W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

Wielkość: px
Rozpocząć pokaz od strony:

Download "W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = ="

Transkrypt

1 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ, lecz jedye dole ograczee w erówośc Cramera Rao: Nerówość Cramera Rao Nech gˆ(,... będze estymatorem eobcążoym dla g( E gˆ(,... g(. Wówczas zachodz: ( g ( Var (( ˆ g(,... I (. (czyl Zgode z treścą zadaa: g( σ σ ( g ( σ ( σ 4 σ. Pozostaje węc wyzaczyć formację Fshera dla daego modelu. Zaczyamy od zapsaa fukcj łączej gęstośc, astępe lczymy perwszą drugą pochodą fukcj warogodośc: L( σ f (,... exp( ( σ π σ l( σ l L( σ l( π lσ σ l ( σ + 3 σ σ 3 l ( σ 4 σ σ Oblczamy formację Fshera: I( σ El ( σ E( E 4 E + 4 σ σ σ σ σ σ Zgode z treścą zadaa ~ N (0, σ, czyl E 0, Var σ. Drug momet zwykły wyzaczamy zgode ze wzorem: Var( E ( E E Var( + ( E σ + 0 σ Ostatecze formacja Fshera wyos: ( 3 3 I σ + E 4 + σ 4 σ σ σ σ σ Dole ograczee a eobcążoy estymator σ wyos: 4σ σ 4 ( g ( σ I ( σ σ 4. Obserwujemy dwe ezależe próby losowe: (,..., ( Y,... Y, przy czym wadomo, że zmee mają rozkład wykładczy o wartośc oczekwaej λ, a zmee Y rozkład wykładczy o wartośc oczekwaej 3 λ. Rozważmy estymator parametru λ postac ˆ λ + Y. Wyzacz obcążee ryzyko tego estymatora.

2 Obcążee: E ˆ λ E ( + Y *3 E + EY E + EY λ + λ λ Dla estymatora eobcążoego: b( λ E ˆ λ λ 0 Ryzyko: Dla estymatora eobcążoego ryzyko jest rówe waracj estymatora: ˆ R( λ Var( λ Var( + Y {Korzystamy z ezależośc obu prób od sebe; waracja sumy ezależych zmeych losowych jest rówa sume waracj} Var( + Var( Y Var( + Var( Y λ + (3 λ λ + λ λ Nech,... /( x będze próbą prostą z rozkładu o dystrybuace F( x e, dla x > 0. a Oblcz estymator ajwększej warogodośc ˆ ezaego parametru > 0. Wyzaczmy gęstość: δ F( x f ( x e ( ( e δ x x x Fukcja warogodośc: /( x /( x L( exp( x x l( l( l x x Polczmy perwszą pochodą przyrówajmy wyk do zera w celu wyzaczea wartośc parametru maksymalzującego fukcję warogodośc: l '( 0 + x x b Wyzacz obcążee, warację błąd średokwadratowy tego estymatora. x E E E x

3 W celu wyzaczea wartośc oczekwaej waracj estymatora warto zacząć od wyzaczea rozkładu x. F t P t P F / ( ( < ( < ( t t F ( t t e t F/ ( t e Jak e trudo zauważyć wyzaczoy rokład to rozkład wykładczy. Exp( Γ(, x Γ(, x x E E E x Estymator jest eobcążoy, zatem obcążee wyos zero. x Var Var Var x Dla estymatora eobcążoego ryzyko jest rówe jego waracj. c Wyzacz formację Fshera w tym modelu. Czy estymator uzyskay w pukce a jest ENMW (? W celu wyzaczea formacj Fshera polczymy drugą pochodą logarytmu fukcj warogodośc. l '( l ''( x + x 3 I ( E( l ''( E( + E + x x

4 Zauważmy, że waracja estymatora jest rówa odwrotośc formacj Fsher a, tz: waracja osąga dole ograczee wyzaczoe przez erówość Cramer a Rao. Estymator poadto jest eobcążoy, zatem jest ENMW (. 4.4 Sprawdzć, czy ENW jest estymatorem eobcążoym o mmalej waracj parametru, jeśl,... jest próbą prostą z rozkładu N(,. Na ćwczea pokazalśmy, że estymatorem MNW wartośc oczekwaej w rozkładze ormalym jest średa arytmetycza polczoa a podstawe próby prostej wylosowaej z tego rozkładu. E E Estymator MNW jest eobcążoy. Czy mam mmalą warację? σ Var Var Var U as waracja pojedyczej realzacj zmeej losowej wyos. Var Dole ograczee waracj estymatora uzyskamy lcząc formację Fsher a dla rozkładu ormalego. Np. tak: I ( I( δ log f ( x I( E(, f ( x e δ π ( x Powyższy wzór a gęstość uwzględa fakt, że waracja tego rozkładu jest rówa jede. 4

5 f x x x x δ log f ( x ( x δ δ log f ( x δ ( ( ( ( δ log f ( x I ( I E δ l ( l π ( l π ( + Var wdać, że waracja estymatora jest odwrotoścą formacj Fsher a, czyl ma mmalą warację! 4.5 Nech,... będze próbą prostą z rozkładu N(,. Wyzacz obcążee estymatora T (,..., ( parametru. Nech,... będze próbą prostą z rozkładu N ( µ, σ. σ Zauważmy, że N( µ, (wyprowadzee tego, faktu pojawło sę a zajęcach Skorzystajmy z tożsamośc: σ Var E ( E E Var + ( E + µ U as: µ σ, ET (,..., E( + Obcążee wyzaczymy z defcj: b( ET (,..., + 4. Zmee,..., mają rozkład o tej samej wartośc średej µ. Wykazać, że statystyka a a postac T jest eobcążoym estymatorem parametru µ. a a a a ET E E( a a ( a E a E a a a a a a ( a a µ ( a a a a a a µ µ µ Przy rozwązau skorzystalśmy z lowośc wartośc oczekwaej: 5

6 E( + Y E + EY E( cy cey 4.7* Nech,... będze próbą prostą z rozkładu ormalego N ( µ, σ. Wyzaczyć a tak, żeby estymator T (,..., a był estymatorem eobcążoym dla parametru σ. Wskazówka: Jak rozkład, dla ustaloego, ma? ( ( ( j j N ( µ, σ ( N j N j ( µ, σ ( µ, σ ( j σ + σ σ j Y N(0, N(0, Dla każdego deksu rozkład jest tak sam, taka sama jest wartość oczekwaa waracja. ET(,..., ae ae ae Y Dla uproszczea zapsu podstawmy υ σ 0 y υ y υ E Y y e dy πυ y e dy πυ Skorzystalśmy z symetryczośc rozkładu ormalego. Polczmy całkę stosując podstawee: y t ydy dt y y t t υ υ υ υ 0 πυ 0 πυ 0 πυ πυ 0 E Y e ydy e ydy e dt e dt

7 t e υ υ 0 υ dt {Fukcja podcałkowa to gęstość rozkładu wykładczego z πυ parametrem υ } υ υ σ π π π ET (,..., ae Y a a a? ( π π σ π σ σ ( 4.8* Nech R( b( ozaczają odpowedo ryzyko obcążee estymatora ˆ. Pokazać, że R( Var( ˆ + b(. R( E( ˆ E( ˆ E( ˆ + E( ˆ E(( ˆ E( ˆ + ( ˆ E( ˆ ( E( ˆ + ( E( ˆ ˆ ˆ ˆ ˆ ˆ ˆ E( E( + E( E( ( E( + E( E( Zauważmy, że: ˆ ˆ ˆ E( E( Var( E( ˆ E( ˆ ( E( ˆ ( E( ˆ E( ˆ E( ˆ ( E( ˆ ( E ˆ EE( ˆ ( E( ˆ ( E ˆ E( ˆ 0 bo ( E( ˆ jest elosowe moglśmy je wyłączy przed zak wartośc oczekwaej. ˆ ˆ E( E( ( E( b( bo ( E( ˆ jest elosowe (stała, a wartość oczekwaa stałej jest rówa tej stałej. Podsumowując: R Var ˆ b ( ( + (. 7

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze

Bardziej szczegółowo

. Wtedy E V U jest równa

. Wtedy E V U jest równa Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta

Bardziej szczegółowo

ma rozkład normalny z nieznaną wartością oczekiwaną m

ma rozkład normalny z nieznaną wartością oczekiwaną m Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee

Bardziej szczegółowo

Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84

Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84 Zadae. Zmea losowa X ma rozkład logarytmczo-ormaly LN (, ), gdze E ( X e X e) 4. Wyzacz. EX (A) 0,9 (B) 0,86 (C),8 (D),95 (E) 0,84 Zadae. Nech X, X,, X0, Y, Y,, Y0 będą ezależym zmeym losowym. Zmee X,

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,,, ~ B, β ( β β ( ( Γ( β Γ + f ( Γ ( + ( + β + ( + β Γ + β Γ + Γ + β Γ + + β E Γ Γ β Γ Γ + + β Γ + Γ β + β β β Γ + β Γ + Γ + β Γ + + β E ( Γ Γ β Γ Γ + + β Γ + Γ β β + β Metoda mometów polega a przyrówau

Bardziej szczegółowo

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki: Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi o tym samym 2 x

będą niezależnymi zmiennymi losowymi o tym samym 2 x Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona: Zadae. W kolejych okresach czasu t =, ubezpeczoy, charakteryzujący sę parametrem ryzyka Λ, geeruje N t szkód. Dla daego Λ = λ zmee N, N są warukowo ezależe mają (brzegowe) rozkłady Possoa: k λ Pr( N t

Bardziej szczegółowo

Funkcja wiarogodności

Funkcja wiarogodności Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i= ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej

Bardziej szczegółowo

ROZKŁADY ZMIENNYCH LOSOWYCH

ROZKŁADY ZMIENNYCH LOSOWYCH ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) Praca Domowa:.. ( α β ( α β α β ( ( α Γ( β α,,..., ~ B, Γ + f Γ ( α + α ( α + β + ( α + β Γ α + β Γ α + Γ α + β Γ α + + β E Γ α Γ β Γ α Γ α + + β Γ α + Γ β α α + β β α β Γ α + β Γ α + Γ α + β Γ α + + β

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

VI. TWIERDZENIA GRANICZNE

VI. TWIERDZENIA GRANICZNE VI. TWIERDZENIA GRANICZNE 6.. Wprowadzee Twerdzea gracze dotyczą własośc graczych cągów zmeych losowych dzelą sę a:! twerdzea lokale opsują zbeżośc cągu fukcj prawdopodobeństwa w przypadku cągu {X } zmeych

Bardziej szczegółowo

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego). TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

Badania niezawodnościowe i statystyczna analiza ich wyników

Badania niezawodnościowe i statystyczna analiza ich wyników Badaa ezawodoścowe statystycza aalza ch wyków. Co to są badaa ezawodoścowe jak sę je przeprowadza?. Metody prezetacj opsu daych pochodzących z eksperymetu 3. Sposoby wyzaczaa rozkładu zmeej losowej a podstawe

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Estymatory nieobciążone o minimalnej wariancji

Estymatory nieobciążone o minimalnej wariancji Estymatory ieobciążoe o miimalej wariacji Model statystyczy (X, {P θ, θ Θ}); g : Θ R 1 Zadaie: oszacować iezaą wartość g(θ) Wybrać takie δ(x 1, X 2,, X ) by ( θ Θ) ieobciążoość E θ δ(x 1, X 2,, X ) = g(θ)

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

[, ] [, ] [, ] ~ [23, 2;163,3] 19,023 2,7

[, ] [, ] [, ] ~ [23, 2;163,3] 19,023 2,7 6. Przez 0 losowo wybrayh d merzoo zas dojazdu do pray paa A uzyskują próbkę x,..., x 0. Wyk przedstawały sę astępująo: jest to próbka losowa z rozkładu 0 0 x 300, 944. x Zakładamy, że N ( µ, z ezaym parametram

Bardziej szczegółowo

IV. ZMIENNE LOSOWE DWUWYMIAROWE

IV. ZMIENNE LOSOWE DWUWYMIAROWE IV. ZMIENNE LOSOWE DWUWYMIAROWE 4.. Rozkład zmeej losowej dwuwymarowej Defcja 4.. Uporządkowaą parę (X, Y) azywamy zmeą losową dwuwymarową, jeśl każda ze zmeych X Y jest zmeą losową. Defcja 4.. Fukcję

Bardziej szczegółowo

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.

