1. Moment siły (ang. torque) F r 2. Moment pędu (ang. angular momentum) L 2012/2013, zima 45 r p Iloczyn wektorowy: 3. Siła Lorentza (ang. magnetic force) siła działająca na ładunek q poruszający się w polu magnetycznym o wektorze indukcji B To jest definicja wektora indukcji pola magnetycznego 2012/2013, zima 46 23
24 Określanie zwrotu iloczynu wektorowego : 2012/2013, zima 47 Pole magnetyczne zakrzywia tor ruchu ładunku elektrycznego. p - skok śruby r - promień śruby 2012/2013, zima 48 24
25 Zadanie 2-4 Rozważyć szczególne przypadki ruchu cząstki naładowanej w polu magnetycznym, gdy: a)wektor prędkości jest równoległy do wektora indukcji magnetycznej b)wektor prędkości jest prostopadły do wektora indukcji magnetycznej Odpowiedzieć na pytania: jaka siła działa na cząstkę i jaka krzywa opisuje tor ruchu cząstki. 2012/2013, zima 49 Zadanie 2-5 Zastanowić się nad innymi zastosowaniami rachunku wektorowego zarówno w matematyce jak i fizyce. Poszukać informacji na temat iloczynu mieszanego oraz podwójnego iloczynu wektorowego czyli: 2012/2013, zima 50 25
26 Pole magnetyczne nie zmienia energii kinetycznej cząstki naładowanej poruszającej się w tym polu ale czyli 0 E k =const 2012/2013, zima 51 TEST 2P 1. Wektor o długości 20 dodano do wektora o długości 25. Długość wektora będącego sumą wektorów może być równa: A) zero B) 3 C) 12 D) 47 E) Wektory i leżą na płaszczyźnie xy. Możemy wnosić, że jeżeli: A) D) B) E) C) 2012/2013, zima 52 26
27 3. Jeżeli to ma wartość: A) 10 m B) 20 m C) 30 m D) 40 m E) 50 m 4. Kąt pomiędzy wektorem a dodatnim kierunkiem osi OX wynosi: A) 29 o B) 61 o C) 119 o D) 151 o E) 209 o 5. Dwa wektory, których początki się pokrywają, tworzą pewien kąt. Jeżeli kąt pomiędzy tymi wektorami zwiększy się o 20 o to iloczyn skalarny tych dwóch wektorów zmienia znak na przeciwny. Kąt, który początkowo tworzyły te dwa wektory wynosi: A) 0 B) 60 0 C) 70 o D) 80 o E) /2013, zima Dwa wektory wyznaczają jednoznacznie płaszczyznę. Który z wektorów jest prostopadły do tej płaszczyzny: A) D) B) E) C) 7. Wartość wynosi: A) zero B) +1 C) -1 D) 3 E) /2013, zima 54 27
28 TEST 2A 1. A vector of magnitude 3 CANNOT be added to a vector of magnitude 4 so that the magnitude of the resultant is: A) zero B) 1 C) 3 D) 5 E) 7 2. A vector has a magnitude of 12. When its tail is at the origin it lies between the positive x axis and negative y axis and makes an angle of 30 o with the x axis. Its y component is: A) 6 3 B)-6 3 C) 6 D) -6 E) A vector has a component of 10 in the +x direction, a component of 10 m in the +y direction, and a component of 5 m in the +z direction. The magnitude of this vector is: A) zero B) 15 m C) 20 m D) 25 m E) 225 m 2012/2013, zima Two vectors have magnitudes of 10 and 15. The angle between them when they are drawn with their tails at the same point is 65 o. The component of the longer vector along the line of the shorter is: A) 0 B) 4.2 C) 6.3 D) 9.1 E) If the magnitude of the sum of two vectors is less than the magnitude of either vector, then: A) the scalar product of the vectors must be negative B) the scalar product of the vectors must be positive C) the vectors must be parallel and in opposite directions D) the vectors must be parallel and in the same direction E) none of the above 2012/2013, zima 56 28
29 Podsumowanie Działanie Wynik Metoda postępowania Zastosowanie dodawanie wektor wypadkowe przemieszczenie, reguła wypadkowa siła odejmowanie wektor równoległoboku algebra wektorów, dowodzenie twierdzeń rozkład wektora wektory składowe równia pochyła, rzut ukośny, itp. 2012/2013, zima 57 Działanie Wynik Definicja Wzór w układzie kartezj. W fizyce iloczyn skalarny iloczyn wektorowy mnożenie wektora przez liczbę skalar wektor wektor 1. kierunek 2. zwrot 3.wartość 1. kierunek 2. zwrot W matematyce prostopadłość wektorów praca, energia np.kinetyczna równoległość wektorów równoległość wektorów moment pędu, moment siły, siła Lorentza pęd, II zasada dynamiki 3.wartość ka2012/2013, zima 58 29
Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe
Fizyka dr ohdan ieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D. Resnick,
KINEMATYKA (punkt materialny)
