Tematy prac magisterskich i doktorskich
|
|
- Weronika Urszula Olszewska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Tematy prac magisterskich i doktorskich Stochastyczna dynamika z opóźnieniami czasowymi w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski 1 marca 2017
2 Przykład elementarny
3 Dlaczego opóźnienie czasowe może powodować powstawanie cykli t=0,1, dynamika strzałkowa -m 0 m wprowadźmy opóźnienie warunki początkowe Pojawia się cykl stabilny o amplitudzie i okresie
4 Wprowadźmy stochastyczne zaburzenie z prawdopodobieństwem 1 - ε = z prawdopodobieństwem ε Otrzymaliśmy prosty przykład dynamiki stochastycznej z opóźnieniem czasowym
5 m = 20 = 9 ε = 0.1
6 jeżeli przez stan naszego układu w czasie t będziemy uważaćτ+ 1 położeń (x(t), x(t-1), x(t-2), x(t-τ)) to otrzymamy ergodyczny łańcuch Markowa z rozkładem stacjonarnym µ ε i przestrzenią stanówω Definicja jest stochastycznie stabilny jeśli lim ε 0 µ ε (x) > 0 (=1) Twierdzenie lim ε 0 µ ε (cykl) = 1
7 Modele
8 Teoria gier ewolucyjnych
9 Deterministyczna dynamika replikatorowa A B U = A a b B c d p A (t) liczba osobników grających strategią A w czasie t p B (t) liczba osobników grających strategią B w czasie t U A = ax + b(1-x) U B = cx + d(1-x) Proponujemy p A (t+ε)=(1-ε)p A (t) + εp A (t)u A (t) U av = xu A +(1-x)U B
10 p A (t+ε) = (1-ε)p A (t) + εp A (t)u A (t) p B (t+ε) = (1-ε)p B (t) + εp B (t)u B (t) p(t+ε) = (1-ε)p(t) + εp(t)u av (t)
11 dx/dt = x(1-x)(u A U B ) Polowanie na jelenia J Z J 5 0 Z 3 3 Gołąb - Jastrząb 0 3/ 5 1 wewnętrzny stan stacjonarny jest niestabilny J G J -1 2 G /2 1 wewnętrzny stan stacjonarny jest stabilny
12 Opóźnienie czasowe Opóźnienie typu społecznego Zakładamy, że gracze w czasie t replikują się proporcjonalnie do średniej wypłaty w czasie t-τ Proponujemy x *
13 Odpowiednie równanie replikatorowe w czasie ciągłym ma następująca postać może być też zapisane jako Twierdzenie (Jan Alboszta i JM, J. Theor. Biol. 231: , 2004) x * jest asymptotycznie stabilny dla odpowiednio małego τ x * jest asymptotycznie niestabilny dla odpowiednio dużego τ
14 Opóźnienie czasowe typu biologicznego Zakładamy, że dzieci rodzą sięτjednostek czasu po tym jak ich rodzice grali i otrzymali wypłaty. Proponujemy Twierdzenie (JA i JM, JTB 2004) x * jest asymptotycznie stabilny dla każdego opóźnienia τ
15 Stochastyczna dynamika skończonych populacji n - liczba osobników z t - liczba osobników grających A w czasie t Ω ={0,,n} - przestrzeń stanów z t+1 > z t selekcja jeśli średnia z A > średnia z B mutacje Każdy osobnik może zmienić swoją strategię z prawdopodobieństwem ε
16 Klasyczny model, Kandori-Mailath-Rob, 1993 A B A a b B c d a>c i d>b, (A,A) i (B,B) równowagi Nasha A jest stategią efektywną, a>d B jest strategią dominującą ze względu na ryzyko c+d>a+b Twierdzenie Dla dostatecznie dużych n, B jest stochastycznie stabilne
17 Ekspresja i regulacja genów
18 Komórka matematyczna DNA mrna Ø białko Ø
19 Poziom makroskopowy DNA mrna Ø białko Ø
20 Poziom mikroskopowy r - liczba cząsteczek mrna p - liczba cząsteczek białka prawdopodobieństwo zajścia w czasie (t,t+h) proces urodzin i śmierci
21 Auto-represja genów w komórce
22
23 Równania Mistrzów prawdopodobieństwo, że w komórce jest n cząsteczek białka i gen jest odpowiednio w stanie 0 lub 1 w czasie t
24 Tematy prac magisterskich 1. Wpływ heterogenicznych opóźnień czasowych na stochastyczna stabilność w niesymetrycznych grach ewolucyjnych 2. Zbadanie prawdopodobieństw wymierania strategii w grach ewolucyjnych z opóźnieniami czasowymi 3. Wpływ opóźnień czasowych procesu translacji na wariancję liczby białek w stanie stacjonarnym 4. Wpływ opóźnień czasowych procesu transkrypcji na zachowanie się układów bi-stabilnych
25 Dodatkowe motywacje 4 stypendia magisterskie, 800 PLN przez 9 miesięcy 1 stypendium doktorskie, 2500 PLN przez 24 miesiące w ramach grantu NCN OPUS Opóźnienia czasowe w stochastycznych modelach biologicznych kierownik: Jacek Miękisz, współwykonawca: Marek Bodnar
26 Zadania badawcze grantu Wpływ opóźnień na zachowanie układów genetycznych ze sprzężeniami zwrotnymi Równowaga szczegółowa w stochastycznych układach biologicznych Osobliwe zaburzenia skokowych procesów Markowa Stabilność stanów stacjonarnych w modelach z wieloma opóźnieniami
27 Dziękuję za uwagę wiecej na
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14
GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils
GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0
Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych
Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 10 listopada 2016 Proseminarium licencjackie
Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa
Kampus Ochota 18 kwietnia 2015 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Andrey (Andrei)
Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa
Po co nam matematyka? 7 kwietnia 2016 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Empik
Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe
Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Empik każdego inspiruje inaczej Aleksander Puszkin (1799 1837) Andrey (Andrei) Andreyevich Markov (1856 1922) Wśród 20 tysięcy początkowych
Zasada średniego potencjału w grach ewolucyjnych. Paweł Nałęcz-Jawecki
Zasada średniego potencjału w grach ewolucyjnych Paweł Nałęcz-Jawecki O czym będzie ten komunikat O czym będzie ten komunikat Jak powiązać procesy błądzenia losowego na dyskretnym grafie ze (stochastycznymi
Analiza modelu ekspresji genu białka Hes1
Analiza modelu ekspresji genu białka Hes1 Agnieszka Bartłomiejczyk Politechnika Gdańska Konferencja Śladami Kobiet w Matematyce w stulecie urodzin Profesor Heleny Rasiowej Rzeszów, 24 czerwca 2017 (współautor:
H. SKRÓCONY OPIS PROJEKTU
H. SKRÓCONY OPIS PROJEKTU 1. Cel naukowy projektu Wiele społecznych i biologicznych procesów można modelować jako systemy oddziałujących obiektów. Naszym celem jest wyprowadzenie makroskopowego zachowania
Równania różniczkowe z opóźnieniem w opisie zjawisk biologicznych
Równania różniczkowe z opóźnieniem w opisie zjawisk biologicznych Marek Bodnar Zakład Biomatematyki i Teorii Gier, Instytut Matematyki Stosowanej i Mechaniki, Wydział Matematyki, Informatyki i Mechaniki,
Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Hypatia? 415 PROCESY KAWAŁKAMI DETERMINISTYCZNE I ICH ASYMPTOTYKA RYSZARD RUDNICKI ŚLADAMI KOBIET W MATEMATYCE RZESZÓW, Strona 1 z 36 Wróć
Strona 1 z 36 Wróć PROCESY KAWAŁKAMI Hypatia? 415 DETERMINISTYCZNE I ICH ASYMPTOTYKA RYSZARD RUDNICKI ŚLADAMI KOBIET W MATEMATYCE RZESZÓW, 23.06.2017 Strona 2 z 36 Wróć Plan: Co to sa procesy kawałkami
Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych
Publiczna obrona rozprawy doktorskiej Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych Piotr Miłoś Instytut Matematyczny Polskiej Akademii Nauk 23.10.2008 Warszawa Plan 1 Układy
EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka
Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj
EGZAMIN DYPLOMOWY, część II, Biomatematyka
Biomatematyka Badamy wpływ dwóch czynników mutagennych na DNA. W tym celu podczas każdej replikacji nić DNA poddawana jest na przemian działaniu pierwszego i drugiego czynnika wywołującego mutacje. Wiemy,
Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne. Adam Bobrowski, IM PAN Katowice
Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne Adam Bobrowski, IM PAN Katowice 1 Tematyka cyklu referatów Dryf genetyczny Matematyczne modele równowagi między mutacja
11. Gry Macierzowe - Strategie Czyste i Mieszane
11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy
Rozkład materiału z biologii dla klasy III AD. 7 godz / tyg rok szkolny 2016/17
Rozkład materiału z biologii dla klasy III AD zakres rozszerzony LO 7 godz / tyg rok szkolny 2016/17 Biologia na czasie 2 zakres rozszerzony nr dopuszczenia 564/2/2012 Biologia na czasie 3 zakres rozszerzony
EGZAMIN DYPLOMOWY, część II, Biomatematyka
Biomatematyka Niech X n oznacza proporcję pozycji w nici DNA, które po n replikacjach są obsadzone takimi samymi nukleotydami, jak w chwili początkowej, tak więc X 0 = 1. Zakładamy, że w każdej replikacji
2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27
SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;
Hopfa w modelach reakcji biochemicznych z opóźnieniem
Nieujemność rozwiazań, stabilność i bifurkacja Hopfa w modelach reakcji biochemicznych z opóźnieniem Marek Bodnar Wydział Matematyki, Informatyki i Mechaniki, Instytut Matematyki Stosowanej i Mechaniki,
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki
Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II
Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,
BioFizMat 5. Bistabilny przełącznik genetyczny
BioFizMat 5 Bistabilny przełącznik genetyczny Marta Tyran-Kamińska Instytut Matematyki Uniwersytet Śląski Warszawa, 9 grudnia 2016 Badania finansowane przez NCN grant 2014/13/B/ST1/00224 Od DNA poprzez
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
EGZAMIN MAGISTERSKI, 18 września 2013 Biomatematyka
Biomatematyka Liczebność populacji pewnego gatunku jest modelowana przez równanie różnicowe w którym N k stałymi. rn 2 n N n+1 =, A+Nn 2 oznacza liczebność populacji w k tej generacji, a r i A są dodatnimi
Twierdzenie 2: Własności pola wskazujące na istnienie orbit
Cykle graniczne Dotychczas zajmowaliśmy się głównie znajdowaniem i badaniem stabilności punktów stacjonarnych. Wiele ciekawych procesów ma naturę cykliczną. Umiemy już sobie poradzić z cyklicznością występującą
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
ALGORYTMY GENETYCZNE (wykład + ćwiczenia)
ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
ALHE Z11 Jarosław Arabas wykład 11
ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
Teoria gier. Strategie stabilne ewolucyjnie Zdzisław Dzedzej 1
Teoria gier Strategie stabilne ewolucyjnie 2012-01-11 Zdzisław Dzedzej 1 John Maynard Smith (1920-2004) 2012-01-11 Zdzisław Dzedzej 2 Hawk- Dove Game Przedstawimy uproszczony model konfliktu omówiony w
Centralne twierdzenie graniczne
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1
TEORIA ERGODYCZNA. Bartosz Frej Instytut Matematyki i Informatyki Politechniki Wrocławskiej
TEORIA ERGODYCZNA Bartosz Frej Instytut Matematyki i Informatyki Politechniki Wrocławskiej Przedmiot zainteresowania Teoria ergodyczna to dziedzina matematyki zajmująca się badaniem przekształceń określonych
Elementy modelowania matematycznego
Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny
EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka
Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości
Układy dynamiczne. proseminarium dla studentów III roku matematyki. Michał Krych i Anna Zdunik. rok akad. 2014/15
Układy dynamiczne proseminarium dla studentów III roku matematyki Michał Krych i Anna Zdunik rok akad. 2014/15 Układy dynamiczne Układy dynamiczne Układy dynamiczne, i związana z nimi Teoria ergodyczna
Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych
Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Modelowanie stochastyczne Stochastic Modeling. Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2C
Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka przemysłowa Rodzaj zajęć: wykład, ćwiczenia Modelowanie stochastyczne Stochastic Modeling Poziom przedmiotu:
Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.
Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi
TEORIA CHAOSU. Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska
TEORIA CHAOSU Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska Wydział MiNI Politechnika Warszawska Rok akademicki 2015/2016 Semestr letni Krótki kurs historii matematyki DEFINICJA
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
Konstruktywne metody znajdowania równowag w dużych gospodarkach.
Konstruktywne metody znajdowania równowag w dużych gospodarkach. Łukasz Balbus 1 Wojewódzki Urza d Pracy w Zielonej Górze, 28 Maja 2014 1 Uniwersytet Zielonogórski. Cele teorii gier w ekonomii: próba zrozumenia
Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE
1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie
ϕ(t k ; p) dla pewnego cigu t k }.
VI. Trajektorie okresowe i zbiory graniczne. 1. Zbiory graniczne. Rozważamy równanie (1.1) x = f(x) z funkcją f : R n R n określoną na całej przestrzeni R n. Będziemy zakładać, że funkcja f spełnia założenia,
Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści
Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, 2012 Spis treści Przedmowa 5 Oznaczenia i konwencje 7 Rozdział I Rozkład wykładniczy i rozkład jednostajny 1. Wprowadzenie
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2017/2018 Studia stacjonarne I
STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
Do czego przydaje się matematyka? Od układów dynamicznych, przez optymalizację, do algorytmów genetycznych
Do czego przydaje się matematyk(a)? Od układów dynamicznych, przez optymalizację, do algorytmów genetycznych Interdyscyplinarne Centrum Modelowania UW 26 października 2012 Spis treści wykładu 1 Wstęp 2
Wykład 11: Martyngały: definicja, twierdzenia o zbieżności
RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n
Stabilność II Metody Lapunowa badania stabilności
Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli
Metody probabilistyczne
Metody probabilistyczne Teoria estymacji Jędrzej Potoniec Bibliografia Bibliografia Próba losowa (x 1, x 2,..., x n ) Próba losowa (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) Próba losowa (x 1, x 2,...,
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie.
Teoria ewolucji Podstawowe pojęcia. Wspólne pochodzenie. Informacje Kontakt: Paweł Golik Instytut Genetyki i Biotechnologii, Pawińskiego 5A pgolik@igib.uw.edu.pl Informacje, materiały: http://www.igib.uw.edu.pl/
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x),
Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: Fx sinx, Fx a e x mogą być dystrybuantami?. Podaj twierdzenie Lindeberga
Metody probabilistyczne
Metody probabilistyczne 6. Momenty zmiennych losowych Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 8.11.2018 1 / 47 Funkcje zmiennych losowych Mierzalna funkcja Y
Kurs z NetLogo - część 4.
Kurs z NetLogo - część 4. Mateusz Zawisza Zakład Wspomagania i Analizy Decyzji Instytut Ekonometrii Szkoła Główna Handlowa Seminarium Wieloagentowe Warszawa, 10.01.2011 Agenda spotkań z NetLogo 15. listopada
PROGRAM. XVIII Krajowej Konferencji Zastosowań Matematyki w Biologii i Medycynie
Niedziela 23 września 2012 16 00 18 00 Rejestracja uczestników 18 00 Kolacja 19 30 22 00 Rejestracja uczestników Poniedziałek 24 września 2012 9 15 Otwarcie konferencji Sesja I, przewodniczący: Mariusz
Wykład 4, 5 i 6. Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej
Wykład 4, 5 i 6 Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak
WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień
Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Narzędzia przypomnienie podstawowych definicji i twierdzeń z rachunku prawdopodobienstwa; podstawowe rozkłady statystyczne
Zmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
10. Wstęp do Teorii Gier
10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Matematyka ubezpieczeń życiowych r.
. W populacji, w której śmiertelnością rządzi prawo de Moivre a z wiekiem granicznym ω = 50, dzieckiem jest się do wieku d. W wieku d rozpoczyna się pracę i pracuje się do wieku p.w wieku p przechodzi
19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136
Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 19 marzec, 2012 Przykłady procesów Markowa (i). P = (p ij ) - macierz stochastyczna, tzn. p ij 0, j p ij =
Lista 1. Procesy o przyrostach niezależnych.
Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)
Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1
Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,
Nowe terapie choroby Huntingtona. Grzegorz Witkowski Katowice 2014
Nowe terapie choroby Huntingtona Grzegorz Witkowski Katowice 2014 Terapie modyfikujące przebieg choroby Zahamowanie produkcji nieprawidłowej huntingtyny Leki oparte o palce cynkowe Małe interferujące RNA
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Wprowadzenie do modelowania matematycznego w biologii. Na podstawie wykładów dr Urszuli Foryś, MIM UW
Wprowadzenie do modelowania matematycznego w biologii Na podstawie wykładów dr Urszuli Foryś, MIM UW Model matematyczny Jest to teoretyczny opis danego zjawiska na podstawie bieżącej wiedzy (często zwany
Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna
Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)
Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?
Modelowanie Preferencji a Ryzyko Dlaczego w dylemat więźnia warto grać kwantowo? Marek Szopa U n iwe r s y t e t Ś l ą s k i INSTYTUT FIZYKI im. Augusta Chełkowskiego Zakład Fizyki Teoretycznej Klasyczny
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Co ma piekarz do matematyki?
Instytut Matematyki i Informatyki Politechnika Wrocławska Dolnośląski Festiwal Nauki Wrzesień 2009 x x (x 1, x 2 ) x (x 1, x 2 ) (x 1, x 2, x 3 ) x (x 1, x 2 ) (x 1, x 2, x 3 ) (x 1, x 2, x 3, x 4 ). x
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
Prawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
Zmienność. środa, 23 listopada 11
Zmienność http://ggoralski.com Zmienność Zmienność - rodzaje Zmienność obserwuje się zarówno między poszczególnymi osobnikami jak i między populacjami. Różnice te mogą mieć jednak różne podłoże. Mogą one
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
EGZAMIN MAGISTERSKI, czerwiec 2015 Biomatematyka
Biomatematyka Rozpatrzmy chorobę, która rozprzestrzenia się za pośrednictwem nosicieli, u których nie występują jej symptomy. Niech C(t) oznacza liczbę nosicieli w chwili t. Zakładamy, że nosiciele są
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
Autorzy: Anna Gambin, Urszula Foryś, Jacek Miękisz, Bartosz Wilczyński
Nowoczesne metody, leki i terapie w ochronie zdrowia i gospodarce Europy XXI wieku interdyscyplinarne kształcenie w obszarze nauk biomedycznych na studiach II i III stopnia, POKL.04.03.00-00-060/12 Zadanie
MODELE STOCHASTYCZNE Plan wykładu
UNIWERSYTET WROCŁAWSKI Wydział Matematyki i Informatyki Instytut Matematyczny M.Majsnerowska rok akademicki 2018/2019 MODELE STOCHASTYCZNE Plan wykładu 1. Łańcuchy Markowa 1.1. Podstawowe pojęcia i przykłady
Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska
VI Matematyczne Warsztaty KaeNeMów p. 1/2 Superdyfuzja Maria Knorps maria.knorps@gmail.com Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p.
Teoria ergodyczności: co to jest? Średniowanie po czasie vs. średniowanie po rozkładach Twierdzenie Poincare o powrocie Twierdzenie ergodyczne
WYKŁAD 23 1 Teoria ergodyczności: co to jest? Średniowanie po czasie vs. średniowanie po rozkładach Twierdzenie Poincare o powrocie Twierdzenie ergodyczne (Birkhoff, Ter Haar) Hipoteza semi-ergodyczna
Wstęp do równań różniczkowych, studia I stopnia. 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x.
Wstęp do równań różniczkowych, studia I stopnia 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x. 2. Znaleźć wszystkie (i narysować przykładowe) rozwiązania równania y + 3 3 y 2