Sterowanie optymalne statkiem w obszarze ze zmiennym prądem problem czasooptymalnej marszruty. Zenon Zwierzewicz

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sterowanie optymalne statkiem w obszarze ze zmiennym prądem problem czasooptymalnej marszruty. Zenon Zwierzewicz"

Transkrypt

1 Sterowae otymale statem w obszarze ze zmeym rądem roblem czasootymalej marszrty Zeo Zwerzewcz Szczec

2 Zeo Zwerzewcz Sterowae otymale statem w obszarze ze zmeym rądem roblem czasootymalej marszrty W artyle tym rzedstawmy rozwązae tzw awgacyjego roblem Zermelo [] w oarc o metody teor sterowaa otymalego (SO) Podstawowym rezltatem tej teor jest twerdzee zae od azwą zasady masmm Potraga [] ozwalające wyzaczyć otymaly (w sese zadaego ryterm) rogram sterowaa obetem (rocesem) rzy założe ełej zajomośc jego model dyamczego Na wstęe rzedstawoe zostaą odstawowe faty z teor sterowaa otymalego w ostac ogólych sformłowań zarówo roblem SO ja zasady masmm W dalszym cąg sformłjemy roblem Zermelo - otymalej marszrty stat (otmal rotg roblem) oraz oażemy że jest o szczególym rzyadem ogólego zadaa sterowaa otymalego Bazjąc a odaych fatach rzedstawoe zostae szczegółowe rozwązae roblem Zermelo ajerw w forme ogólej (aaltyczej) a astęe w wersj meryczej (dla oretych daych lczbowych) włącze z rostym algorytmam omterowym w Matlabe/Sml [45] W artyle żyto owszeche rzyjętego w teor sterowaa zas wetorowo macerzowego Wetory macerze ozaczoo czcoa ogrboą Problem sterowaa otymalego ojęca odstawowe Nech day będze matematyczy model sterowaego obet lb roces w ostac rówaa sta: f ( ( t) ( t)) rzy warach oczątowych ( t ) gdze ( t ) D R jest -wymarowym wetorem sta oraz U R m rerezetje m -wymarowy wetor sterowań Zbór D jest obszarem atomast U domętym obszarem trajetora L zbór docelowy L Rys Trajetora obet sterowaego wraz ze zborem docelowym

3 Day jest oadto domęty zbór L R D tzw zbór docelowy (target set): L : l( ( t)) gdze l - fcja wetorowa r-wymarowa lasyc Przez L ozaczamy brzeg zbor L załadamy że l w otocze brzeg L gradet -tej wsółrzędej fcj wetorowej l ; = r 3 l ozacza ttaj Jao czas zaończea roces rozmemy erwszy momet osągęca rzez trajetorę staów ( t) ( t t ( t)) zbor L : + t = m t R : ( t) L Mara jaośc sterowaa daa jest za omocą tzw ryterm (wsaźa fcjoał) jaośc (oszt wyłaty): t ( o to J ) f ( ( t) ( t)) dt G( ( t )) (3) gdze f G są salarym ejemym fcjam lasy Sformłowae roblem sterowaa otymalego: Sośród sterowań doszczalych ( U ) rzerowadzających obet ze sta oczątowego do zbor docelowego L zaleźć tae tóre mmalzje wsaź jaośc J() Sterowae tae azywamy sterowaem otymalym ozaczamy * Zatem J * ( ) m J( ) U Na sładowe ( = m) wetora sterowaa ałada sę zwyle dodatowe war (ograczea) że są fcjam rzedzałam cągłym o wartoścach ze zbor U Sterowaa tae azywamy sterowaam doszczalym Przedstawoe zadae sterowaa jest bardzo ogóle Secyfjąc wystęjące t elemety możemy otrzymać tyowe często sotyae ostac zadaa : t - borąc fcje f o = G= mamy J ( ) dt t t a węc tzw roblem czasootymaly to (zaleźć sterowae rzerowadzające sta obet z t do zbor L w ajrótszym czase) - oszczając zbór docelowy L mamy roblem gdze e wystęją ograczea a ońcowy t trajetor rzy czym czas ońcowy t (czas trwaa roces) może być t zarówo staloy ja swobody - borąc ład lowy A B z fcjoałem jaośc ostac J ( ) T ( t ) ( t ) t t ( T Q T R) dt C m (gdze t jest z góry staloy) a m astęe omjając zbór docelowy L oraz ograczea a sterowae (tz borąc U R ) dostajemy tzw roblem reglatora lowo-wadratowego LQR (lear-qadratc reglator) Dla roblem LQR możlwe jest stosowo łatwe zysae tzw sytezy sterowaa otymalego