KINEMATYKA (punkt materialny) Wykład 2 2012/2013, zima 1 MECHANIKA KINEMATYKA DYNAMIKA Opis ruchu Przyczyny ruchu Wykład 2 2012/2013, zima 2 1 Y RUCH KRZYWOLINIOWY P XY - Układ odniesienia r y - wektor
PODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski
Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora
KINEMATYKA (punkt materialny)
KINEMATYKA (punkt materialny) Wykład 3 2016/2017, zima 1 MECHANIKA KINEMATYKA DYNAMIKA Opis ruchu Przyczyny ruchu Wykład 3 2016/2017, zima 2 Y r RUCH KRZYWOLINIOWY P r OP y XY - Układ odniesienia - wektor
Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach
Dr Kazimierz Sierański kazimierz.sieranski@pwr.edu.pl www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Forma zaliczenia kursu: egzamin końcowy Grupa kursów -warunkiem
Mechanika teoretyczna
Przedmiot Mechanika teoretyczna Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Mechanika: ogólna, techniczna, teoretyczna. Dział fizyki zajmujący się badaniem
Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz
Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
Podstawy fizyki sezon 1
Podstawy fizyki sezon 1 dr inż. Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Fizyka na IMIR MBM rok 2013/14 Moduł
Opis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
Mechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
MECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Analiza stanu naprężenia - pojęcia podstawowe
10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Podstawy działań na wektorach - dodawanie
Podstawy działań na wektorach - dodawanie Metody dodawania wektorów można podzielić na graficzne i analityczne (rachunkowe). 1. Graficzne (rysunkowe) dodawanie dwóch wektorów. Założenia: dane są dwa wektory
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Podstawy Procesów i Konstrukcji Inżynierskich. Wprowadzenie do przedmiotu
Podstawy Procesów i Konstrukcji Inżynierskich Wprowadzenie do przedmiotu Prowadzący: dr inż. Marta Kamińska Kierunek Wyróżniony przez PKA Wykładowcy Kierownik przedmiotu: prof. dr hab. Bogdan Walkowiak
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się
Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz
MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY
MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
Geometria w R 3. Iloczyn skalarny wektorów
Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)
Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI
Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI 3 Copyright by Zbigniew Osiak Wszelkie prawa zastrzeżone. Rozpowszechnianie i kopiowanie całości lub części publikacji zabronione bez pisemnej zgody autora. Portret
Podstawy fizyki sezon 1
Podstawy fizyki sezon 1 dr inż. Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Fizyka na IMIR MBM rok 2017/18 Moduł
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Fizyka Nazwa modułu w języku angielskim Physics Obowiązuje od roku akademickiego 2013/2014 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów
Transport I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Fizyka Nazwa modułu w języku angielskim Physics Obowiązuje od roku akademickiego 2013/2014 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów
Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz
Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz Dr inż. Janusz Dębiński 1 2.1. Przestrzeń i płaszczyzna Podstawowe definicje Punkt - najmniejszy bezwymiarowy
Arkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Fizyka Nazwa modułu w języku angielskim Physics Obowiązuje od roku akademickiego 2013/2014 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów
18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa
Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów
Wprowadzenie do fizyki pola magnetycznego
Wprowadzenie do fizyki pola magnetycznego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/magnetostatics/index.htm Powszechnym źródłem pola magnetycznego
Automatyka i Robotyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Fizyka Nazwa modułu w języku angielskim Physics Obowiązuje od roku akademickiego 2013/2014 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów
Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja
Mechanika i Wytrzymałość Materiałów. Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga.
