KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny
|
|
- Maksymilian Łukasik
- 9 lat temu
- Przeglądów:
Transkrypt
1 KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA Adra Kapczyńsk Macej Woly Wprowadzee Rozwój całego spektrum coraz doskoalszych środków formatyczych wykorzystywaych w procese komputeryzacj systemów formacyjych, przyos szereg zaczących korzyśc, mplkując jedakŝe powstae szeregu zagroŝeń [Ba0]. Z uwag a fakt, Ŝ formacja posada strategczy charakter zarówo dla orgazacj, jak jedostk, ezwykłej wag abera kwesta ochroy przesyłaej, przechowywaej oraz przetwarzaej formacj. Zagadee ochroy formacj w ostatch latach jest szczególe tesywe rozwjae przez ośrodk akademcke, ośrodk rządowe oraz przedsęborstwa specjalzujące sę w Ŝyer ochroy daych. Podejmowae obece prace badawczo-rozwojowe w dzedze bezpeczeństwa teleformatyczego dotyczą m..: () kryptolog, () wysokopozomowego modelowaa systemów bezpeczeństwa teleformatyczego, () ocey bezpeczeństwa systemów teleformatyczych czy teŝ (v) aalzy kokretych mplemetacj sprzętowych programowych wybraych algorytmów kryptografczych.
2 Studum lteraturowe wyków prowadzoych prac badawczych, w zestaweu z oczekwaam oraz potrzebam w zakrese welowaa coraz owszych zagroŝeń wskazuje a potrzebę podejmowaa kolejych badań, w stoce podkreślając aktualość omawaego obszaru badawczego z aukowo-techczego puktu wdzea. W ostatch latach coraz węcej ekspertów z dzedzy bezpeczeństwa teleformatyczego zwraca uwagę a kluczową rolę metod uwerzytelaa, w tym B. Scheer [Sch03] czy D. Deg [De0]. W pracy rozwaŝa sę wykorzystae kocepcj mmalzacj strat w wyku błędego uwerzytelea do określea wartośc progowej, która ma decydujący wpływ a przyjęce lub odrzucee uwerzytelea uŝytkowka. Z uwerzyteleem uŝytkowków zwązae są dwa rodzaje błędów [Zha0]: błąd perwszego rodzaju błęde odrzucee, czyl system odrzuca prawowtego uŝytkowka, błąd drugego rodzaju błęda akceptacja, czyl system akceptuje truza, który podszył sę pod prawowtego uŝytkowka. Oba błędy geerują straty. Nech strata zwązaa z błędym odrzuceem wyos S, a prawdopodobeństwo błędu perwszego rodzaju P, strata wykająca z błędego przyjęca S, a prawdopodobeństwo błędu drugego rodzaju P. Wtedy problem moŝa przedstawć w postac drzewa decyzyjego (Rys. ).
3 M{P S ;P S } Przyjąć Odrzucć P S P S Prawowty uŝytkowk Itruz Itruz Prawowty uŝytkowk 0 S 0 S Rys. Model problemu decyzyjego w systeme uwerzytelaa Źródło: Opracowae włase Na przedstawoym rysuku prostokąty symbolzują decyzje, a koła stay atury. Oczekway wyk z podjęca decyzj, zastea określoego stau atury został umeszczoy w środku obektu. Z aalzy modelu przedstawoego a rys. wyka, Ŝe jeśl spełoy jest waruek: S P S P, () to aleŝy przyjąć uwerzytelee uŝytkowka. W przecwym wypadku odrzucć. Prawdopodobeństwa zastea staów epoŝądaych, czyl geerujących straty zaleŝą od przyjętej wartośc progowej: P = f (T ), () P = f (T ), (3)
4 gdze T ozacza wartość progową. Ogóle rzecz ujmując, jeśl wartość progowa rośe to zmejsza sę prawdopodobeństwo P popełaa błędu drugego rodzaju, a rośe prawdopodobeństwo P popełea błędu perwszego rodzaju. Jeśl wartość progowa maleje, to zwększa sę prawdopodobeństwo P, a zmejsza P. W zwązku z powyŝszym rozwaŝaam powstaje pytae jaka powa być wartość progowa. Celem pracy jest przedstawee kocepcj określaa wartośc progowej ze względu a kryterum mmalzacj oczekwaych strat wykających z błędego uwerzytelea oraz maksymalzacj bezpeczeństwa zwązaego z tym stratam. W rozwaŝaym zagadeu dla daej wartośc progowej T moŝlwe jest wyzaczee odpowedch wartośc prawdopodobeństw dla próby testowej. Iym słowy postac aaltycze zaleŝośc: () (3) moŝa wyzaczyć a podstawe próby testowej. Wartośc strat S, S aleŝy oszacować. Dla kaŝdego uŝytkowka straty te mogą być e, węc w ogólym przypadku aleŝy ustalć średe straty A(S ) oraz A(S ): A( S ) = =, (4) A( S ) = =, (5) gdze S ozacza stratę -tego uŝytkowka w wyku popełea błędu perwszego rodzaju, aalogcze S ozacza stratę -tego uŝytkowka w wyku popełea błędu drugego rodzaju, atomast w [ 0; ] jest
5 uormowaą wagą -tego uŝytkowka ozaczającą waŝość uŝytkowka (zwązaą ze stratam). W badaym zagadeu moŝa wyróŝć dwa obszary dotyczące: systemów, w których ustala sę dywdualą wartość progową dla kaŝdego uŝytkowka lub grup uŝytkowków; systemów, w których ustala sę jedą wartość progową dla wszystkch uŝytkowków. W odeseu do perwszego obszaru aleŝy wtedy określć optymalą wartość progową T dla kaŝdego uŝytkowka. Z puktu wdzea systemów z duŝą lczbą uŝytkowków, welkośc bazy daych oraz szybkośc przetwarzaa daych racjoalym podejścem jest ustalee jedej wartośc progowej T dla wszystkch uŝytkowków. Z drugej stroy praktycze racjoale podejśce wymaga, aby brać pod uwagę welkość dywdualych strat uŝytkowków. Borąc pod uwagę powyŝsze mplkacje puktem wyjśca rozwaŝań dotyczących propoowaej kocepcj będze określee jedej wartośc progowej dla wszystkch uŝytkowków. Propoowaa kocepcja doboru wartośc progowej Przy przyjęcu załoŝeń o ezerowośc rozpatrywaych strat oraz ezerowośc prawdopodobeństw popełea błędów perwszego drugego rodzaju, waruek () korzystając z () (3) moŝa przedstawć w astępujący sposób: A( S ) P A( S ) P, (6)
6 A( S ) f(t ) A( S ) f ( P ), (7) f(t ) A( S ). (8) f (T ) A( S ) MoŜa zauwaŝyć, Ŝe lewa stroa erówośc (8) jest fukcją wartośc progowej: f(t ) = f (T ) f (T ). (9) Uwzględając (4)-(8) aalzoway waruek (staowący regułę decyzyją przyjąć czy odrzucć) moŝa przedstawć w forme: f (T ) = =. (0) Wedząc, Ŝe w sytuacj, gdy waruek (0) jest spełoy, to astępuje uwerzytelee, aleŝy określć graczą wartość progową T, dla której zachodz rówość w rozpatrywaym waruku. WaŜa z puktu wdzea określea graczej wartośc T jest terpretacja prawej stroy erówośc (0). Iloraz te moŝa terpretować jako stosuek średch oczekwaych strat w wyku błędej akceptacj do średch strat w wyku błędego odrzucea. Zwykle w przypadku popełea błędu perwszego rodzaju błęde odrzucoy uŝytkowk moŝe podjąć koleją próbę uwerzytelea, lczba prób jest jedak zwykle ograczoa. W sytuacj, gdy popełmy błąd drugego rodzaju e ma kolejych prób, a kosekwecje błędej akceptacj astępują bezpośredo po popełeu błędu. Implkacją przedstawoych faktów jest stwerdzee, Ŝe dla wększośc systemów błędy drugego rodzaju sę zdecydowae bardzej groźe w skut-
7 kach. Z tego puktu wdzea moŝa zauwaŝyć, Ŝe m wększa wartość prezetowaego lorazu, tym wększa gracza wartość lorazu prawdopodobeństwa popełea błędu perwszego rodzaju w stosuku do popełaa błędu drugego rodzaju. Tym samym maksymalzując prawą stroę wyraŝea (0) maksymalzuje sę bezpeczeństwo systemu w odeseu do straty wykającej z błędego uwerzytelea. Jedocześe moŝa zauwaŝyć, Ŝe lczk prawej stroy wyraŝea (0) ozacza średą oczekwaą stratę wykającą z popełea błędu drugego rodzaju, atomast maowk średą oczekwaą stratę wykającą z popełea błędu perwszego rodzaju. Racjoale podejśce wymaga, aby obe przedstawoe straty były jak ajmejsze. W zwązku z powyŝszym rozwaŝaam moŝa sformułować zadae optymalzacj welokryteralej [KG80] z kryteram wyraŝoym w postac astępujących fukcj: = = max, () = = w S m, () w S m. (3) W powyŝszym zagadeu zmeym są wag uŝytkowków, które określają wpływ strat uŝytkowków a bezpeczeństwo systemu, tym samym m mejsza waga, tym mejsze zaczee powy meć straty daego uŝytkowka. Tym waŝejsze, aby przy uwerzyteleu daego uŝytkowka e popełć błędu.
8 Problem ()-(3) z trzema fukcjam-kryterum moŝa skalaryzować (doprowadzć do problemu jedokryteralego) mędzy ym przez wprowadzee ścsłej herarch rozpatrywaych kryterów lub agregację kryterów w jedo metakryterum [GNś87]. Przeprowadzoe rozwaŝaa staową wystarczającą podstawę do przyjęca, Ŝe perwsze kryterum określające bezpeczeństwo systemu jest ajwaŝejsze, atomast dwa pozostałe krytera moŝa sumować, poewaŝ wyraŝają straty wykające z popełea błędów. Tak zdefoway problem moŝa przedstawć w postac: = = max, (4) β = = α ( ) + ( ) m, (5) gdze α, β ozaczają wag odpowedch strat (straty mogą być rówowaŝe lub z puktu wdzea systemu określoy typ strat moŝe być waŝejszy), są to parametry modelu, których wartość przyjmowaa jest arbtrale. Program z fukcjam-kryterum (4) (5) jest programem leksykografczym [GNś87], w którym perwsze kryterum jest eporówywale waŝejsze od drugego. Najperw rozwązuje sę problem z puktu wdzea perwszego kryterum, a zbór rozwązań optymalych ze względu a perwsze kryterum staje sę zborem rozwązań dopuszczalych w którym szuka sę rozwązaa, dla którego druga fukcja osąga optmum. Jeśl zbór rozwązań optymalych perwszej fukcj-kryterum jest jedoelemetowy, to jedyy elemet tego zboru jest rozwązaem całego problemu.
9 Podsumowae Określoe w przedstawoy sposób wag mogą staowć podstawę do budowy systemu z dywdualym wartoścam progowym zaleŝym od zaczea uŝytkowków określoych przez ustaloe wag. Iym słowy moŝa stwerdzć, Ŝe w celu ustalea optymalej wartośc progowej w sese przyjętej kocepcj, aleŝy przyjąć określoe wag. Nemej uwzględając wspomae ograczea zwązae z welkoścą bazy daych oraz szybkoścą przetwarzaa daych, moŝa rekomedować określee dywdualych progów dla wybraych uŝytkowków lub wybraych grup uŝytkowków. Dodatkowo przyjęta kocepcja programowaa leksykografczego e wyczerpuje wszystkch racjoalych podejść a przykład druga fukcja (5) ozaczająca welkość strat moŝe być rówowaŝa perwszej fukcj celu, wtedy kocepcja programowaa leksykografczego trac ses. MoŜe róweŝ e występować ścsła herarcha fukcj celu, która jest podstawowym załoŝeem stosowalośc propoowaej kocepcj rozwązaa zagadea (4)-(5). Poadto aleŝy zauwaŝyć, Ŝe rozwaŝae krytera są sprzecze, a co za tym dze rozwaŝay problem dotyczy podejmowaa decyzj w sytuacjach koflktu. Stwerdzee to umoŝlwa aalzę problemu róweŝ a gruce teor ger. Tym bardzej w kotekśce róŝorakch relacj mędzy przyjętym kryteram [KG80], [Wol04]. Reasumując wartość progowa powa być dobraa w te sposób, aby została zachowaa swosta rówowaga mędzy maksymalzacją bezpeczeństwa systemu w odeseu do oczekwaej straty, a mmalą stra-
10 tą wykającą z błędego uwerzytelea. Zalezee tej rówowag umoŝlwa aalza welokryterala, w szczególośc kocepcja programowaa leksykografczego, która będze staowła pukt wyjśca w realzacj kolejej pracy badawczej. Lteratura [Ba0] Bałas A.: Podstawy bezpeczeństwa systemów teleformatyczych. Wydawctwo Pracow Komputerowej Jacka Skalmerskego, Glwce 00. [De0] Deg D.: Securty strateges for e-compaes. Iformato Securty Magaze / 00. [KG80] Koarzewska-Gubała E.: Programowae przy welorakośc celów, PWN, Warszawa 980. [GNś87] Galas Z., Nykowsk I., śółkewsk Z.: Programowae welokryterale, PWE, Warszawa 987. [Sch03] Scheer B.: The mportace of authetcato. Cryptogram /003. [Wol04] Woly M.: Wspomagae podejmowaa welokryteralych dyskretych problemów decyzyjych a gruce teor ger, [w:] Porębska-Mąc T., Sroka H.(red.), Systemy wspomagaa orgazacj SWO 004, Wydawctwo AE w Katowcach, Katowce 004. [Zha0] Zhag D.: Bometrc Solutos for Authetcato a E- world. Kluwer Academc Publshers, 00.
11 Iformacje o autorach: dr Ŝ. Adra Kapczyńsk dr Ŝ. Macej Woly Katedra Iformatyk Ekoometr Wydzał Orgazacj Zarządzaa Poltechka Śląska ul. Roosevelta Zabrze Polska Numer telefou (fax) +48/3/ e-mal: Adra.Kapczysk@polsl.pl Macej.Woly@polsl.pl
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość
5. OPTYMALIZACJA NIELINIOWA
5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe
Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)
Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?
L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5
L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk
UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie
B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
3. OPTYMALIZACJA NIELINIOWA
Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz
Statystyczne charakterystyki liczbowe szeregu
Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc
TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA
Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej
Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki
tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
Analiza wyniku finansowego - analiza wstępna
Aalza wyku fasowego - aalza wstępa dr Potr Ls Welkość wyku fasowego determuje: etowość przedsęborstwa Welkość podatku dochodowego Welkość kaptałów własych Welkość dywded 1 Aalza wyku fasowego ma szczególe
Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych
dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby
Wyrażanie niepewności pomiaru
Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway
METODY KOMPUTEROWE 1
MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc
System finansowy gospodarki
System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym
Planowanie eksperymentu pomiarowego I
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak
FINANSE II. Model jednowskaźnikowy Sharpe a.
ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy
Projekt 3 Analiza masowa
Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga
EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.
Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,
Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)
Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,
W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:
Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,
Opracowanie wyników pomiarów
Opracowae wków pomarów Praca w laboratorum fzczm polega a wkoau pomarów, ch terpretacj wcagęcem wosków. Ab dojść do właścwch wosków aleŝ szczególą uwagę zwrócć a poprawość wkoaa pomarów mmalzacj błędów
Przestrzenno-czasowe zróżnicowanie stopnia wykorzystania technologii informacyjno- -telekomunikacyjnych w przedsiębiorstwach
dr ż. Jolata Wojar Zakład Metod Iloścowych, Wydzał Ekoom Uwersytet Rzeszowsk Przestrzeo-czasowe zróżcowae stopa wykorzystaa techolog formacyjo- -telekomukacyjych w przedsęborstwach WPROWADZENIE W czasach,
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ
9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego
WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW
WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW U podstaw wszystkch auk przyrodczych leży zasada: sprawdzaem wszelkej wedzy jest eksperymet, tz jedyą marą prawdy aukowej jest dośwadczee Fzyka, to auka
PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH
PRZYKŁADOWE TEMATY ZADAŃ PROJEKTOWYCH Z PRZEDMIOTU EWOLUCYJNE METODY OPTYMALIZACJI. Rozwązać zadae zadaa załaduku (plecakowego z ograczeam a dopuszczale wymary oraz cężar []: a algorytmem symulowaego wyżarzaa.
Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.
Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.
ρ (6) przy czym ρ ij to współczynnik korelacji, wyznaczany na podstawie następującej formuły: (7)
PROCES ZARZĄDZANIA PORTFELEM PAPIERÓW WARTOŚCIOWYCH WSPOMAGANY PRZEZ ŚRODOWISKO AUTOMATÓW KOMÓRKOWYCH Ageszka ULFIK Streszczee: W pracy przedstawoo sposób zarządzaa portfelem paperów wartoścowych wspomagay
Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna
TECHNIKUM ZESPÓŁ SZKÓŁ w KRZEPICACH PRACOWNIA EKONOMICZNA TEORIA ZADANIA dla klasy II Techkum Marek Kmeck Zespół Szkół Techkum w Krzepcach Wprowadzee do statystyk Lekcja Statystyka - określa zbór formacj
Pomiary parametrów napięć i prądów przemiennych
Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f
ZASTOSOWANIE MODELU LOGITOWEGO DO ANALIZY WYNIKÓW EGZAMINU
Haa Dudek a, Moka Dybcak b a Katedra Ekoometr Iformatyk SGGW b studetka Mędzywydzałowego Studum Iformatyk Ekoometr e-mal: hdudek@mors.sggw.waw.pl ZASTOSOWANIE MODELU LOGITOWEGO DO ANALIZY WYNIKÓW EGZAMINU
Materiały do wykładu 7 ze Statystyki
Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj
Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu
DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu
SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM
ACTA UNIVERSITATIS WRATISLAVIENSIS No 37 PRZEGLĄD PRAWA I ADMINISTRACJI LXXX WROCŁAW 009 ANNA ĆWIĄKAŁA-MAŁYS WIOLETTA NOWAK Uwersytet Wrocławsk SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM
Prawdopodobieństwo i statystyka r.
Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby
Portfel złożony z wielu papierów wartościowych
Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe
GEODEZJA INŻYNIERYJNA SEMESTR 6 STUDIA NIESTACJONARNE
GEODEZJ INŻNIERJN SEMESTR 6 STUDI NIESTCJONRNE CZNNIKI WPŁWJĄCE N GEOMETRIĘ UDNKU/OIEKTU Zmaę geometr budyku mogą powodować m.: czyk atmosferycze, erówomere osadae płyty fudametowej mogące skutkować wychyleem
Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Zadae. W kolejych okresach czasu t =, ubezpeczoy, charakteryzujący sę parametrem ryzyka Λ, geeruje N t szkód. Dla daego Λ = λ zmee N, N są warukowo ezależe mają (brzegowe) rozkłady Possoa: k λ Pr( N t
WYBRANE MOŻLIWOŚCI WSPOMAGANIA INWESTYCJI
WYBRANE MOŻLIWOŚCI WSPOMAGANIA INWESTYCJI GIEŁDOWYCH PRZY UŻYCIU ALGORYTMÓW GENETYCZNYCH mgr ż. Marc Klmek Katedra Iformatyk Państwowa Wyższa Szkoła Zawodowa m. Papeża Jaa Pawła II w Bałej Podlaskej Streszczee:
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej
PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE
Marek Cecura, Jausz Zacharsk PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ II STATYSTYKA OPISOWA Na prawach rękopsu Warszawa, wrzeseń 0 Data ostatej aktualzacj: czwartek, 0 paźdzerka
11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.
/22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:
L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH
L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze
Elementy arytmetyki komputerowej
Elemety arytmetyk komputerowej cz. I Elemety systemów lczbowych /materał pomocczy do wykładu Iformatyka sem II/ Sps treśc. Wprowadzee.... Wstępe uwag o systemach lczbowych... 3. Przegląd wybraych systemów
TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).
TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji
Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz
Badania Maszyn CNC. Nr 2
Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8
Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja
ZARYS METODY OCENY TRWAŁOSCI I NIEZAWODNOSCI OBIEKTU Z UWZGLEDNIENIEM CZYNNIKA LUDZKIEGO I PŁASZCZYZNY LICZB ZESPOLONYCH
Zdzsław IDZIASZEK 1 Mechatrocs ad Avato Faculty Mltary Uversty of Techology, 00-908 Warsaw 49, Kalskego street r zdzaszek@wat.edu.pl Norbert GRZESIK Avato Faculty Polsh Ar Force Academy, 08-51 Dębl, Dywzjou
BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE
BQR FMECA/FMEA Przed rozpoczęcem aalzy ależy przeprowadzć dekompozycję systemu a podsystemy elemety. W efekce dekompozycj uzyskuje sę klka pozomów: pozom systemu, pozomy podsystemów oraz pozom elemetów.
ANALIZA INPUT - OUTPUT
Aalza put - output Notatk S Dorosewcz J Staseńko Stroa z 28 SŁAWOMIR DOROSIEWICZ JUSTYNA STASIEŃKO ANALIZA INPUT - OUTPUT NOTATKI Istytut Ekoometr SGH Aalza put - output Notatk S Dorosewcz J Staseńko Stroa
. Wtedy E V U jest równa
Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo
Analiza danych pomiarowych
Materały pomoccze dla studetów Wydzału Chem UW Opracowała Ageszka Korgul. Aalza daych pomarowych wersja trzeca, uzupełoa Lteratura, Wstęp 3 R OZDZIAŁ SPRAWOZDANIE Z DOŚWIADCZENIA FIZYCZNEGO 4 Stałe elemety
OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki)
Adrzej Kubaczyk Laboratorum Fzyk I Wydzał Fzyk Poltechka Warszawska OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradk do Laboratorum Fzyk) ROZDZIAŁ Wstęp W roku 995 z cjatywy Mędzyarodowego Komtetu Mar (CIPM) zostały
BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
Wiek statku a prawdopodobieństwo wystąpienia wypadku na morzu analiza współzależności
BOGALECKA Magda 1 Wek statku a prawdopodobeństwo wstąpea wpadku a morzu aalza współzależośc WSTĘP Obserwowa od blsko weku tesw rozwój trasportu morskego, oprócz lądowego powetrzego, jest kosekwecją wzmożoej
PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej
PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,
POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4
POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 YCENA ŁUŻEBNOŚCI PRZEYŁU I OKREŚLANIE KOTY YNAGRODZENIA ZA BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI PRZY INETYCJACH LINIOYCH 1.
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest
Ze względu na sposób zapisu wielkości błędu rozróżnia się błędy bezwzględne i względne.
Katedra Podsta Systemó Techczych - Podstay metrolog - Ćczee 3. Dokładość pomaró, yzaczae błędó pomaroych Stroa:. BŁĘDY POMIAROWE, PODSTAWOWE DEFINICJE Każdy yk pomaru bez określea dokładośc pomaru jest
Zagadnienia optymalizacji kosztów w projektowaniu gazowych sieci rozdzielczych
Zagadea optymalzacj kosztów w projektowau gazowych sec rozdzelczych Autorzy: dr Ŝ. ech Dobrowolsk, m Ŝ. Wtold Maryka ( Ryek Eerg 6/200) Słowa kluczowe: rozdzelcza seć gazowa, stacje gazowe redukcyje, gazocąg
Analiza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
METODY ANALIZY DANYCH DOŚWIADCZALNYCH
POLITECHNIKA Ł ÓDZKA TOMASZ W. WOJTATOWICZ METODY ANALIZY DANYCH DOŚWIADCZALNYCH Wybrae zagadea ŁÓDŹ 998 Przedsłowe Specyfką teor pomarów jest jej wtóry charakter w stosuku do metod badawczych stosowaych
Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka
Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej
POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1
POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.
Statystyka Inżynierska
Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI
Poltechka Gdańska Wydzał Elektrotechk Automatyk Katedra Iżyer Systemów Sterowaa MODELOWANIE I PODSAWY IDENYFIKACI Wybrae zagadea z optymalzacj. Materały pomoccze do zajęć ćwczeowych 5 Opracowae: Kazmerz
Współczynnik korelacji rangowej badanie zależności między preferencjami
Współczyk korelacj ragowej badae zależośc mędzy preferecjam Przemysław Grzegorzewsk Istytut Badań Systymowych PAN ul. Newelska 6 01-447 Warszawa E-mal: pgrzeg@bspa.waw.pl Pla referatu: Klasycze metody
Wstęp do prawdopodobieństwa. Dr Krzysztof Piontek. Literatura:
Studum podyplomowe altyk Fasowy Wstęp do prawdopodobeństwa Lteratura: Ostasewcz S., Rusak Z., Sedlecka U.: Statystyka elemety teor zadaa, kadema Ekoomcza we Wrocławu 998. mr czel: Statystyka w zarządzau,
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w
KARBOWNICZEK Dagmara doktorantka, mgr inż. ; LEJDA Kazimierz ; prof. dr hab. inż. Politechnika Rzeszowska, Katedra Silników Spalinowych i Transportu
НАЦІОНАЛЬНИЙ ТРАНСПОРТНИЙ УНІВЕРСИТЕТ 1 013 KARBOWNICZEK Dagmara doktoratka, mgr ż. ; LEJDA Kazmerz ; prof. dr hab. ż. oltechka Rzeszowska, Katedra Slków Spalowych Trasportu ANALIZA WSKAŹNIKA GŁĘBOKOŚCI
Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)
Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz
Indukcja matematyczna
Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya
Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe
Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem
PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI
Adrzej POWNUK *) PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI. Wprowadzee Mechaka lowa staow jak dotąd podstawowy obszar zateresowań żyerskch. Isteje jedak
Regresja REGRESJA
Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu
Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?
Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)
ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i
ZAJĘCIA NR Dzsaj omówmy o etro, redudacj, średej długośc słowa odowego o algorytme Huffmaa zajdowaa odu otymalego (od ewym względam; aby dowedzeć sę jam doczeaj do ońca). etro JeŜel źródło moŝe adawać
będą niezależnymi zmiennymi losowymi o tym samym 2 x
Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka
08 Model planowania sieci dostaw 1Po_2Pr_KT+KM
Nr Tytuł: Autor: 08 Model plaowaa sec dostaw 1Po_2Pr_KT+KM Potr SAWICKI Zakład Systeów Trasportowych WIT PP potr.sawck@put.poza.pl potr.sawck.pracowk.put.poza.pl www.facebook.co/potr.sawck.put Przedot:
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5
Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja
POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4
POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 INETYCJE LINIOE - ŁUŻEBNOŚĆ PRZEYŁU I BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI 1. PROADZENIE 1.1. Nejszy stadard przedstawa reguły
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
Miary statystyczne. Katowice 2014
Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących
Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży
Gawlk L., Kasztelewcz Z., 2005 Zależość kosztów produkcj węgla w kopal węgla bruatego Ko od pozomu jego sprzedaży. Prace aukowe Istytutu Górctwa Poltechk Wrocławskej r 2. Wyd. Ofcya Wydawcza Poltechk Wrocławskej,
Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2
Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w
SPOŁECZNA AKDAEMIA NAUK W ŁODZI
SPOŁECZNA AKDAEMIA NAUK W ŁODZI KIERUNEK STUDIÓW: ZARZĄDZANIE PRZEDMIOT: METODY ILOŚCIOWE W ZARZĄDZANIU (MATERIAŁ POMOCNICZY PRZEDMIOT PODSTAWOWY ) Łódź Sps treśc Moduł Wprowadzee do metod loścowych w
WPŁYW SPÓŁEK AKCYJNYCH NA LOKALNY RYNEK PRACY
ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH Mara KLONOWSKA-MATYNIA Natala CENDROWSKA WPŁYW SPÓŁEK AKCYJNYCH NA LOKALNY RYNEK PRACY Zarys treśc: Nejsze opracowae pośwęcoe zostało spółkom akcyjym, które
Matematyczny opis ryzyka
Aalza ryzyka kosztowego robót remotowo-budowlaych w warukach epełe formac Mgr ż Mchał Bętkowsk dr ż Adrze Powuk Wydzał Budowctwa Poltechka Śląska w Glwcach MchalBetkowsk@polslpl AdrzePowuk@polslpl Streszczee
SOWA - ENERGOOSZCZĘDNE OŚWIETLENIE ULICZNE METODYKA
Załączk r do Regulamu I kokursu GIS PROGRAM PRIORYTETOWY: SOWA - ENERGOOSZCZĘDNE OŚWIETLENIE ULICZNE METODYKA. Cel opracowaa Celem opracowaa jest spója metodyka oblczaa efektu ograczaa emsj gazów ceplaraych,
Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.
Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak
Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne
Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2
Badania operacyjne. Algorytm simpleks. Organizacja zajęć. Zaliczenie. Literatura. Program zajęć
Algorytm smpleks adaa operacyje Wykład adaa operacyje dr hab. ż. Joaa Józefowska, prof.pp Istytut Iformatyk Orgazacja zajęć 5 godz wykładów dr hab. ż. J. Józefowska, prof. PP Obecość a laboratorach jest
Szeregi czasowe, modele DL i ADL, przyczynowość, integracja
Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej