Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.
|
|
- Lidia Brzozowska
- 8 lat temu
- Przeglądów:
Transkrypt
1
2 Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Uogólnienie na przeliczalnie nieskończone przestrzenie stanów zostało opracowane przez Kołmogorowa w Łańcuchy Markowa mają związek z ruchami Browna oraz hipotezą ergodyczną, dwoma ważnymi w fizyce tematami, ale powstały jako uogólnienie prawa wielkich liczb na zdarzenia zależne.
3 Proces Markowa ciąg zdarzeń, w którym prawdopodobieństwo każdego zdarzenia zależy jedynie od wyniku poprzedniego. W ujęciu matematycznym, procesy Markowa to takie procesy stochastyczne, które spełniają własność Markowa. Łańcuchy Markowa to procesy Markowa z czasem dyskretnym. Łańcuch Markowa jest ciągiem X 1, X 2, X 3,... zmiennych losowych. Dziedzinę tych zmiennych nazywamy przestrzenią stanów, a realizacje X n to stany w czasie n. Jeśli rozkład warunkowy X n+1 jest funkcją wyłącznie zmiennej X n : to mówimy, że proces stochastyczny posiada własność Markowa.
4 Rozkład początkowy: Rozkładem początkowym nazywamy rozkład (dyskretny) zmiennej X 0. Macierz przejść: Jeśli łańcuch Markowa jest jednorodny, rozkład prawdopodobieństw przejść między poszczególnymi stanami może być przedstawiony jako macierz, zwaną macierzą prawdopodobieństw przejścia. Jest to macierz stochastyczna, oznaczamy zwykle literą P, gdzie wyraz (i, j) wyraża się wzorem: Z jednorodności wynika, że rzeczywiście p i,j nie zależy od n. Przykładowo element p 1,3 oznacza prawdopodobieństwo przejścia ze stanu pierwszego do stanu trzeciego.
5 Równania Chapmana-Kołgomorowa: Prawdopodobieństwo przejścia ze stanu i do stanu j w n krokach nazywamy prawdopodobieństwem warunkowym. Dla prawdopodobieństw przejść spełnione są następujące równanie, nazywane równaniami Chapmana-Kołmogorowa: Intuicyjnie jest jasne, że aby dojść do stanu j można po drodze przejść przez dowolny inny stan skomunikowany z j i i. Stosując zapis macierzowy, równania Chapmana- Kołmogorowa można zapisać w postaci: gdzie przez P n jest macierzą przejść w n krokach.
6 Klasyfikacja stanów: Mówi się, że: stan i jest osiągalny ze stanu j, jeśli p j,i >0; stany i i j są skomunikowane, jeśli są wzajemnie osiągalne. Oznaczenie: i j. Można wykazać, że relacja skomunikowania jest relacją równoważności. Zatem zbiór możliwych stanów można podzielić na klasy abstrakcji względem tej relacji. Każda z klas tworzy zbiór stanów wzajemnie skomunikowanych. Stany chwilowe i rekurencyjne: Niech f i oznacza prawdopodobieństwo tego, że startując ze stanu i łańcuch kiedykolwiek do niego powróci. Jeśli f i = 1 to stan i nazywany jest rekurencyjnym. Jeśli f i < 1 to stan i nazywany jest chwilowym. Każdy stan jest albo chwilowy albo rekurencyjny. Stan i jest rekurencyjny wtedy i tylko wtedy, gdy:
7 Przyjrzyjmy się przykładom sytuacji, które można za ich pomocą opisywać i pytań, na które pozwalają one odpowiadać. Przykład 1: Student raz w tygodni bierze udział w zajęciach z rachunku prawdopodobieństwa. Na każde zajęcia przychodzi przygotowany bądź nie. Jeśli w danym tygodniu jest przygotowany, to w następnym jest przygotowany z prawdopodobieństwem 0.7. Jeśli natomiast w danym tygodniu nie jest przygotowany, to w następnym jest przygotowany z prawdopodobieństwem 0.2. Interesują nas odpowiedzi na pytania w rodzaju: Jeśli student jest w tym tygodniu nieprzygotowany, to ile tygodni musimy średnio czekać aż będzie przygotowany? Na dłuższą metę, jak często student jest przygotowany?