Mechanika i Wytrzymałość Materiałów Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga. Przedmiot Mechanika (ogólna, techniczna, teoretyczna): Dział fizyki
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja
Mechanika i Budowa Maszyn I stopień ogólnoakademicki stacjonarne wszystkie Katedra Mechaniki Prof. dr hab. Andrzej Radowicz
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Fizyka Nazwa modułu w języku angielskim Physics Obowiązuje od roku akademickiego
Wektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
Wzornictwo Przemysłowe I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Fizyka Nazwa modułu w języku angielskim Physics Obowiązuje od roku akademickiego 2014/2015 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów
Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Semestr pierwszy
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Fizyka Nazwa modułu w języku angielskim Physics Obowiązuje od roku akademickiego 2013/2014 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów
GEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
Równania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechniki Łódzkiej MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW Praca zawiera opis kształtowania przestrzeni n-wymiarowej, definiowania orientacji
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18 1. Czym zajmuje się fizyka? Podstawowe składniki materii. Charakterystyka czterech fundamentalnych
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH
Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk
Algebra Wektory Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Wektory Najnowsza wersja
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016
Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Streszczenie Wykład przedstawia podstawowe zagadnienia mechaniki klasycznej od kinematyki punktu materialnego, przez prawa Newtona
Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi.
Prawa fizyki i wielkości fizyczne Fizyka (z stgr. φύσις physis "natura") nauka o przyrodzie w najszerszym znaczeniu tego słowa. Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi. Prawa
Grupy, pierścienie i ciała
Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.
MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
Fizyka. Program Wykładu. Program Wykładu c.d. Literatura. Rok akademicki 2013/2014
Program Wykładu Fizyka Wydział Zarządzania i Ekonomii Rok akademicki 2013/2014 Mechanika Kinematyka i dynamika punktu materialnego Zasady zachowania energii, pędu i momentu pędu Podstawowe własności pola
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
Pole elektromagnetyczne
Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością
Elementy geometrii analitycznej w R 3
Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,
WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej
WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej OSIĄGNIĘCIA UCZNIÓW Z ZAKRESIE KSZTAŁCENIA W kolumnie "wymagania na poziom podstawowy" opisano wymagania
Wyprowadzenie prawa Gaussa z prawa Coulomba
Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych
6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych
Z-ID-106. Inżynieria Danych I stopień Praktyczny Studia stacjonarne Wszystkie Katedra Matematyki i Fizyki Prof. dr hab.
KARTA MODUŁU / KARTA PRZEDMIOTU Z-ID-106 Kod modułu Nazwa modułu Fizyka I Nazwa modułu w języku angielskim Physics I Obowiązuje od roku akademickiego 2018/2019 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ
PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni
Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne
WYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej
Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328
Drogi Czytelniku 9 Oznaczenia matematyczne 11 Podstawowe wzory 15 Rozdział I. Zbiory. Działania na zbiorach 21 1. Zbiór liczb naturalnych 22 1.1. Działania w zbiorze liczb naturalnych 22 1.2. Prawa działań
PLAN WYNIKOWY DLA KLASY I GIMNAZJUM W OPARCIU O PROGRAM BŁĘKITNA MATEMATYKA DKW 4014/16/99
PLAN WYNIKOWY DLA KLASY I GIMNAZJUM W OPARCIU O PROGRAM BŁĘKITNA MATEMATYKA DKW 4014/16/99 Dla następujących działów: 1. Wyrażenia algebraiczne. 2. Mierzenie. 3. Bryły. 4. Przekształcenia geometryczne.
Potencjalne pole elektrostatyczne. Przypomnienie
Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf
Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
I. Potęgi. Logarytmy. Funkcja wykładnicza.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)
Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego
Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość
1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.
1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.