Bardziej szczegółowo

będzie próbką prostą z rozkładu normalnego ( 2

będzie próbką prostą z rozkładu normalnego ( 2 Zadae. eh K będze próbką prostą z rozkładu ormalego ( μ σ ) zaś: ( ) S gdze:. Iteresuje as względy błąd estymaj: σ R S. σ rzy wartość ozekwaa E R jest rówa ( ) (A).8 (B).9 (C). (D). (E). Zadae. eh K K

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10) Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,

Bardziej szczegółowo

Estymacja to wnioskowanie statystyczne koncentrujące się wokół oszacowania wartości parametrów rozkładu populacji.

Estymacja to wnioskowanie statystyczne koncentrujące się wokół oszacowania wartości parametrów rozkładu populacji. Botatytyka, 018/019 dla Fzyk Medyczej, tuda magterke etymacja etymacja średej puktowa przedzał ufośc średej rozkładu ormalego etymacja puktowa przedzałowa waracj rozkładu ormalego etymacja parametrów rozkładu

Bardziej szczegółowo

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.

EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą. Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,

Bardziej szczegółowo

Statystyka matematyczna. Wykład II. Estymacja punktowa

Statystyka matematyczna. Wykład II. Estymacja punktowa Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 1. Wiadomości wstępne

STATYSTYKA MATEMATYCZNA WYKŁAD 1. Wiadomości wstępne TATYTYKA MATEMATYCZNA WYKŁAD Wadomośc wstępe tatystyka to dyscypla aukowa, której zadaem jest wykrywae, aalza ops prawdłowośc występujących w procesach masowych. Populacja to zborowość podlegająca badau

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

Podstawy opracowania wyników pomiarowych, analiza błędów

Podstawy opracowania wyników pomiarowych, analiza błędów Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego

Bardziej szczegółowo

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2 Pojęce przedzału ufośc Przyład: Rozważmy pewe rzad proces (tz. ta tórego lczba zajść podlega rozładow Possoa). W cągu pewego czasu zaobserwowao =3 tae zdarzea. Oceć możlwy przedzał lczby zdarzeń tego typu

Bardziej szczegółowo

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze

Bardziej szczegółowo

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.

Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów. Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej Rachek prawdopodobeńswa saysyka maemaycza Esymacja przedzałowa paramerów srkralych zborowośc geeralej Częso zachodz syacja, że koecze jes zbadae ogół poplacj pod pewym kąem p. średa oce z pewego przedmo.

Bardziej szczegółowo

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

Linie regresji II-go rodzaju

Linie regresji II-go rodzaju Lam regresj II-go rodzaju zmeej () względem () azwam zadae krzwe g(;,, ) oraz h(;,, ) gd spełają oe odpowedo waruk: E E Le regresj II-go rodzaju ( ( )) ( ) ( ) ( ) ( ) g ;,,... g ;,,... f, dd m,,... (

Bardziej szczegółowo

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym.

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym. Wyzaczae oporu aczyowego kaplary w przepływe lamarym. I. Przebeg ćwczea. 1. Zamkąć zawór odcający przewody elastycze a astępe otworzyć zawór otwerający dopływ wody do przewodu kaplarego. 2. Ustawć zawór

Bardziej szczegółowo

Statystyka Opisowa Wzory

Statystyka Opisowa Wzory tatystyka Opsowa Wzory zereg rozdzelczy: x - wartośc cechy - lczebośc wartośc cechy - lczebość całej zborowośc Wskaźk atężea przy rysowau wykresu szeregu rozdzelczego przedzałowego o erówych przedzałach:

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie

Bardziej szczegółowo

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2 Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić). Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE Marek Cecura, Jausz Zacharsk PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ VI WYBRANE TWIERDZENIA WRAZ Z DOWODAMI Na prawach rękopsu Warszawa, paźdzerk 0 Data ostatej aktualzacj:

Bardziej szczegółowo

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń Zasosowae meody ajmejszych kwadraów do pomaru częsolwośc średej sygałów o małej sromośc zboczy w obecośc zakłóceń Elgusz PAWŁOWSKI, Darusz ŚWISULSKI Podsawowe meody pomaru częsolwośc Zlczae okresów w zadaym

Bardziej szczegółowo

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f

Bardziej szczegółowo

Zadania z rachunku prawdopodobieństwa

Zadania z rachunku prawdopodobieństwa Zadaa z rachuku prawdopodobeństwa Dzesęć osób zajmuje mejsca przy okrągłym stole. Oblczyć prawdopodobeństwo tego, że osoby A B będą sedzeć obok sebe. Jake będze prawdopodobeństwo tego samego zdarzea jeśl

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

Podstawowe pojcia. Metody probabilistyczne i statystyka Wykład 7: Statystyka opisowa. Rozkłady prawdopodobiestwa wystpujce w statystyce.

Podstawowe pojcia. Metody probabilistyczne i statystyka Wykład 7: Statystyka opisowa. Rozkłady prawdopodobiestwa wystpujce w statystyce. Metody probablstycze statystyka Wykład 7: Statystyka opsowa. Rozkłady prawdopodobestwa wystpujce w statystyce. Podstawowe pojca Populacja geerala - zbór elemetów majcy przyajmej jed włacwo wspól dla wszystkch

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. I Pracownia IF UJ Marzec 2017

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. I Pracownia IF UJ Marzec 2017 PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Marzec 07 PODRĘCZNIKI Wstęp do aalzy błędu pomarowego Joh R. Taylor Wydawctwo Naukowe PWN Warszawa 999

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są

Bardziej szczegółowo

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem

Mh n. 2 ε. h h/ n n. Ekstrapolacja Richardsona (szacowanie błędu) błąd. ekstrapolowana wartość całki I. kwadratury z adaptowanym krokiem Ekstrapolacja Rchardsoa (szacowae błędu) dla daej, ustaloej metody błąd Mh zakładając, że M jest w przyblżeu ezależe od h I I + Mh h h/ / I I + Mh ekstrapolowaa wartość całk I I e I h / + Ih / ( I h )

Bardziej szczegółowo

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ Podstawowe pojęca rachuu prawdopodobeństwa: zdarzee losowe, zdarzee elemetare, prawdopodobeństwo, zbór zdarzeń elemetarych. Def. Nech E będze zborem

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

MATEMATYKA. Sporządził: Andrzej Wölk

MATEMATYKA. Sporządził: Andrzej Wölk MATEMATYKA Sporządzł: Adrzej ölk . adae Rozwązać rówae różczkowe: b) e X X e rozwązuję całkę żeb wzaczć e X e X z tego wka, że e X X e X e adae a) s d t dt d ( t ) dt dt pochoda d dt s d s s s s d = C

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VIII: Przestrzenie statystyczne. Estymatory 1 grudnia 2014 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji r(x, Z) = 0, 986 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

Matematyka dyskretna. 10. Funkcja Möbiusa

Matematyka dyskretna. 10. Funkcja Möbiusa Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1

Bardziej szczegółowo

Zmiana bazy i macierz przejścia

Zmiana bazy i macierz przejścia Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce

Bardziej szczegółowo

Metoda największej wiarogodności

Metoda największej wiarogodności Wprowadzenie Założenia Logarytm funkcji wiarogodności Metoda Największej Wiarogodności (MNW) jest bardziej uniwersalną niż MNK metodą szacowania wartości nieznanych parametrów Wprowadzenie Założenia Logarytm

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jaicka wykład XIII, 30.05.06 STATYSTYKA BAYESOWSKA Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych

Bardziej szczegółowo

Dokonajmy zestawienia wszystkich równań teorii sprężystości. 1. Różniczkowe równania równowagi (warunki Naviera)

Dokonajmy zestawienia wszystkich równań teorii sprężystości. 1. Różniczkowe równania równowagi (warunki Naviera) Wyład 4 Blas rówań teor srężystośc Dooamy zestawea wszystch rówań teor srężystośc Gra rówań. Różczowe rówaa rówowag (war Navera Lczba rówań Lczba ewadomych X 6 (. Zwąz geometrycze (rówaa Cachy ego ( 6

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo