Wprowadzenie do modelowania matematycznego w biologii. Na podstawie wykładów dr Urszuli Foryś, MIM UW

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wprowadzenie do modelowania matematycznego w biologii. Na podstawie wykładów dr Urszuli Foryś, MIM UW"

Transkrypt

1 Wprowadzenie do modelowania matematycznego w biologii Na podstawie wykładów dr Urszuli Foryś, MIM UW

2 Model matematyczny Jest to teoretyczny opis danego zjawiska na podstawie bieżącej wiedzy (często zwany modelem heurystycznym), posiadający określoną strukturę matematyczną Klasycznie najczęściej stosowanym formalizmem matematycznym są równania różniczkowe i różnicowe Obecnie często buduje się modele stochastyczne czy modele mieszane.

3 Model matematyczny Przyjmując dany formalizm matematyczny należy określić, co stanowi zmienne, a co parametry naszego modelu. Parametry wyznaczamy na podstawie danych zebranych podczas eksperymentów, natomiast zmienne to niewiadome, które wyznaczamy (lub analizujemy ich przebieg) na podstawie modelu.

4 Model matematyczny Poprawnie zbudowany model powinien mieć jednoznaczne rozwiązania, stabilne względem warunków początkowych i parametrów (J.S. Hadamard) Zasada falsyfikowalności (K. Popper) - model czy teoria naukowa powinny być tak zbudowane, aby za pomocą eksperymentu można było je obalić

5 Modelowanie pojedynczej populacji Model Malthusa: populacja jest jednorodna (genetycznie identyczne osobniki), rozmnaża się partenogenetycznie; osobnik rodzi się w pełni ukształtowany, zdolny do rozrodu, rozmnaża się w dowolnym wieku; momenty rozmnażania są w dowolnym przedziale czasu, rozłożone jednostajnie; każdy osobnik wydaje na świat potomstwo co τ jednostek czasu (τ ustalone, jednakowe dla wszystkich) każdorazowo jeden rodzic ma λ osobników potomnych

6 Model Malthusa (przypadek ciągły) Liczba momentów rozmnażania: Liczba potomków: współczynnik rozrodczości Przyrost liczebności: rt ( ) N t =N 0 e

7 Model Malthusa (przypadek dyskretny) Przyjmujemy: 1 oznacza ustaloną jednostkę czasu Niech N(t)=Nt Wówczas przyrost liczebności: t N t =N 0 (1+r )

8 Model Malthusa Rozwiązania modelu ciągłego i dyskretnego są zbieżne gdy: rc r D =e 1

9 Model Malthusa uwzględnienie śmiertelności Dodajemy jako parametr śmiertelność s Wówczas parametrem r zastępowany jesr wpółczynnikiem przyrostu naturalnego: rn=r-s Cały model pozostaje bez zmian

10 Model Malthusa uwzględnienie migracji Uwzględniamy migrację w związku z organiczoną pojemnością siedliska W najprostszych modelach są dwa typy migracji: 1) migracja zależna od zagęszczenia 2) migracja stała w czasie

11 Model Malthusa uwzględnienie migracji Migracja zależna od zagęszczenia N (t )=r n N (t ) kn (t ) Rozwiązanie równania pozostanie takie samo Jeśli migracja niewielka rn>k to populacja nadal rośnie nieorganiczenie Jeżeli migracja duża to siedlisko zostanie opuszczone, jednak nastąpi to w czasie nieskończonym

12 Model Malthusa uwzględnienie migracji Migracja niezależna od zagęszczenia N (t )=r n N (t ) m Zakładamy, że m >0 Możemy rozważać cztery różne kombinacje znaków w modelu (przyrost naturalny i migracja dodatnie bądź ujemne imigracja, emigracja)

13 Model Malthusa

14 Ćwiczenie 1 Zaimplementuj model Malthusa. Program na wejściu ma wczytywać: współczynnik rozrodczości współczynnik śmiertelności początkową liczbę osobników populacji współczynnik migracji liczbę jednostek czasu do ilu wykonane zostaną symulacje Program na wyjściu ma generować wykres odzwierciedlający zmianę wielkości populacji w czasie

15 Model Verhulsta Przyrost liczebności w tym modelu hamuje konkurencja o zasoby siedliska, która jest związna, w oczywisty sposób, z ograniczonością tych zasobów. Jest to konkurencja wewnątrzgatunkowa Konkurencję między osobnikami tego samego gatunku Verhulst opisał w taki sam sposób jak losowe zderzenia cząsteczek gazu elementarnego: 2 N (t )=rn (T ) b N (t )

16 Model Verhulsta Jednocześnie model uwzględnia fakt, że istnieje określona pojemność środowiska (K), w zależności od której zwierzęta mogą się rozmnażać: N N (t )=rn (T )(1 ) K

17 Model Verhulsta N N (t )=rn (T )(1 ) K

18 Co jeszcze uwzględnia się w modelach jednej populacji? Wiek najstarszy model populacyjny uwzględniający wiek to ciąg Fibonacciego Wprowadzenie do opisu heurystycznego zależności od wieku prowadzi najczęściej do dynamiki oscylacyjnej ( jest

19 Modelowanie ekosystemu z dwiema populacjami Wyróżnia się trzy tego rodzaju ekosystemy: -układ drapieżnik-ofiara -konkurencja -symbioza -mutualizm -komensalizm

20 Model drapieżnik ofiara (Lotki-Volterry) Niech P(t) oznacza zagęszczenie drapieżników, natomiast V(t)- zagęszczenie ofiar. Wówczas: V =rv avp P = sp+abvp Wewnętrzna dynamika obu gatunków Liczba spotkań tych gatunków

21 Model drapieżnik ofiara (Lotki-Volterry) Portret fazowy układu wraz z przykładowymi krzywymi fazowymi

22 Model drapieżnik ofiara (Lotki-Volterry) Przebieg przykładowych rozwiązań układu

23 Model drapieżnik ofiara (ograniczona pojemność środowiska) Niech P(t) oznacza zagęszczenie drapieżników, natomiast V(t)- zagęszczenie ofiar, K- pojemność środowiska Wówczas: V V =rv (1 ) avp P = sp+abvp K

24 Model drapieżnik ofiara (ograniczona pojemność środowiska) Portret fazowy układu wraz z przykładowymi krzywymi fazowymi i istniejącymi punktami stacjonarnymi

25 Model drapieżnik ofiara (ograniczona pojemność środowiska) Przebieg przykładowych rozwiązań układu

26 Model konkurencji

27 Model konkurencji Przebieg przykładowych rozwiązań układu

28 Model symbiozy Przebieg przykładowych rozwiązań układu

29 Łańcuchy Markowa

30 Łańcuchy Markowa Niech Xt, gdzie t należy do zbioru {0, inf} oznacza ciąg zmiennych losowych o wartościach całkowitych. Jeżeli w próbie z numerem t zrealizowało się zdarzenie Wj to przyjmiemy Xt=j. Ciąg badanych zmiennych losowych nazwiemy łańcuchem Markowa jeśli:

31 Łańcuchy Markowa Jeśli P(Xt=j Xt-1=i) nie zależy od numeru próby t wówczas łańcuch nazywamy jednorodnym Wyniki poszczególnych prób nazywamy stanami Łańcucha.

32 Łańcuchy Markowa cechy stanów - Stan j nazywamy osiągalnym ze stanu i wtedy i tylko wtedy, gdy istnieje niezerowe prawdopodobieństwo przejścia ze stanu i do stanu j w dowolnej liczbie kroków. - Stany i oraz j komunikują się, gdy i jest osiągalny z j oraz j jest osiągalny z i. - Stan i nazywamy pochłaniającym wówczas, gdy pii=1. - Stan i nazywamy odbijającym wówczas, gdy pii=0. - Stan i jest nieistotny (chwilowy) wówczas, gdy istnieje wersja opuszczenia stanu, po której już nie można do niego wrócić. - Stan i jest istotny wówczas, gdy dla każdej wersji opuszczenia stanu jest możliwy powrót do niego.

33 Łańcuchy Markowa macierz przejść Badając łańcuch Markowa sprowadzamy najpierw jego macierz do postaci kanonicznej numerując stany w taki sposób, aby na początku znalazły się stany nieistotne, a następnie poszczególne stany z kolejnych klas.

34 Łańcuchy Markowa wyznaczanie prawdopodobieństwa Aby wyznaczyć prawdopodobieństwo zajścia określonego zjawiska w jednostce czasu t mnożymy wektor opisujący to zjawisko przez macierz przejść przemnożoną t razy

35 Ćwiczenie 2 Mając dane 6 sekwencji DNA: AAACCCTGGCAATTCAGT ACCTGCGCCGTATATTATCAT GGCTCTCCAAG CCTTATATGGAAGAGG TTATTGC CCATGGC Zbuduj Łańcuch Markowa

36 Modelowanie odpowiedzi odpornościowej Antygen to substancja, która wykazuje się: immunogennością, czyli zdolnością indukowania swoistej (specyficznej) odpowiedzi odpornościowej przeciw sobie; antygenowością, czyli zdolnością do swoistego łączenia się z immunoglobulinami (zarówno wolnymi jak i stanowiącymi receptory limfocytów B) oraz receptorami limfocytów T

37 Modelowanie odpowiedzi odpornościowej w obrębie jednego antygenu może znajdować się wiele miejsc wiązanych przez przeciwciała- epitopów epitopy obecne w jednej cząsteczce antygenu mogą być identyczne lub różne i mogą być wiązane przez przeciwciała o tej samej lub różnej swoistości antygen zawierający wiele epitopów nazywamy wielowartościowym lub poliwalentnym.

38 Najważniejsze czynniki układu immunologicznego

39 Rozwój odpowiedzi odpornościowej

40 Dynamika antygenu Antygeny można podzielić na: - aktywne, jak bakterie, grzyby i wirusy, mające zdolność aktywnego namnażania się w organizmie; - pasywne, jak trucizny i jady, które się nie namnażają; - własne, czyli produkowane przez organizm, jak autoantygeny czy antygeny transplantacyjne.

41 Dynamika antygenu Niech V(t) oznacza zagęszczenie antygenu w organizmie w chwili t Dynamika pierwszego i drugiego typu: V =bv Dynamika trzeciego typu: V =a cv

42 Dynamika antygenu W obu modelach należy uwzględnić działanie układu odpornościowego: V =bv dve Dynamika dla efektorów układu immunologicznego: E =nv mve

43 Dynamika antygenu Możliwe rozwiązania układu w przypadku silnego antygenu i wysokiego początkowego poziomu efektorów oraz niewielkiej początkowej dawki antygenu spełniającej nierówność

44 Dynamika antygenu Możliwe rozwiązania układu w przypadku słabego antygenu lub dostatecznie silnego układu immunologicznego

45 Ćwiczenie 3 Stwórz program symulujący działanie układu odpornościowego, na wejściu niech pobiera: - typ antygenu - ilość antygenu - stan układu odpornościowego

WYKŁAD 3. DYNAMIKA ROZWOJU

WYKŁAD 3. DYNAMIKA ROZWOJU WYKŁAD 3. DYNAMIKA ROZWOJU POPULACJI MODELE Z CZASEM DYSKRETNYM DR WIOLETA DROBIK- CZWARNO MODELE ZMIAN ZAGĘSZCZENIA POPULACJI Wyróżniamy modele: z czasem dyskretnym wykorzystujemy równania różnicowe z

Bardziej szczegółowo

MODELE WIELOPOPULACYJNE. Biomatematyka Dr Wioleta Drobik

MODELE WIELOPOPULACYJNE. Biomatematyka Dr Wioleta Drobik MODELE WIELOPOPULACYJNE Biomatematyka Dr Wioleta Drobik UKŁADY RÓWNAŃ RÓŻNICZKOWYCH ZWYCZAJNYCH Warunek początkowy: x(t 0 )=x 0, y(t 0 )=y 0 Funkcje f i g to zadane funkcje ciągłe trzech zmiennych: t,

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

Model Marczuka przebiegu infekcji.

Model Marczuka przebiegu infekcji. Model Marczuka przebiegu infekcji. Karolina Szymaniuk 27 maja 2013 Karolina Szymaniuk () Model Marczuka przebiegu infekcji. 27 maja 2013 1 / 17 Substrat Związek chemiczny, który ulega przemianie w wyniku

Bardziej szczegółowo

c - częstość narodzin drapieżników lub współczynnik przyrostu drapieżników,

c - częstość narodzin drapieżników lub współczynnik przyrostu drapieżników, SIMULINK 3 Zawartość Równanie Lotki-Volterry dwa słowa wstępu... 1 Potrzebne elementy... 2 Kosmetyka 1... 3 Łączenie elementów... 3 Kosmetyka 2... 6 Symulacja... 8 Do pobrania... 10 Równanie Lotki-Volterry

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny

Bardziej szczegółowo

WYKŁAD 3. DYNAMIKA ROZWOJU POPULACJI

WYKŁAD 3. DYNAMIKA ROZWOJU POPULACJI WYKŁAD 3. DYNAMIKA ROZWOJU POPULACJI MODELE Z CZASEM DYSKRETNYM BUDOWA MODELU MATEMATYCZNEGO DR WIOLETA DROBIK- CZWARNO STAN POPULACJI Stan populacji wyrażany jako liczebność lub zagęszczenie wszystkich

Bardziej szczegółowo

MODELE ODDZIAŁYWAŃ MIĘDZY DWIEMA POPULACJAMI

MODELE ODDZIAŁYWAŃ MIĘDZY DWIEMA POPULACJAMI MODELE ODDZIAŁYWAŃ MIĘDZY DWIEMA POPULACJAMI Biomatematyka Dr Wioleta Drobik-Czwarno UKŁADY RÓWNAŃ RÓŻNICZKOWYCH ZWYCZAJNYCH UKŁADY RÓWNAŃ RÓŻNICZKOWYCH ZWYCZAJNYCH Warunek początkowy: x(t 0 )=x 0, y(t

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych

Bardziej szczegółowo

Wykład z modelowania matematycznego.

Wykład z modelowania matematycznego. Wykład z modelowania matematycznego. Modele z jedną populacją. Problem. Szybkość zmian zagęszczenia populacji. Założenia. Ciągłość procesów zachodzących w populacji (nawet w najkrótszym przedziale czasowym

Bardziej szczegółowo

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Uogólnienie na przeliczalnie nieskończone przestrzenie stanów zostało opracowane

Bardziej szczegółowo

MODELE ROZWOJU POPULACJI Z UWZGLĘDNIENIEM WIEKU

MODELE ROZWOJU POPULACJI Z UWZGLĘDNIENIEM WIEKU MODELE ROZWOJU POPULACJI Z UWZGLĘDNIENIEM WIEKU Dr Wioleta Drobik-Czwarno CIĄG FIBONACCIEGO Schemat: http://blogiceo.nq.pl/matematycznyblog/2013/02/06/kroliki-fibonacciego/ JAK MOŻEMY ULEPSZYĆ DOTYCHCZASOWE

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Czego ekolog może się dowiedzieć od matematyka, czyli słów kilka o modelu drapieżnik-ofiara

Czego ekolog może się dowiedzieć od matematyka, czyli słów kilka o modelu drapieżnik-ofiara 1/32 Czego ekolog może się dowiedzieć od matematyka, czyli słów kilka o modelu drapieżnik-ofiara Urszula Foryś Instytut Matematyki Stosowanej i Mechaniki Zakład Biomatematyki i Teorii Gier WMIM UW Banacha

Bardziej szczegółowo

WYKŁAD 3. DYNAMIKA ROZWOJU

WYKŁAD 3. DYNAMIKA ROZWOJU WYKŁAD 3. DYNAMIKA ROZWOJU POPULACJI DR WIOLETA DROBIK WSTĘP Podstawy matematyczne Ciąg Granica funkcji Ciągłość funkcji Pochodna i całka CIĄG Lista ponumerowanych elementów pewnego zbioru Ciąg to dowolna

Bardziej szczegółowo

Wykład 1 BIOMATEMATYKA DR WIOLETA DROBIK

Wykład 1 BIOMATEMATYKA DR WIOLETA DROBIK Wykład 1 BIOMATEMATYKA DR WIOLETA DROBIK SPRAWY ORGANIZACYJNE Konsultacje: czwartek 12-14, pokój 33 Email: wioleta.drobik@gmail.com, wioleta_drobik@sggw.pl Wykład 30 h (10 x 3 h w tygodniu) Ćwiczenia 15

Bardziej szczegółowo

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,

Bardziej szczegółowo

Genetyka populacji. Analiza Trwałości Populacji

Genetyka populacji. Analiza Trwałości Populacji Genetyka populacji Analiza Trwałości Populacji Analiza Trwałości Populacji Ocena Środowiska i Trwałości Populacji- PHVA to wielostronne opracowanie przygotowywane na ogół podczas tworzenia planu ochrony

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej

Bardziej szczegółowo

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 19 marzec, 2012 Przykłady procesów Markowa (i). P = (p ij ) - macierz stochastyczna, tzn. p ij 0, j p ij =

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Konspekt lekcji biologii w gimnazjum klasa I

Konspekt lekcji biologii w gimnazjum klasa I mgr Piotr Oleksiak Gimnazjum nr.2 wopatowie. Temat. Cechy populacji biologicznej. Konspekt lekcji biologii w gimnazjum klasa I Zakres treści: Populacja cechy charakterystyczne: liczebność, zagęszczenie,

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 5.0.00 r. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej µ wariancji oraz momencie centralnym µ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 18 września 2013 Biomatematyka

EGZAMIN MAGISTERSKI, 18 września 2013 Biomatematyka Biomatematyka Liczebność populacji pewnego gatunku jest modelowana przez równanie różnicowe w którym N k stałymi. rn 2 n N n+1 =, A+Nn 2 oznacza liczebność populacji w k tej generacji, a r i A są dodatnimi

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO

STATYSTYKA I DOŚWIADCZALNICTWO STATYSTYKA I DOŚWIADCZALNICTWO dla studiów magisterskich kierunku ogrodnictwo Wykład 1 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem

Bardziej szczegółowo

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze

Bardziej szczegółowo

N(t) = N 0 e rt MODELE WZROSTU POPULACJI Z CZASEM CIĄGŁYM. Dr Wioleta Drobik-Czwarno

N(t) = N 0 e rt MODELE WZROSTU POPULACJI Z CZASEM CIĄGŁYM. Dr Wioleta Drobik-Czwarno N(t) = N 0 e rt MODELE WZROSTU POPULACJI Z CZASEM CIĄGŁYM Dr Wioleta Drobik-Czwarno PODSTAWY MATEMATYCZNE Procesy biologiczne, chemiczne i fizyczne można zapisać równaniami różniczkowymi. Potrzebne narzędzia:

Bardziej szczegółowo

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14

Bardziej szczegółowo

II. Równania autonomiczne. 1. Podstawowe pojęcia.

II. Równania autonomiczne. 1. Podstawowe pojęcia. II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości

Bardziej szczegółowo

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:

Bardziej szczegółowo

Wybrane zastosowania równań różniczkowych zwyczajnych w biologii

Wybrane zastosowania równań różniczkowych zwyczajnych w biologii Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Klaudia Matyjasek nr albumu 219863 praca zaliczeniowa na kierunku matematyka Wybrane zastosowania równań różniczkowych zwyczajnych w biologii

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

Tematy prac magisterskich i doktorskich

Tematy prac magisterskich i doktorskich Tematy prac magisterskich i doktorskich Stochastyczna dynamika z opóźnieniami czasowymi w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki

Bardziej szczegółowo

GENETYKA POPULACJI. Ćwiczenia 3 Biologia I MGR

GENETYKA POPULACJI. Ćwiczenia 3 Biologia I MGR GENETYKA POPULACJI Ćwiczenia 3 Biologia I MGR Heterozygotyczność Rozpatrując różnorodność genetyczną w populacjach o układzie hierarchicznym zauważamy, że najwyższy poziom heterozygotyczności zawsze występuje

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Filmy o numerycznym prognozowaniu pogody Pogodna matematyka : zakładka: Filmy

Filmy o numerycznym prognozowaniu pogody Pogodna matematyka :  zakładka: Filmy Modelowanie komputerowe w ochronie środowiska Wykłady x 4 Ćwiczenia x 3 Strona: http://www.icm.edu.pl/~aniat/modele/msos26.html Literatura: Urszula Foryś, Matematyka w biologii, Wydawnictwa Naukowo-Techniczne,

Bardziej szczegółowo

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Modele epidemiologiczne

Modele epidemiologiczne Modele epidemiologiczne Anna Zesławska 20 maj 2013 Wstęp Wstęp Przyjrzymy się dwóm podstawowym modelom epidemiologicznym: bez nabywania odporności Model Kermacka-McKendricka SIR z jej uwzględnieniem Celem

Bardziej szczegółowo

Spis treści. Wstęp Konstrukcja modelu matematycznego... 1

Spis treści. Wstęp Konstrukcja modelu matematycznego... 1 Spis treści Wstęp........................................................ XI 1. Konstrukcja modelu matematycznego............................. 1 2. Relacje. Teoria preferencji konsumenta...........................

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

GENETYKA POPULACJI. Ćwiczenia 1 Biologia I MGR /

GENETYKA POPULACJI. Ćwiczenia 1 Biologia I MGR / GENETYKA POPULACJI Ćwiczenia 1 Biologia I MGR 1 ZAGADNIENIA struktura genetyczna populacji obliczanie frekwencji genotypów obliczanie frekwencji alleli przewidywanie struktury następnego pokolenia przy

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

ZARZĄDZANIE POPULACJAMI ZWIERZĄT DRYF GENETYCZNY EFEKTYWNA WIELKOŚĆ POPULACJI PRZYROST INBREDU

ZARZĄDZANIE POPULACJAMI ZWIERZĄT DRYF GENETYCZNY EFEKTYWNA WIELKOŚĆ POPULACJI PRZYROST INBREDU ZARZĄDZANIE POPULACJAMI ZWIERZĄT DRYF GENETYCZNY EFEKTYWNA WIELKOŚĆ POPULACJI PRZYROST INBREDU DRYF GENETYCZNY ) Każdy żywy organizm wytwarza więcej gamet, niż zdolne jest przetrwać (Darwin). 2) Przypadek

Bardziej szczegółowo

Ćwiczenia 3. Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3. Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Współczynnik przyrostu naturalnego r = U t Z t L t gdzie: U t - urodzenia w roku t Z t - zgony

Bardziej szczegółowo

3. Wykład Układy równań liniowych.

3. Wykład Układy równań liniowych. 31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +

Bardziej szczegółowo

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r= Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną

Bardziej szczegółowo

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009 Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005 RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki

Bardziej szczegółowo

13. Równania różniczkowe - portrety fazowe

13. Równania różniczkowe - portrety fazowe 13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /

Bardziej szczegółowo

Ruch jednostajnie zmienny prostoliniowy

Ruch jednostajnie zmienny prostoliniowy Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Dynamika populacyjna. Ryszard Rudnicki

Dynamika populacyjna. Ryszard Rudnicki Dynamika populacyjna Ryszard Rudnicki Spis treści Rozdział 1. Wstęp 5 1. Uwagi ogólne 5 2. Pierwsze modele populacyjne 6 3. Sezonowość w dynamice populacyjnej 11 Zadania 15 Rozdział 2. Modele wielopopulacyjne

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie 1. W pewnej populacji podmiotów każdy podmiot narażony jest na ryzyko straty X o rozkładzie normalnym z wartością oczekiwaną równą μ i wariancją równą. Wszystkie podmioty z tej populacji kierują

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH

MODELE MATEMATYCZNE W UBEZPIECZENIACH MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 3: WYZNACZANIE ROZKŁADU CZASU PRZYSZŁEGO ŻYCIA 1 Hipoteza jednorodnej populacji Rozważmy pewną populację osób w różnym wieku i załóżmy, że każda z tych osób

Bardziej szczegółowo

Przykład: matematyczny model populacji cykad

Przykład: matematyczny model populacji cykad Lech Sławik Podstawy Maximy 14 Końcowy przykład.wxmx 1 / 7 Przykład: matematyczny model populacji cykad Do tej pory podawane przykłady ilustrowały pojedyńcze funkcje. Na zakończenie tej części skryptu

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

Wykład 2. Rodzaje konkurencji. Modele wzrostu populacji

Wykład 2. Rodzaje konkurencji. Modele wzrostu populacji Wykład 2 Rodzaje konkurencji. Modele wzrostu populacji Konkurencja o charakterze eksploatacji konkurencja o zasoby, które są w niedomiarze działanie jednego konkurenta zmniejsza ilość zasobów dostępną

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki

Bardziej szczegółowo

14 Modele z czasem dyskretnym

14 Modele z czasem dyskretnym 14 Modele z czasem dyskretnym Przykłady i zadania z tego rozdziału ilustrują materiał zawarty w rozdziałach 12 i 15 książki 141 Metoda pajęczynowa PRZYŁAD 141 Na poniższych rysunkach zilustrowano metodę

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Interakcje. Konkurencja. wykład 2

Interakcje. Konkurencja. wykład 2 Interakcje. Konkurencja wykład 2 Ekologiczna istota konkurencji Kiedy konkurujące gatunki mogą współwystępować? Kiedy na skutek konkurencji jeden z nich wyginie? wykład 2/2 Tempo wzrostu populacji Tempo

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi od łacińskiego słowa status, które oznacza

Bardziej szczegółowo

Temat wykładu: Równania różniczkowe. Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1

Temat wykładu: Równania różniczkowe. Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1 Temat wykładu: Równania różniczkowe Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1 Zagadnienia 1. Terminologia i oznaczenia 2. Definicje 3. Przykłady Anna Rajfura, Matematyka na kierunku Biologia

Bardziej szczegółowo

Dynamika populacyjna. Ryszard Rudnicki

Dynamika populacyjna. Ryszard Rudnicki Dynamika populacyjna Ryszard Rudnicki Spis treści Rozdział 1. Wstęp 5 1. Uwagi ogólne 5 2. Pierwsze modele populacyjne 6 3. Sezonowość w dynamice populacyjnej 10 Zadania 14 Rozdział 2. Modele wielo-populacyjne

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

Identyfikacja i modelowanie struktur i procesów biologicznych

Identyfikacja i modelowanie struktur i procesów biologicznych Identyfikacja i modelowanie struktur i procesów biologicznych Laboratorium 1: Modele ciągłe. Model Lotki-Volterry. mgr inż. Urszula Smyczyńska AGH Akademia Górniczo-Hutnicza 1. Ćwiczenie 1: Rozwiązanie

Bardziej szczegółowo

Ćwiczenia 3. Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3. Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Współczynnik przyrostu naturalnego gdzie: U t - urodzenia w roku t Z t - zgony w roku t L t

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

MODELE STOCHASTYCZNE Plan wykładu

MODELE STOCHASTYCZNE Plan wykładu UNIWERSYTET WROCŁAWSKI Wydział Matematyki i Informatyki Instytut Matematyczny M.Majsnerowska rok akademicki 2018/2019 MODELE STOCHASTYCZNE Plan wykładu 1. Łańcuchy Markowa 1.1. Podstawowe pojęcia i przykłady

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład IV: dla łańcuchów Markowa 14 marca 2017 Wykład IV: Klasyfikacja stanów Kiedy rozkład stacjonarny jest jedyny? Przykład Macierz jednostkowa I wymiaru #E jest macierzą stochastyczną. Dla tej macierzy

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

określa, czym się zajmują ekologia, ochrona środowiska i ochrona przyrody określa niszę ekologiczną wybranych gatunków

określa, czym się zajmują ekologia, ochrona środowiska i ochrona przyrody określa niszę ekologiczną wybranych gatunków WYMAGANIA EDUKACYJNE Z EKOLOGII Z ELEMENTAMI OCHRONY ŚRODOWISKA DLA KLASY III ZAKRES ROSZERZONY Biologia na czasie 3 zakres rozszerzony Dział programu Lp. Temat Poziom wymagań konieczny (K) podstawowy

Bardziej szczegółowo

Metoda rozdzielania zmiennych

Metoda rozdzielania zmiennych Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych

Bardziej szczegółowo

Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] }

Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] } Zespół kanoniczny Zespół kanoniczny N,V, T acc o n =min {1, exp [ U n U o ] } Zespół izobaryczno-izotermiczny Zespół izobaryczno-izotermiczny N P T acc o n =min {1, exp [ U n U o ] } acc o n =min {1, exp[

Bardziej szczegółowo

Analiza Algorytmów 2018/2019 (zadania na laboratorium)

Analiza Algorytmów 2018/2019 (zadania na laboratorium) Analiza Algorytmów 2018/2019 (zadania na laboratorium) Wybór lidera (do 9 III) Zadanie 1 W dowolnym języku programowania zaimplementuj symulator umożliwiający przetestowanie algorytmu wyboru lidera ELECT

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 (16.05.2014) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Współczynnik przyrostu naturalnego gdzie: U t - urodzenia w roku t Z t - zgony

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

Rozkład materiału z biologii do klasy III.

Rozkład materiału z biologii do klasy III. Rozkład materiału z biologii do klasy III. L.p. Temat lekcji Treści programowe Uwagi 1. Nauka o funkcjonowaniu przyrody. 2. Genetyka nauka o dziedziczności i zmienności. -poziomy różnorodności biologicznej:

Bardziej szczegółowo

Wykład 10 Testy jednorodności rozkładów

Wykład 10 Testy jednorodności rozkładów Wykład 10 Testy jednorodności rozkładów Wrocław, 16 maja 2018 Test Znaków test jednorodności rozkładów nieparametryczny odpowiednik testu t-studenta dla prób zależnych brak normalności rozkładów Test Znaków

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, Spis treści

Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, Spis treści Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, 2012 Spis treści Od Wydawnictwa 5 Z przedmowy autora do wydania pierwszego 7 Z przedmowy autora do wydania drugiego

Bardziej szczegółowo

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd. Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania

Bardziej szczegółowo