4 czyl sterowaa w srzęże zwrotym Decydje to o dżej wadze tego roblem zarówo w teor ja zastosowaach Zasada masmm Potraga Jedym z mocejszych arzędz rozwązywaa zadań sterowaa otymalego jest twerdzee zae od azwą zasady masmm Potraga tórego dość ogóle sformłowae odao ożej Przedtem jeda wrowadźmy ewe otrzebe ojęca: wetor sta srzężoego: hamltoa: ( t) [ ( t) ( t) ( t)] T gdze ( ( t) ( t) ( t)) ( t) f ( ( t) ( t)) f ( ( t) ( t)) f = f f f ; tz - ozacza możee salare Twerdzee (zasada masmm) Jeśl w sformłowaym robleme sterowaa otymalego () t () t ozaczają odowedo sterowae otymale odowadającą m trajetorę wychodzącą z zadaego sta oczątowego to steje wtedy ezerowa fcja wetorowa (t) (trajetora srzężoa) sełająca wraz z astęjące war : - rówae sta f ( ( t) ( t)) ; ( t) - war oczątowe - rówaa sta srzężoego ( t) ( ( t) ( t) ( t) ) z waram traswersalośc ( t ) G ( ( t )) l ( ( t )) gdze R G G G l l l 4

5 - rzy czym sterowae ( t) ( t) masymalzje amltoa : ( ( t) ( t) ( t)) ma ( ( t) ( t ) ) ; [ ] t t t 3 Sformłowae roblem Zermelo jao zadaa sterowaa otymalego oraz jego rozwązae z wyorzystaem zasady masmm W ramach rzedstawoego owyżej ogólego sformłowaa roblem SO rzedstawmy teraz roblem otymalej marszrty stat w obszarze z rądem Oczywśce ole wetorowe rerezetjące rądy może zawerać w sobe taże e oddzaływaa otoczea a state ja wływ watr Jao model sterowaego roces rzyjmemy ematyczy model rch stat: V cos ( ) V s ( ) gdze: ( t) ( t) wsółrzęde (ozycja) stat w czase t V rędość stat (stała) rs stat (zmea sterjąca) [ ( ) ( )] T ole wetorowe rozład rąd [ ] T t oczątowy trajetor stat [ ] [ ] t docelowy T T ole radowe V r trajetorja stat V w V Rys Trajetora stat w obszarze z slym rądem Kryterm jaośc mmaly czas roces sterowaa: 5

6 Zbór tów docelowych: t J( ) dt t m L ( ) : l ( ) l ( ) = ( ) : amltoma system: = [ ( t ) ( t)] [ V cos V s ] lb = { ( V cos + ( )) + ( V s + ( )) } = Rówaa sta srzężoego: ( ) ( ) ( ) ( ) = ( ) ( ) War traswersalośc: cos ( t ) = G l λ l s czyl ( t ) cos ( t ) ( t ) s Masymalzjąc hamltoa w czase t możemy otrzymać ja róweż wartość ( t ) W tym cel sząc hamltoa: ma ( t ) = ma V[cos s ] [cos s ] ( cos s ) } wdzmy że t ( ) osąga masmm ze względ a gdy wetory a [cos s ] b [cos s ] będą oleare tz a b Wtedy loczy salary a b zatem (borąc a b ) mamy: *( t ) ( V cos s ) Stąd wartośc wsółrzędych ( t ) wyoszą: 6

7 ( t ) cos /( V - cos - s ) ( t ) s /( V - cos - s ) Po rozwąza rówań srzężoych czyl zysa fcj ( t) ( t ) w całym rzedzale [ t ] masymalzjemy w tym rzedzale hamltoa: ma ( t) ma{ V[ ( t) ( t)] [cos s ] ( )+ ( )) }= Wdzmy że t () osąga masmm ze względ a gdy sełoy jest : Stąd mamy: - ware olearośc cos s ta = s / cos = ( tt α) / ( tt α) lb ( t ) = π arcta( / ) Otrzymalśmy zatem rodzę arametryczą (arametr ) sterowań otymalych Startjąc teraz T ze sta ońcowego [ ] całjąc rówae sta wstecz w czase otrzymjemy odowadającą rodzę trajetor otymalych Parametr doberamy ta aby sełoe były róweż war oczątowe W tym cel moża wyorzystać jedą ze zaych rocedr meryczych bądź dla celów ratyczych łatwo jest to zrobć o rost metodą rób błędów 4 Przyład meryczy W rzyładze tym ogóle rozwązae odae w orzedm ce wysecjalzjemy dla oretych daych lczbowych zysjąc w te sosób możlwość rozwązaa meryczego z zastosowaem omtera Przyjmjemy astęjące dae (odległość merzymy w mlach morsch [m] atomast rędość w węzłach []): t oczątowy - A = ( )=( ) [m] zbór tów docelowych - B =( ) = () rędość stat - V = 5 lowo arastające ole rądowe: V cr gdze 5 rówaa rch stat: 7

8 V cos V s ryterm jaośc: t J ( ) dt m W cel zalezea otymalego sterowaa rsem dooamy astęjących dzałań Bdjemy hamltoa: ( t) ( t) V cosv s lb = V cos + (V s + ) } { War traswersalośc: (t ) = ( t ) ( t ) cosα/v sα/v Rówaa sta srzężoego: cost s / V Całjąc erwsze rówae otrzymjemy: ( t ) = ( ( t t)s α+ cos α )/V stąd lb ta = = arct ta Zatem ta α ( ( t t) ta α+ ) ( ( t t) ta ) t (cot( () ) cot ) / Otrzymae wy: 3 t ( ) () 345 8

9 oraz czas zaończea roces sterowaa t = 93 h Dla orówaa gdyby state łyął medzy tam A B o l rostej bez dzałaa rąd zajęłoby m to / 5 = 8 h a węc stosowo ewele mej Zaś awgacja tego rodzaj w rzyad dzałaa rąd jest (dla rzyjętych daych) w ogóle emożlwa gdyż sła rąd e ozwala a stawee wyadowego wetora rędośc wzdłż odca AB Należy ttaj rzyomeć że rs w awgacj merzoy jest względem os oowej (ółoc) zgode z rchem wsazówe zegara Rezltatem grafczym tych wyów jest czasommala trajetora rch stat ja a Rys 3 ole radowe B marszrta mmaloc zasowa V A [ ] Rys 3 Czasommala marszrta startjąca w ce A Powyższy wy został zysay rzy omocy astęjącego sryt rogram Matlab: % Calowae rowań ematy w robleme Zermelo % odwołae do fcj 'fzr' % Parametry fcj ode3; =[ ]; [t]=ode45('fzr'^(-7)); L=(:)>-86; =(L:); w=(:); z=(:); lot(zw366-86'o') ; gdze w strcj ode45 odwoływao sę do fcj: fcto r=fzr(t) % fcja do całowaa rówań roblem awgacyjego Zermelo V=5; =-5; a= 3*34/8; 9