8 Przykład 2: Hazardzista zaczyna grać z kapitałem początkowym 1000 zł. W każdej rundzie rozgrywki z prawdopodobieństwem 0.5 wygrywa 10 zł i z prawdopodobieństwem 0.5 przegrywa 10zł. Celem hazardzisty jest zdobycie kwoty 5000zł, ale zakończy grę także jeśli wcześniej zbankrutuje. Jakie jest prawdopodobieństwo, że uda mu się zdobyć 5000zł? Jak długo musi średnio grać, aby zdobyć tę kwotę lub zbankrutować? Co jeśli hazardzista nie przestaje grać, chyba że zbankrutuje? Jakie jest prawdopodobieństwo tego, że się to stanie? (ignorujemy w tym miejscu, to że wcześniej umrze/zachoruje/zaśnie/inne) Wniosek: Zauważmy, że we wszystkich powyższych przykładach mamy do czynienia z obiektem/systemem/układem, który zawsze znajduje się w jednym z pewnej liczby stanów (student jest w stanie "przygotowany", bądź w stanie "nieprzygotowany", hazardzista w stanie "0zł", "1zł", itd.). Ponadto stan, w którym znajdzie się za chwilę jest wybierany losowo, ale prawdopodobieństwa znalezienia się w poszczególnych stanach zależą tylko od aktualnego stanu.
9 Przykład 1: Pchła skacze między ziemią, kotem i człowiekiem. Za każdym razem wybiera miejsce docelowe z takim samym prawdopodobieństwem (równym ). Mogłaby tak skakać w nieskończoność, gdyby nie to, że po wskoczeniu na człowieka ginie. Ile średnio skoków pchła wykona przed śmiercią, jeżeli zaczyna na ziemi? Wartość zmiennej losowej to suma wszystkich iloczynów postaci: Wypiszemy wszystkie możliwe drogi pchły: zginie ona po 1 skoku, jeżeli od razu skoczy na człowieka, co zapisujemy C ; po 2 skokach KC (najpierw na kota, potem na człowieka), po 3 skokach KZC po 4 skokach KZKC i tak dalej. Każdy taki ciąg długości r ma prawdopodobieństwo (1/2^r), r=1,2,, a zatem średnio pchła wykona skoków. Oznaczając średnią ilość skoków pchły możemy wyznaczyć, sumując poniższe wyrażenie kolumnami:
10 A zatem pchła wykona średnio 2 skoki.
11 Rozbudujmy ten przykład i wpuśćmy do pokoju psa. Zasady skoków pchły pozostają takie same, ale teraz prawdopodobieństwo wyboru każdego docelowego miejsca skoku to 1/3. Możemy rozwiązywać zadanie tak samo jak przedtem będzie to nieco dłuższe, ale nadal wykonalne. Można też nieco inaczej. W obu powyższych zagadnieniach miejsce kolejnego przeskoku zależy tylko od tego, gdzie pchła znajduje się w danej chwili, a nie od jej przeszłej podróży. Ponadto z góry wiadomo, jakie są możliwe położenia pchły, tak zwane stany {Z,K,C} lub {Z,K,P,C} oraz jakie są reguły poruszania się między stanami. Oznacza to, że w obu przypadkach mamy do czynienia z łańcuchem Markowa. Reguły przeskoku to prawdopodobieństwa przejścia między stanami. Prawdopodobieństwo przejścia ze stanu i do stanu j oznaczamy przez Pi,j. W zagadnieniu I mamy: dla kompletności przyjmiemy jeszcze Pcc= 1. W zagadnieniu II jest podobnie:
12 oraz Pcc=1. Wygodnie jest zapisać takie prawdopodobieństwa w macierzy albo wyrysować je jako graf. Na przykład dla właściciela dwóch zwierząt macierz oraz graf będą wyglądać następująco:
13 W ogólnej sytuacji powiemy, że ciąg zmiennych losowych X 0, X 1, X 2,... tworzy jednorodny łańcuch Markowa o przestrzeni stanów S={E 1,, E n }, jeżeli dla dowolnego n=0,1,2,.. i dowolnego ciągu stanów E i0,., E in, E in+1 mamy Oznacza to, że dochodząc do każdego stanu, łańcuch zapomina, skąd przyszedł, a prawdopodobieństwa przejścia w następnym ruchu zależą tylko od położenia bieżącego. Własność tę nazywamy własnością Markowa i tak właśnie jest w powyższych przykładach.
14 Losowanie obiektów: Aby wygenerować losowy obiekt zgodnie z pewnym rozkładem konstruujemy łańcuch Markowa dla którego rozkład ten jest rozkładem stacjonarnym, po czym wykonujemy odpowiednio długie symulacje tego łańcucha. To podejście nazywa się metodą Monte Carlo z wykorzystaniem łańcuchów Markowa (ang. Markov Chain Monte Carlo). Modelowanie: Za pomocą łańcuchów Markowa można skutecznie modelować wiele naturalnych procesów i struktur. Na przykład modelując w ten sposób język naturalny można zbudować algorytm kompresji tekstu. Alternatywnie, modeli takich można użyć do generowania losowych tekstów. Modele Markowa pojawiają się też bardzo często w biologii obliczeniowej. PageRank: Imponującym zastosowaniem łańcuchów Markowa jest stworzony przez firmę Google algorytm szeregowania stron PageRank. Algorytm ten bazuje na łańcuchu Markowa, który jest modelem procesu poruszania się użytkownika po zbiorze wszystkich (znanych systemowi) stron WWW.
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II
Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem
Procesy stochastyczne
Wykład IV: dla łańcuchów Markowa 14 marca 2017 Wykład IV: Klasyfikacja stanów Kiedy rozkład stacjonarny jest jedyny? Przykład Macierz jednostkowa I wymiaru #E jest macierzą stochastyczną. Dla tej macierzy
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Elementy modelowania matematycznego
Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny
Lista 1. Procesy o przyrostach niezależnych.
Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)
Wykład 9: Markov Chain Monte Carlo
RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa
Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.
Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Graniczne własności łańcuchów Markowa
Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Graniczne własności łańcuchów Markowa Toruń, 2003 Co to jest łańcuch Markowa? Każdy skończony, jednorodny łańcuch Markowa
Maciej Piotr Jankowski
Reduced Adder Graph Implementacja algorytmu RAG Maciej Piotr Jankowski 2005.12.22 Maciej Piotr Jankowski 1 Plan prezentacji 1. Wstęp 2. Implementacja 3. Usprawnienia optymalizacyjne 3.1. Tablica ekspansji
Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:
Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie
MODELOWANIE STOCHASTYCZNE CZĘŚĆ II - ŁAŃCUCHY MARKOWA. Biomatematyka Dr Wioleta Drobik-Czwarno
MODELOWANIE STOCHASTYCZNE CZĘŚĆ II - ŁAŃCUCHY MARKOWA Biomatematyka Dr Wioleta Drobik-Czwarno Polecane Łańcuchy Markowa wizualnie: http://setosa.io/ev/markov-chains/ Procesy stochastyczne Procesem stochastycznym
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: MATEMATYKA STOSOWANA 2. Kod przedmiotu: Ms 3. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Nawigacja morska
19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136
Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 19 marzec, 2012 Przykłady procesów Markowa (i). P = (p ij ) - macierz stochastyczna, tzn. p ij 0, j p ij =
( n) Łańcuchy Markowa X 0, X 1,...
Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}
Schemat programowania dynamicznego (ang. dynamic programming)
Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
PageRank. Bartosz Makuracki. 28 listopada B. Makuracki PageRank
PageRank Bartosz Makuracki 28 listopada 2013 Definicja Definicja PageRank jest algorytmem używanym przez wyszukiwarkę Google do ustalania kolejności stron pojawiających się w wynikach wyszukiwania. Definicja
Wokół wyszukiwarek internetowych
Wokół wyszukiwarek internetowych Bartosz Makuracki 23 stycznia 2014 Przypomnienie Wzór x 1 = 1 d N x 2 = 1 d N + d N i=1 p 1,i x i + d N i=1 p 2,i x i. x N = 1 d N + d N i=1 p N,i x i Oznaczenia Gdzie:
zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.
Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie
i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =
Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Dane w postaci grafów Przykład: social network 3 Przykład: media network 4 Przykład: information network
Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, Spis treści
Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, 2012 Spis treści Od Wydawnictwa 5 Z przedmowy autora do wydania pierwszego 7 Z przedmowy autora do wydania drugiego
10. Wstęp do Teorii Gier
10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej
Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=
Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Modelowanie stochastyczne Stochastic Modeling. Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2C
Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka przemysłowa Rodzaj zajęć: wykład, ćwiczenia Modelowanie stochastyczne Stochastic Modeling Poziom przedmiotu:
Algorytm Metropolisa-Hastingsa
Seminarium szkoleniowe, 25 kwietnia 2006 Plan prezentacji 1 Problem Metoda MCMC 2 Niezależny algorytm Metropolisa-Hastingsa Bła dzenie losowe Zbieżność procedury Metropolisa-Hastingsa Problem Metoda MCMC
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,
Układy równań liniowych
Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
1 Układy równań liniowych
II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 7 Modele Markova Spis treści Wstęp Łańcuch i procesy Markova Przykłady procesów Markova Wstęp Andrey Andreyevich Markov (14 czerwca 1856 20 czerwca 1922) wybitny
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:
2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
Rachunek Prawdopodobieństwa Anna Janicka
Rachunek Prawdopodobieństwa Anna Janicka wykład XIV, 24.01.2017 ŁAŃCUCHYMARKOWA CD. KRÓTKIE INFO O RÓŻNYCH WAŻNYCH ROZKŁADACH Plan na dzisiaj Łańcuchy Markowa cd. Różne ważne rozkłady prawdopodobieństwa,
Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )
Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1
Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,
Rysunek 1 Przykładowy graf stanów procesu z dyskretnymi położeniami.
Procesy Markowa Proces stochastyczny { X } t t nazywamy rocesem markowowskim, jeśli dla każdego momentu t 0 rawdoodobieństwo dowolnego ołożenia systemu w rzyszłości (t>t 0 ) zależy tylko od jego ołożenia
MODELE STOCHASTYCZNE Plan wykładu
UNIWERSYTET WROCŁAWSKI Wydział Matematyki i Informatyki Instytut Matematyczny M.Majsnerowska rok akademicki 2018/2019 MODELE STOCHASTYCZNE Plan wykładu 1. Łańcuchy Markowa 1.1. Podstawowe pojęcia i przykłady
Fizyka statystyczna Procesy stochastyczne. P. F. Góra
Fizyka statystyczna Procesy stochastyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Procesy stochastyczne motywacja Układy makroskopowe maja bardzo dużo stopni swobody, rzędu liczby Avogadra,
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką
z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Programowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Analiza Algorytmów 2018/2019 (zadania na laboratorium)
Analiza Algorytmów 2018/2019 (zadania na laboratorium) Wybór lidera (do 9 III) Zadanie 1 W dowolnym języku programowania zaimplementuj symulator umożliwiający przetestowanie algorytmu wyboru lidera ELECT
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI
Zał. nr do ZW WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (Zao EA EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy):
Matematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) =
Matematyka A kolokwium 6 kwietnia 7 r., godz. 8:5 : Starałem się nie popełniać błędów, ale jeśli są, będę wdzięczny za wieści o nich Mam też nadzieję, że niektórzy studenci zechcą zrozumieć poniższy tekst,
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2014/2015 Język wykładowy: Polski Semestr
UKŁADY RÓWNAŃ LINIOWYCH
Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
7. CIĄGI. WYKŁAD 5. Przykłady :
WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na
Relacje. opracował Maciej Grzesiak. 17 października 2011
Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla
Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1
Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy
Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną
Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną Anna Szymańska Katedra Metod Statystycznych Uniwersytet Łódzki Taryfikacja w ubezpieczeniach
Rozwiazywanie układów równań liniowych. Ax = b
Rozwiazywanie układów równań liniowych Ax = b 1 PLAN REFERATU: Warunki istnienia rozwiazań układu Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów - algorytm rekurencyjny Rozwiazanie układu
2. DZIAŁANIA NA WIELOMIANACH
WIELOMIANY 1. Stopieo wielomianu. Działania na wielomianach 2. Równość wielomianów. 3. Pierwiastek wielomianu. Rozkład wielomianu na czynniki 4. Równania wielomianowe. 1.STOPIEŃ WIELOMIANU Wielomian to
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Gramatyki bezkontekstowe I Gramatyką bezkontekstową
Aby mówić o procesie decyzyjnym Markowa musimy zdefiniować następujący zestaw (krotkę): gdzie:
Spis treści 1 Uczenie ze wzmocnieniem 2 Proces decyzyjny Markowa 3 Jak wyznaczyć optymalną strategię? 3.1 Algorytm iteracji funkcji wartościującej 3.2 Algorytm iteracji strategii 4 Estymowanie modelu dla
Algorytmy MCMC i ich zastosowania statystyczne
Algorytmy MCMC i ich zastosowania statystyczne Wojciech Niemiro Uniwersytet Mikołaja Kopernika, Toruń i Uniwersytet Warszawski Statystyka Matematyczna Wisła, grudzień 2010 Wykład 3 1 Łańcuchy Markowa Oznaczenia
Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa
Kampus Ochota 18 kwietnia 2015 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Andrey (Andrei)
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim BADANIA OPERACYJNE Nazwa w języku angielskim Operational research Kierunek studiów (jeśli dotyczy): Matematyka
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka
Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości
wagi cyfry 7 5 8 2 pozycje 3 2 1 0
Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień
Algorytmy zrandomizowane
Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
CIĄGI wiadomości podstawowe
1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie
KARTA PRZEDMIOTU. 12. Przynależność do grupy przedmiotów: Prawdopodobieństwo i statystyka
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: RACHUNEK PRAWDOPODOBIEŃSTWA 2. Kod przedmiotu: RPr 3. Karta przedmiotu ważna od roku akademickiego: 20152016 4. Forma
Wielomiany podstawowe wiadomości
Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Autostopem przez galaiktykę: Intuicyjne omówienie zagadnień. Tom I: Optymalizacja. Nie panikuj!
Autostopem przez galaiktykę: Intuicyjne omówienie zagadnień Tom I: Optymalizacja Nie panikuj! Autorzy: Iwo Błądek Konrad Miazga Oświadczamy, że w trakcie produkcji tego tutoriala nie zginęły żadne zwierzęta,
Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe
Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Empik każdego inspiruje inaczej Aleksander Puszkin (1799 1837) Andrey (Andrei) Andreyevich Markov (1856 1922) Wśród 20 tysięcy początkowych
Indukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
Wprowadzenie do modelowania matematycznego w biologii. Na podstawie wykładów dr Urszuli Foryś, MIM UW
Wprowadzenie do modelowania matematycznego w biologii Na podstawie wykładów dr Urszuli Foryś, MIM UW Model matematyczny Jest to teoretyczny opis danego zjawiska na podstawie bieżącej wiedzy (często zwany
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 12a: Prawdopodobieństwo i algorytmy probabilistyczne http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Teoria prawdopodobieństwa
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
KARTA PRZEDMIOTU. Forma prowadzenia zajęć. Odniesienie do efektów dla kierunku studiów K1A_W02
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: RACHUNEK PRAWDOPODOBIEŃSTWA 2. Kod przedmiotu: RPr 3. Karta przedmiotu ważna od roku akademickiego: 20182019 4. Forma
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność
Rachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
1. Symulacje komputerowe Idea symulacji Przykład. 2. Metody próbkowania Jackknife Bootstrap. 3. Łańcuchy Markova. 4. Próbkowanie Gibbsa
BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
KARTA KURSU. Probability theory
KARTA KURSU Nazwa Nazwa w j. ang. Rachunek prawdopodobieństwa Probability theory Kod Punktacja ECTS* 4 Koordynator Dr Ireneusz Krech Zespół dydaktyczny Dr Ireneusz Krech Dr Robert Pluta Opis kursu (cele