10 % rówaa ematy r=zeros(); f (*t*s(a)+cos(a)) > ; r()=-v*cos(+ata(s(a)/(*t*s(a)+cos(a)))); r()=-v*s(+ata(s(a)/(*t*s(a)+cos(a))))-*(); else r()=-v*cos(*+ata(s(a)/(*t*s(a)+cos(a)))); r()=-v*s(*+ata(s(a)/(*t*s(a)+cos(a))))-*(); ed Alteratywym sosobem rozwązaa meryczego z życem Smla jest astęjący schemat z towarzyszącym m srytem fcyjym: cos -K- /s f() STOP Cloc MATLAB Fcto Mzerm Fc s red V -K- /s Fc Sto Smlato red V_ Sm -K- XY Grah Rys4 Schemat smlowy realzjący czasommalą trajetorę rch stat fcto = mzerm(t) % fcja =(t) w robleme Zermello =-5; a= 3*34/8; f (*t*s(a)+cos(a)) > ; = + ata(s(a)/(*t*s(a)+cos(a))); else = * + ata(s(a)/(*t*s(a)+cos(a))); ed Fcja Fc - oreślająca ware sto ma oczywśce ostać: [] 86 5 Uwag ońcowe Rozwązae rzedstawoego owyżej roblem odao taże (oza orygalą wersją []) w sążce Brysoa o [] Jeda w obydw rzyadach zastosowao odejśce z ozycj rach waracyjego W obecym ttaj rozwąza zastosowao sosób bardzej zoretoway a owoczesą techę oblczeową tóry stosowo łatwo moża ogólć a bardzej złożoe rzyad tego roblem [67] ( sytacja z ograczeam rzestrze staów gdze dodatowo ależy omjać melzy domey obcych statów obszary slych brz sztormów etc) Zacze bardzej zaawasoway roblem otymalej awgacj gdze zastosowao zasadę masmm odao w racy [8] Problem dotyczył dyamczego sterowaa statem w rocese aa olzj oraz roozycj atomatyczego telgetego system atyolzyjego

11 Lteratra [] Zermelo E: Uber das Navgatosroblem be rheder oder veradlcher Wdvertelg Z Agew Math Mech Bd o 93 [] Bryso AE o YC: Aled otmal cotrol Blasdel Pbl Co 969 [3] Potryag LS Boltyas WG Gamreldze RW Mshcheo EF: Matematcesaja teorja otmalych rocesow Izd "Naa" Moswa 983 [4] Mroze B Mroze Z: Matlab 5 Sml PLJ 998 [5] Zalews A Cegeła R: Matlab oblczea merycze ch zastosowaa Wyd Naom Pozań 996 [6] Zwerzewcz Z: O a Comter Oreted Aalytcal Method for Solvg Otmal Cotrol Problems va Mamm Prcle - Zermello Navgatoal Problem Thrd Iteratoal Symosm o Methods ad Models Atomato ad Robotcs Mędzyzdroje -3 Wrzeseń 996 [7] Abramows T Abramows P Zwerzewcz Z: Formal solto of sh weather rotg roblem va Potryag s mamm rcle Stess Tecologca Uversdad Astral de Chle 4 [8] Zwerzewcz Z: O a comter cotrolled collso avodace Eroea Cotrol Coferece ECC 97-4 Jly 997 Brssels Belgm

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Dokonajmy zestawienia wszystkich równań teorii sprężystości. 1. Różniczkowe równania równowagi (warunki Naviera)

Dokonajmy zestawienia wszystkich równań teorii sprężystości. 1. Różniczkowe równania równowagi (warunki Naviera) Wyład 4 Blas rówań teor srężystośc Dooamy zestawea wszystch rówań teor srężystośc Gra rówań. Różczowe rówaa rówowag (war Navera Lczba rówań Lczba ewadomych X 6 (. Zwąz geometrycze (rówaa Cachy ego ( 6

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

T. Hofman, Wykłady z Termodynamiki technicznej i chemicznej, Wydział Chemiczny PW, kierunek: Technologia chemiczna, sem.

T. Hofman, Wykłady z Termodynamiki technicznej i chemicznej, Wydział Chemiczny PW, kierunek: Technologia chemiczna, sem. . Hofma Wyłady z ermodyam techczej chemczej Wydzał Chemczy PW erue: echologa chemcza sem.3 215/216 WYKŁAD 3-4. D. Blase reatorów chemczych E. II zasada termodyam F. Kosewecje zasad termodyam D. BILANE

Bardziej szczegółowo

Badanie energetyczne płaskiego kolektora słonecznego

Badanie energetyczne płaskiego kolektora słonecznego Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

4. ZASTOSOWANIE METODY ELEMENTÓW SKOŃCZONYCH (MES) W AKUSTYCE

4. ZASTOSOWANIE METODY ELEMENTÓW SKOŃCZONYCH (MES) W AKUSTYCE 4. ZAOOWAIE E W AUYCE Astya w bdowtwe. 4. ZAOOWAIE EODY ELEEÓW OŃCZOYCH (E) W AUYCE ożej zostae rzedstawoe sorłowae ateatyze słżąe do aalzy staów staloyh ja estaloyh, rzebeg al astyzej, zastosowayh w rograe

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

Reprezentacja krzywych...

Reprezentacja krzywych... Reprezeacja rzywych... Reprezeacja przy pomocy fcj dwóch zmeych rzywe płase płase - jedej: albo z z f x y x [ x x2] y [ y y2] f x y g x x [ x x2] Wady: rzywe óre dla pewych x y mogą przyjmować wele warośc

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 4 Nieparametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 4 Nieparametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lecja 4 Nearametrycze testy stotośc ZADANIE DOMOWE www.etraez.l Stroa 1 Część 1: TEST Zazacz orawą odowedź (tylo jeda jest rawdzwa). Pytae 1 W testach earametryczych a) Oblczamy statystyę

Bardziej szczegółowo

STATYKA. Cel statyki. Prof. Edmund Wittbrodt

STATYKA. Cel statyki. Prof. Edmund Wittbrodt STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,,, ~ B, β ( β β ( ( Γ( β Γ + f ( Γ ( + ( + β + ( + β Γ + β Γ + Γ + β Γ + + β E Γ Γ β Γ Γ + + β Γ + Γ β + β β β Γ + β Γ + Γ + β Γ + + β E ( Γ Γ β Γ Γ + + β Γ + Γ β β + β Metoda mometów polega a przyrówau

Bardziej szczegółowo

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2 Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

Zmiana bazy i macierz przejścia

Zmiana bazy i macierz przejścia Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce

Bardziej szczegółowo

Lista 6. Kamil Matuszewski 26 listopada 2015

Lista 6. Kamil Matuszewski 26 listopada 2015 Lsta 6 Kaml Matuszews 6 lstopada 5 4 5 6 7 8 9 4 5 X X X X X X X X X X X D X X N Gdze X-spsae, D-Delarowae, N-edelarowae. Zadae Zadae jest westą odpowedego pomalowaa. Weźmy sobe szachowcę x, poumerujmy

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Funkcja wiarogodności

Funkcja wiarogodności Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza

Bardziej szczegółowo

Analiza spektralna stóp zwrotu z inwestycji w akcje

Analiza spektralna stóp zwrotu z inwestycji w akcje Nasz rye aptałowy, 003 r3, str. 38-43 Joaa Góra, Magdalea Osńsa Katedra Eoometr Statysty Uwersytet Mołaja Kopera w Toruu Aalza spetrala stóp zwrotu z westycj w acje. Wstęp Agregacja w eoom eoometr bywa

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

Janusz Górczyński. Moduł 1. Podstawy prognozowania. Model regresji liniowej

Janusz Górczyński. Moduł 1. Podstawy prognozowania. Model regresji liniowej Materały omoccze do e-leargu Progozowae symulacje Jausz Górczyńsk Moduł. Podstawy rogozowaa. Model regresj lowej Wyższa Szkoła Zarządzaa Marketgu Sochaczew Od Autora Treśc zawarte w tym materale były erwote

Bardziej szczegółowo

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2 Pojęce przedzału ufośc Przyład: Rozważmy pewe rzad proces (tz. ta tórego lczba zajść podlega rozładow Possoa). W cągu pewego czasu zaobserwowao =3 tae zdarzea. Oceć możlwy przedzał lczby zdarzeń tego typu

Bardziej szczegółowo

Spis treści ZŁOŻONOŚĆ OBLICZEŃ 5 ELEMENTY TEORII ZŁOŻONOŚCI OBLICZENIOWEJ I PROBLEM DZIELNIKÓW 5

Spis treści ZŁOŻONOŚĆ OBLICZEŃ 5 ELEMENTY TEORII ZŁOŻONOŚCI OBLICZENIOWEJ I PROBLEM DZIELNIKÓW 5 Ss treśc SPIS TREŚCI WYKŁAD 5 ZŁOŻONOŚĆ OBLICZEŃ 5 ELEMENTY TEORII ZŁOŻONOŚCI OBLICZENIOWEJ I PROBLEM DZIELNIKÓW 5 WYKŁAD 9 TESTY PIERWSZOŚCI I LICZBY PSEUDOPIERWSZE 9 LICZBY PSEUDOPIERWSZE EULERA WYKŁAD

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ Podstawowe pojęca rachuu prawdopodobeństwa: zdarzee losowe, zdarzee elemetare, prawdopodobeństwo, zbór zdarzeń elemetarych. Def. Nech E będze zborem

Bardziej szczegółowo

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3 35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

MODELE OBIEKTÓW W 3-D3 część

MODELE OBIEKTÓW W 3-D3 część WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego

Bardziej szczegółowo

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f

Bardziej szczegółowo

Bajki kombinatoryczne

Bajki kombinatoryczne Artyuł powstał a podstawe odczytu pod tym samym tytułem, wygłoszoego podczas XXXVI Szoły Matematy Poglądowej Pomysł czy rachue? w Grzegorzewcach, styczeń 006. Baj ombatorycze Joaa JASZUŃSKA, Warszawa Ja

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Aradusz Atcza Poltecha Pozańsa Wydzał Budowy Maszy Zarządzaa N u m e r y c z e w e r y f o w a e r o z w ą - z a e r ó w a a r u c h u o j e d y m s t o p u s w o b o d y Autor: Aradusz Atcza Promotor:

Bardziej szczegółowo

ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i

ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i ZAJĘCIA NR Dzsaj omówmy o etro, redudacj, średej długośc słowa odowego o algorytme Huffmaa zajdowaa odu otymalego (od ewym względam; aby dowedzeć sę jam doczeaj do ońca). etro JeŜel źródło moŝe adawać

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze

Bardziej szczegółowo

Wynik finansowy transakcji w momencie jej zawierania jest nieznany z uwagi na zmienność ceny przedmiotu transakcji, czyli instrumentu bazowego

Wynik finansowy transakcji w momencie jej zawierania jest nieznany z uwagi na zmienność ceny przedmiotu transakcji, czyli instrumentu bazowego .Istmety ochoe otaty temiowe azywae sa istmetami ochoymi (eivatives. otat temiowy zobowiazje wie stoy o zeowazeia w zyszłosci ewej tasacji a wczesiej staloych waach. Jea stoa otatów (abywca - te, co je

Bardziej szczegółowo

Podstawy matematyki finansowej i ubezpieczeniowej

Podstawy matematyki finansowej i ubezpieczeniowej Podstawy matematy fasowej ubezpeczeowej oreślea, wzory, przyłady, zadaa z rozwązaam KIELCE 2 SPIS TREŚCI WSTEP... 7 STOPA ZWROTU...... 9 2 RACHUNEK CZASU W MATEMATYCE FINANSOWEJ. 0 2. DOKŁADNA LICZBA DNI

Bardziej szczegółowo

3. Kinematyka podstawowe pojęcia i wielkości

3. Kinematyka podstawowe pojęcia i wielkości 3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

F - wypadkowa sił działających na cząstkę.

F - wypadkowa sił działających na cząstkę. PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

Matematyka dyskretna. 10. Funkcja Möbiusa

Matematyka dyskretna. 10. Funkcja Möbiusa Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1

Bardziej szczegółowo

PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI

PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI Adrzej POWNUK *) PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI. Wprowadzee Mechaka lowa staow jak dotąd podstawowy obszar zateresowań żyerskch. Isteje jedak

Bardziej szczegółowo

PROBLEMY MODELOWANIA MATEMATYCZNEGO PRĄDNIC SYNCHRONICZNYCH WZBUDZANYCH MAGNESAMI TRWAŁYMI

PROBLEMY MODELOWANIA MATEMATYCZNEGO PRĄDNIC SYNCHRONICZNYCH WZBUDZANYCH MAGNESAMI TRWAŁYMI Taeusz J. SOBCZYK PROBEMY MODEOWANIA MATEMATYCZNEGO PRĄDNIC SYNCHRONICZNYCH WZBUDZANYCH MAGNESAMI TRWAŁYMI STERSZCZENIE W racy rzestawoo etoyę tworzea tzw. obwoowych oel ateatyczych aszy sychroczych wzbuzaych

Bardziej szczegółowo

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Katedra Ietycj Faoych Zarządzaa yzykem Aalza Zarządzae Portfelem cz. Dr Katarzya Kuzak Co to jet portfel? Portfel grupa aktyó (trumetó faoych, aktyó rzeczoych), które zotały yelekcjooae, którym ależy zarządzać

Bardziej szczegółowo

Regresja REGRESJA

Regresja REGRESJA Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej. Literatura. W. Rudin: Podstawy analizy matematycznej, PWN, Warszawa, 1982.

Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej. Literatura. W. Rudin: Podstawy analizy matematycznej, PWN, Warszawa, 1982. Wyłady z Aalzy rzeczywstej zespoloej w Matematyce stosowaej Lteratura W Rud: Podstawy aalzy matematyczej, PWN, Warszawa, 1982 W Rud: Aalza rzeczywsta zespoloa, PZWS, Warszawa, 1986 W Szabat: Wstęp do aalzy

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe

Bardziej szczegółowo

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA Adra Kapczyńsk Macej Woly Wprowadzee Rozwój całego spektrum coraz doskoalszych środków formatyczych

Bardziej szczegółowo

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą. Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,

Bardziej szczegółowo

Wyższe momenty zmiennej losowej

Wyższe momenty zmiennej losowej Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu

Bardziej szczegółowo

Relacyjny model danych. Relacyjny model danych

Relacyjny model danych. Relacyjny model danych Pla rozdzału Relacyjy model daych Relacyjy model daych - pojęca podstawowe Ograczea w modelu relacyjym Algebra relacj - podstawowe operacje projekcja selekcja połączee operatory mogoścowe Algebra relacj

Bardziej szczegółowo

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi

Bardziej szczegółowo

Modele wartości pieniądza w czasie

Modele wartości pieniądza w czasie Joaa Ceślak, Paula Bawej Modele wartośc peądza w czase Podstawowe pojęca ozaczea Kaptał (ag. prcpal), kaptał początkowy, wartośd początkowa westycj - peądze jake zostały wpłacoe a początku westycj (a początku

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom

Bardziej szczegółowo

A B - zawieranie słabe

A B - zawieranie słabe NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH

PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH Z PRZEDMIOTU EWOLUCYJNE METODY OPTYMALIZACJI. Rozwązać zadae zadaa załaduku (plecakowego z ograczeam a dopuszczale wymary oraz cężar []: a algorytmem symulowaego wyżarzaa.

Bardziej szczegółowo

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu

Bardziej szczegółowo

SPOŁECZNA AKDAEMIA NAUK W ŁODZI

SPOŁECZNA AKDAEMIA NAUK W ŁODZI SPOŁECZNA AKDAEMIA NAUK W ŁODZI KIERUNEK STUDIÓW: ZARZĄDZANIE PRZEDMIOT: METODY ILOŚCIOWE W ZARZĄDZANIU (MATERIAŁ POMOCNICZY PRZEDMIOT PODSTAWOWY ) Łódź Sps treśc Moduł Wprowadzee do metod loścowych w

Bardziej szczegółowo

Równania rekurencyjne

Równania rekurencyjne Rówaa reurecyje Ja stosować do przelczaa obetów obatoryczych? zaleźć zwąze reurecyjy, oblczyć la początowych wartośc, odgadąć ogóly wzór, tóry astępe udowaday stosując ducję ateatyczą. W etórych przypadach,

Bardziej szczegółowo

3. OPTYMALIZACJA NIELINIOWA

3. OPTYMALIZACJA NIELINIOWA Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi o tym samym 2 x

będą niezależnymi zmiennymi losowymi o tym samym 2 x Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b, CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre

Bardziej szczegółowo

Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej. Algorytm DMC z funkcjami bazowymi. Piotr Marusak

Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej. Algorytm DMC z funkcjami bazowymi. Piotr Marusak Isttt Atomt Iformt Stosowej Poltech Wrszwsej Algortm DMC z fcjm bzowm Potr Mrs Pl rezetcj. Wstę. Strow lgortm DMC.. Algortm w wersj merczej.. Algortm w wersj ltczej 3. Algortm DMCBF (z fcjm bzowm) 3..

Bardziej szczegółowo

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,

Bardziej szczegółowo

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

OKREŚLENIE CHARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI

OKREŚLENIE CHARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI Ćwiczeie 5 OKREŚLENIE CARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI Wykaz ważiejszych ozaczeń c 1 rędkość bezwzględa cieczy a wlocie do wirika, m/s c rędkość bezwzględa cieczy a wylocie

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Wykład FIZYKA I. 6. Zasada zachowania pędu. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 6. Zasada zachowania pędu. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Dr hab. ż. Władysław Artr Woźak Wykład FIZYKA I 6. Zasada zachowaa pęd Dr hab. ż. Władysław Artr Woźak Istytt Fzyk Poltechk Wrocławskej http://www.f.pwr.wroc.pl/~wozak/fzyka.htl Dr hab. ż. Władysław Artr

Bardziej szczegółowo

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki: Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

Porównanie nacisków obudowy Glinik 14/35-POz na spąg obliczonych metodą analityczną i metodą Jacksona

Porównanie nacisków obudowy Glinik 14/35-POz na spąg obliczonych metodą analityczną i metodą Jacksona dr inż. JAN TAK Akademia Górniczo-Hutnicza im. St. Staszica w Krakowie inż. RYSZARD ŚLUSARZ Zakład Maszyn Górniczych GLINIK w Gorlicach orównanie nacisków obudowy Glinik 14/35-Oz na sąg obliczonych metodą

Bardziej szczegółowo

Elementy arytmetyki komputerowej

Elementy arytmetyki komputerowej Elemety arytmetyk komputerowej cz. I Elemety systemów lczbowych /materał pomocczy do wykładu Iformatyka sem II/ Sps treśc. Wprowadzee.... Wstępe uwag o systemach lczbowych... 3. Przegląd wybraych systemów

Bardziej szczegółowo

Reprezentacje grup symetrii. g s

Reprezentacje grup symetrii. g s erezentace ru ymetr Teora rerezentac dea: oeracom ymetr rzyać oeratory dzałaące w rzetrzen func zwązać z nm funce, tóre oeratory te rzerowadzaą w ebe odobne a zb. untów odcza oerac ymetr rozważmy rzeztałcene

Bardziej szczegółowo