Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów
|
|
- Maja Orzechowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14 listopada 2013 Proseminarium licencjackie
2 Dlaczego opóźnienie czasowe może powodować powstawanie cykli Przykład t=0,1, dynamika strzałkowa -m 0 m wprowadźmy opóźnienie warunki początkowe Pojawia się cykl stabilny o amplitudzie i okresie
3 Wprowadźmy stochastyczne zaburzenie z prawdopodobieństwem 1 - ε = z prawdopodobieństwem ε Otrzymaliśmy prosty przykład dynamiki stochastycznej z opóźnieniem czasowym
4 m = 20 = 9 ε = 0.1
5 jeżeli przez stan naszego układu w czasie t będziemy uważaćτ+ 1 położeń (x(t), x(t-1), x(t-2), x(t-τ)) to otrzymamy ergodyczny łańcuch Markowa z rozkładem stacjonarnym µ ε i przestrzenią stanówω Definicja jest stochastycznie stabilny jeśli lim ε 0 µ ε (x) > 0 (=1) Twierdzenie lim ε 0 µ ε (cykl) = 1
6 Dynamika populacji czas A i B - dwa możliwe zachowania, fenotypy, strategie osobników
7 GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J Z
8 Równowaga Nasha Jak grać? Przypisanie graczom strategii, tak iż żadnemu z graczy, przy ustalonych strategiach wszystkich innych graczy, nie opłaca się zmienić swojej strategii
9 Formalnie gra w jelenia i zająca (St,St) równowaga efektywna (H,H) równowaga bezpieczna średnia St - 5/2 średnia H - 3 problem wyboru równowagi
10 Prosty model ewolucji Selekcja osobnicy oddziałują w parach grają w gry uzyskują wypłaty = liczba potomstwa Fenotypy są dziedziczone Potomstwo może mutować
11 Dobór osobników do gry każdy gra z każdym losowe spotkania graczy gry na grafach, populacje ze strukturą przestrzenną
12 Stochastyczna dynamika skończonych populacji n - liczba osobników z t - liczba osobników grających A w czasie t Ω ={0,,n} - przestrzeń stanów z t+1 > z t selekcja jeśli średnia z A > średnia z B mutacje Każdy osobnik może zmienić swoją strategię z prawdopodobieństwem ε
13 Łańcuch Markowa z jedyną miarą stacjonarną µ ε n
14 Klasyczne wyniki Każdy gra z każdym, Kandori-Mailath-Rob 1993 A B A a b B c d a>c i d>b, (A,A) i (B,B) równowagi Nasha A jest stategią efektywną, a>d B jest strategią dominującą ze względu na ryzyko c+d>a+b
15 Lemat drzewny (Freidlin and Wentzell) ergodyczny łańcuch Markowa ze skończona przestrzenią Ω, macierzą przejścia P ε, i jedyną miarą stacjonarną µ ε z 1 z 2 z 3 P ε (z 4 z 1 ) z 4 z 5 x
16 Gry przestrzenne z lokalnymi oddziaływaniami
17 Dynamika deterministyczna reguła najlepszej odpowiedzi i Br(St,St)=St Br(H,H)=H Br(H,St)=Br(St,H)=H
18 Dynamika stochastyczna a) zaburzona najlepsza odpowiedź z prawdopodobieństwem, 1-ε gracz wybiera najlepszą odpowiedź z prawdopodobieństwem ε gracz myli się b) reguła log-linear
19 Jeleń i Zając na Z, z oddziaływaniem najbliższych sąsiadów i zaburzoną najlepszą odpowiedzią liczenie błedów
20 Deterministyczna dynamika replikatorowa A B U = A a b B c d p A (t) liczba osobników grających strategią A w czasie t p B (t) liczba osobników grających strategią B w czasie t U A = ax + b(1-x) U B = cx + d(1-x) Proponujemy p A (t+ε)=(1-ε)p A (t) + εp A (t)u A (t) U av = xu A +(1-x)U B
21 p A (t+ε) = (1-ε)p A (t) + εp A (t)u A (t) p B (t+ε) = (1-ε)p B (t) + εp B (t)u B (t) p(t+ε) = (1-ε)p(t) + εp(t)u av (t)
22 dx/dt = x(1-x)(u A U B ) Polowanie na jelenia J Z J 5 0 Z 3 3 Gołąb - Jastrząb 0 3/ 5 1 wewnętrzny stan stacjonarny jest niestabilny J G J -1 2 G /2 1 wewnętrzny stan stacjonarny jest stabilny
23 Opóźnienie czasowe Opóźnienie typu społecznego Zakładamy, że gracze w czasie t replikują się proporcjonalnie do średniej wypłaty w czasie t-τ Proponujemy x *
24 Odpowiednie równanie replikatorowe w czasie ciągłym ma następująca postać może być też zapisane jako Twierdzenie (Jan Alboszta i JM, J. Theor. Biol. 231: , 2004) x * jest asymptotycznie stabilny dla odpowiednio małego τ x * jest asymptotycznie niestabilny dla odpowiednio dużego τ
25 Opóźnienie czasowe typu biologicznego Zakładamy, że dzieci rodzą sięτjednostek czasu po tym jak ich rodzice grali i otrzymali wypłaty. Proponujemy Twierdzenie (JA i JM, JTB 2004) x * jest asymptotycznie stabilny dla każdego opóźnienia τ
26 Komórka matematyczna DNA mrna Ø białko Ø
27 Poziom makroskopowy DNA mrna Ø białko Ø
28 Poziom mikroskopowy r - liczba cząsteczek mrna p - liczba cząsteczek białka prawdopodobieństwo zajścia w czasie (t,t+h) proces urodzin i śmierci
29 Symulacje numeryczne algorytm Gillespiego rozkład wykładniczy czasu oczekiwania na zajście reakcji biochemicznej krok 1 - czekamy na zajście jakiejkolwiek reakcji krok 2 - wybór reakcji prawdopodobieństwo, że powstanie jedna cząsteczka białka
30 Opóźnienia czasowe Reakcje biochemiczne są rozciągnięte w czasie Przykłady: średnia prędkość transkrypcji - 20 nucleotydów/s średnia prędkość translacji - 2 kodony/s średnia długość ludzkiego genu nukleotydów, transkrypcja trwa 2750 sekund średnia długość kodującego regionu nukleotydów, translacja trwa 450 sekund
31 Opóźnienia czasowe 1 opóźniona degradacja DNA białko Ø 2 DNA mrna Ø białko opóźniona degradacja Ø Cel: wariancja (p)
32 Model 1 opóźniona degradacja DNA białko Ø Zakłada się niejawnie, że cząsteczka która zaczęła degradować może znowu zostać wylosowana do następnej reakcji degradacji. Powyższy model był badany w Bratsun et al. PNAS 102: (2005). Problem: ujemne rozwiązania
33 Nasze podejście JM, J. Poleszczuk, M. Bodnar, U. Foryś Bulletin of Mathematical Biology 2011 reakcje konsumujące reakcje niekonsumujące Załóżmy, że degradacja jest konsumująca x cząstki aktywne y wszystkie cząstki Rozwiązujemy układ równań różniczkowych i dostajemy brak oscylacji
34 Dziękuję za uwagę
Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych
Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 10 listopada 2016 Proseminarium licencjackie
Bardziej szczegółowoGRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils
GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0
Bardziej szczegółowoTematy prac magisterskich i doktorskich
Tematy prac magisterskich i doktorskich Stochastyczna dynamika z opóźnieniami czasowymi w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki
Bardziej szczegółowoGry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa
Kampus Ochota 18 kwietnia 2015 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Andrey (Andrei)
Bardziej szczegółowoGry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa
Po co nam matematyka? 7 kwietnia 2016 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Empik
Bardziej szczegółowoMatematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe
Matematyk Ci powie, co łączy Eugeniusza Oniegina i gry hazardowe Empik każdego inspiruje inaczej Aleksander Puszkin (1799 1837) Andrey (Andrei) Andreyevich Markov (1856 1922) Wśród 20 tysięcy początkowych
Bardziej szczegółowoZasada średniego potencjału w grach ewolucyjnych. Paweł Nałęcz-Jawecki
Zasada średniego potencjału w grach ewolucyjnych Paweł Nałęcz-Jawecki O czym będzie ten komunikat O czym będzie ten komunikat Jak powiązać procesy błądzenia losowego na dyskretnym grafie ze (stochastycznymi
Bardziej szczegółowoRównania różniczkowe z opóźnieniem w opisie zjawisk biologicznych
Równania różniczkowe z opóźnieniem w opisie zjawisk biologicznych Marek Bodnar Zakład Biomatematyki i Teorii Gier, Instytut Matematyki Stosowanej i Mechaniki, Wydział Matematyki, Informatyki i Mechaniki,
Bardziej szczegółowo11. Gry Macierzowe - Strategie Czyste i Mieszane
11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy
Bardziej szczegółowoAnaliza modelu ekspresji genu białka Hes1
Analiza modelu ekspresji genu białka Hes1 Agnieszka Bartłomiejczyk Politechnika Gdańska Konferencja Śladami Kobiet w Matematyce w stulecie urodzin Profesor Heleny Rasiowej Rzeszów, 24 czerwca 2017 (współautor:
Bardziej szczegółowoH. SKRÓCONY OPIS PROJEKTU
H. SKRÓCONY OPIS PROJEKTU 1. Cel naukowy projektu Wiele społecznych i biologicznych procesów można modelować jako systemy oddziałujących obiektów. Naszym celem jest wyprowadzenie makroskopowego zachowania
Bardziej szczegółowoWykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Bardziej szczegółowoHopfa w modelach reakcji biochemicznych z opóźnieniem
Nieujemność rozwiazań, stabilność i bifurkacja Hopfa w modelach reakcji biochemicznych z opóźnieniem Marek Bodnar Wydział Matematyki, Informatyki i Mechaniki, Instytut Matematyki Stosowanej i Mechaniki,
Bardziej szczegółowoMetody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Bardziej szczegółowoElementy modelowania matematycznego
Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny
Bardziej szczegółowoTeoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 5 - Równowagi w grach n-osobowych Figure: Podział gier Definicje Formalnie, jednoetapowa gra w postaci strategicznej dla n graczy definiowana jest jako:
Bardziej szczegółowo10. Wstęp do Teorii Gier
10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej
Bardziej szczegółowoTwierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych
Publiczna obrona rozprawy doktorskiej Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych Piotr Miłoś Instytut Matematyczny Polskiej Akademii Nauk 23.10.2008 Warszawa Plan 1 Układy
Bardziej szczegółowoHypatia? 415 PROCESY KAWAŁKAMI DETERMINISTYCZNE I ICH ASYMPTOTYKA RYSZARD RUDNICKI ŚLADAMI KOBIET W MATEMATYCE RZESZÓW, Strona 1 z 36 Wróć
Strona 1 z 36 Wróć PROCESY KAWAŁKAMI Hypatia? 415 DETERMINISTYCZNE I ICH ASYMPTOTYKA RYSZARD RUDNICKI ŚLADAMI KOBIET W MATEMATYCE RZESZÓW, 23.06.2017 Strona 2 z 36 Wróć Plan: Co to sa procesy kawałkami
Bardziej szczegółowoAlgorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ
TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o
Bardziej szczegółowoEGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka
Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj
Bardziej szczegółowoPropedeutyka teorii gier
Propedeutyka teorii gier AUTORZY: KAROLINA STOLARCZYK, WIKTOR SZOPIŃSKI, KONRAD TOMASZEK, MATEUSZ ZAKRZEWSKI WYDZIAŁ MINI POLITECHNIKA WARSZAWSKA ROK AKADEMICKI 2016/2017, SEMESTR LETNI KRÓTKI KURS HISTORII
Bardziej szczegółowoEGZAMIN DYPLOMOWY, część II, Biomatematyka
Biomatematyka Niech X n oznacza proporcję pozycji w nici DNA, które po n replikacjach są obsadzone takimi samymi nukleotydami, jak w chwili początkowej, tak więc X 0 = 1. Zakładamy, że w każdej replikacji
Bardziej szczegółowoProcesy stochastyczne
Wykład IV: dla łańcuchów Markowa 14 marca 2017 Wykład IV: Klasyfikacja stanów Kiedy rozkład stacjonarny jest jedyny? Przykład Macierz jednostkowa I wymiaru #E jest macierzą stochastyczną. Dla tej macierzy
Bardziej szczegółowoĆwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II
Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,
Bardziej szczegółowoTeoria gier. Strategie stabilne ewolucyjnie Zdzisław Dzedzej 1
Teoria gier Strategie stabilne ewolucyjnie 2012-01-11 Zdzisław Dzedzej 1 John Maynard Smith (1920-2004) 2012-01-11 Zdzisław Dzedzej 2 Hawk- Dove Game Przedstawimy uproszczony model konfliktu omówiony w
Bardziej szczegółowoWstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, Spis treści
Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, 2012 Spis treści Od Wydawnictwa 5 Z przedmowy autora do wydania pierwszego 7 Z przedmowy autora do wydania drugiego
Bardziej szczegółowoDryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne. Adam Bobrowski, IM PAN Katowice
Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne Adam Bobrowski, IM PAN Katowice 1 Tematyka cyklu referatów Dryf genetyczny Matematyczne modele równowagi między mutacja
Bardziej szczegółowoWykład 11: Martyngały: definicja, twierdzenia o zbieżności
RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n
Bardziej szczegółowoProcesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
Bardziej szczegółowo2010 W. W. Norton & Company, Inc. Oligopol
2010 W. W. Norton & Company, Inc. Oligopol Oligopol Monopol jedna firma na rynku. Duopol dwie firmy na rynku. Oligopol kilka firm na rynku. W szczególności decyzje każdej firmy co do ceny lub ilości produktu
Bardziej szczegółowoStrategie ewolucyjne (ang. evolu4on strategies)
Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje
Bardziej szczegółowoTeoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Bardziej szczegółowoStabilność II Metody Lapunowa badania stabilności
Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli
Bardziej szczegółowoProces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.
Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi
Bardziej szczegółowoLista 1. Procesy o przyrostach niezależnych.
Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)
Bardziej szczegółowoDo czego przydaje się matematyka? Od układów dynamicznych, przez optymalizację, do algorytmów genetycznych
Do czego przydaje się matematyk(a)? Od układów dynamicznych, przez optymalizację, do algorytmów genetycznych Interdyscyplinarne Centrum Modelowania UW 26 października 2012 Spis treści wykładu 1 Wstęp 2
Bardziej szczegółowoAlgorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Bardziej szczegółowoTeoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1
Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,
Bardziej szczegółowoGeometryczna zbieżność algorytmu Gibbsa
Geometryczna zbieżność algorytmu Gibbsa Iwona Żerda Wydział Matematyki i Informatyki, Uniwersytet Jagielloński 6 grudnia 2013 6 grudnia 2013 1 / 19 Plan prezentacji 1 Algorytm Gibbsa 2 Tempo zbieżności
Bardziej szczegółowoUkłady statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki
Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię
Bardziej szczegółowoMODELE STOCHASTYCZNE Plan wykładu
UNIWERSYTET WROCŁAWSKI Wydział Matematyki i Informatyki Instytut Matematyczny M.Majsnerowska rok akademicki 2018/2019 MODELE STOCHASTYCZNE Plan wykładu 1. Łańcuchy Markowa 1.1. Podstawowe pojęcia i przykłady
Bardziej szczegółowozastosowania patron sesji Andrzej Lasota
zastosowania patron sesji Andrzej Lasota Jubileuszowy Zjazd Matematyków Polskich w stulecie Polskiego Towarzystwa Matematycznego Kraków 3-7 września 2019 Table of contents Thursday 05 September 2019...
Bardziej szczegółowo2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27
SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;
Bardziej szczegółowoEGZAMIN DYPLOMOWY, część II, Biomatematyka
Biomatematyka Badamy wpływ dwóch czynników mutagennych na DNA. W tym celu podczas każdej replikacji nić DNA poddawana jest na przemian działaniu pierwszego i drugiego czynnika wywołującego mutacje. Wiemy,
Bardziej szczegółowoPolitechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
Bardziej szczegółowoSCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
Bardziej szczegółowoTadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii
Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą
Bardziej szczegółowoTworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
Bardziej szczegółowoLEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.
LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,
Bardziej szczegółowoDruga zasada termodynamiki a modelowanie sieci.
13 października 2009 O czym będzie mowa? Eksperyment biologiczny eksperyment biologiczny: mikromacierze modelowanie sieci interakcji: II zasada termodynamiki cel: weryfikacja metody metoda symulowania
Bardziej szczegółowoZadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Bardziej szczegółowoSpacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Bardziej szczegółowoZmienność. środa, 23 listopada 11
Zmienność http://ggoralski.com Zmienność Zmienność - rodzaje Zmienność obserwuje się zarówno między poszczególnymi osobnikami jak i między populacjami. Różnice te mogą mieć jednak różne podłoże. Mogą one
Bardziej szczegółowoAutorzy: Anna Gambin, Urszula Foryś, Jacek Miękisz, Bartosz Wilczyński
Nowoczesne metody, leki i terapie w ochronie zdrowia i gospodarce Europy XXI wieku interdyscyplinarne kształcenie w obszarze nauk biomedycznych na studiach II i III stopnia, POKL.04.03.00-00-060/12 Zadanie
Bardziej szczegółowoPorównanie różnych podejść typu ODE do modelowania sieci regu
Porównanie różnych podejść typu ODE do modelowania sieci regulacji genów 8 stycznia 2010 Plan prezentacji 1 Praca źródłowa Sieci regulacji genów 2 Założenia Funkcja Hill a Modele dyskretne 3 Przykład Modele
Bardziej szczegółowoFale biegnące w równaniach reakcji-dyfuzji
Fale biegnące w równaniach reakcji-dyfuzji Piotr Bartłomiejczyk Politechnika Gdańska Między teorią a zastosowaniami: Matematyka w działaniu Będlewo, 25 30 maja 2015 P. Bartłomiejczyk Fale biegnące 1 /
Bardziej szczegółowoModelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?
Modelowanie Preferencji a Ryzyko Dlaczego w dylemat więźnia warto grać kwantowo? Marek Szopa U n iwe r s y t e t Ś l ą s k i INSTYTUT FIZYKI im. Augusta Chełkowskiego Zakład Fizyki Teoretycznej Klasyczny
Bardziej szczegółowoKurs z NetLogo - część 4.
Kurs z NetLogo - część 4. Mateusz Zawisza Zakład Wspomagania i Analizy Decyzji Instytut Ekonometrii Szkoła Główna Handlowa Seminarium Wieloagentowe Warszawa, 10.01.2011 Agenda spotkań z NetLogo 15. listopada
Bardziej szczegółowoEGZAMIN MAGISTERSKI, czerwiec 2015 Biomatematyka
Biomatematyka Rozpatrzmy chorobę, która rozprzestrzenia się za pośrednictwem nosicieli, u których nie występują jej symptomy. Niech C(t) oznacza liczbę nosicieli w chwili t. Zakładamy, że nosiciele są
Bardziej szczegółowoStatystyczna analiza danych
Statystyczna analiza danych ukryte modele Markowa, zastosowania Anna Gambin Instytut Informatyki Uniwersytet Warszawski plan na dziś Ukryte modele Markowa w praktyce modelowania rodzin białek multiuliniowienia
Bardziej szczegółowoAlgorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
Bardziej szczegółowoMatematyczny model gry w mafię - dalsze wyniki
pmigdal@gmail.com MISMaP UW: FUW + MIMUW Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego Proseminarium licencjackie Teoria gier 5 czerwca 2009 1 Gra w mafię Cel i metodologia 2 Niektóre
Bardziej szczegółowo17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek
Bardziej szczegółowoAlgorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane
Bardziej szczegółowoPodręcznik. Wzór Shannona
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
Bardziej szczegółowoTERMODYNAMIKA I FIZYKA STATYSTYCZNA
TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 14-15.50 można się umówić wysyłając e-maila
Bardziej szczegółowoPodstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Bardziej szczegółowoO procesie Wienera. O procesie Wienera. Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Proces Wienera. Ruch Browna. Ułamkowe ruchy Browna
Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Ruch 1 {X t } jest martyngałem dokładnie wtedy, gdy E(X t F s ) = X s, s, t T, s t. Jeżeli EX 2 (t) < +, to E(X t F s ) jest rzutem ortogonalnym zmiennej
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Bardziej szczegółowoBIOINFORMATYKA. edycja 2016 / wykład 11 RNA. dr Jacek Śmietański
BIOINFORMATYKA edycja 2016 / 2017 wykład 11 RNA dr Jacek Śmietański jacek.smietanski@ii.uj.edu.pl http://jaceksmietanski.net Plan wykładu 1. Rola i rodzaje RNA 2. Oddziaływania wewnątrzcząsteczkowe i struktury
Bardziej szczegółowoStatystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Bardziej szczegółowoZbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Graniczne własności łańcuchów Markowa
Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Graniczne własności łańcuchów Markowa Toruń, 2003 Co to jest łańcuch Markowa? Każdy skończony, jednorodny łańcuch Markowa
Bardziej szczegółowoModele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11
Modele DSGE Jerzy Mycielski Maj 2008 Jerzy Mycielski () Modele DSGE Maj 2008 1 / 11 Modele DSGE DSGE - Dynamiczne, stochastyczne modele równowagi ogólnej (Dynamic Stochastic General Equilibrium Model)
Bardziej szczegółowoAlgorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,
Bardziej szczegółowoStatystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Bardziej szczegółowo1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania
1 S t r o n a Teoria Gier Praca domowa 1 - rozwiązania Zadanie 1 Gdy korzystamy z toalet publicznych dominującą strategią jest: nie sprzątać po sobie. Skorzystanie z toalety przynosi dodatnią wypłatę,
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Bardziej szczegółowoSzacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka
Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja
Bardziej szczegółowoProcesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.
Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Uogólnienie na przeliczalnie nieskończone przestrzenie stanów zostało opracowane
Bardziej szczegółowoZadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Bardziej szczegółowoPrzegląd 4 Aerodynamika, algorytmy genetyczne, duże kroki i dynamika pozycji. Modelowanie fizyczne w animacji komputerowej Maciej Matyka
Przegląd 4 Aerodynamika, algorytmy genetyczne, duże kroki i dynamika pozycji Modelowanie fizyczne w animacji komputerowej Maciej Matyka Wykład z Modelowania przegląd 4 1. Animation Aerodynamics 2. Algorytmy
Bardziej szczegółowoTablice trwania życia
ROZDZIAŁ 3 Tablice trwania życia 1 Przyszły czas życia Osobę, która ukończyła x lat życia, będziemy nazywać x-latkiem i oznaczać symbolem x Jej przyszły czas życia, tzn od chwili x do chwili śmierci, będziemy
Bardziej szczegółowoAlgorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
Bardziej szczegółowoProcesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem
Bardziej szczegółowoTestowanie hipotez statystycznych
9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :
Bardziej szczegółowoWykład 1 BIOMATEMATYKA DR WIOLETA DROBIK
Wykład 1 BIOMATEMATYKA DR WIOLETA DROBIK SPRAWY ORGANIZACYJNE Konsultacje: czwartek 12-14, pokój 33 Email: wioleta.drobik@gmail.com, wioleta_drobik@sggw.pl Wykład 30 h (10 x 3 h w tygodniu) Ćwiczenia 15
Bardziej szczegółowoTeoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami
Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria
Bardziej szczegółowoGenerowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
Bardziej szczegółowoUkłady dynamiczne. proseminarium dla studentów III roku matematyki. Michał Krych i Anna Zdunik. rok akad. 2014/15
Układy dynamiczne proseminarium dla studentów III roku matematyki Michał Krych i Anna Zdunik rok akad. 2014/15 Układy dynamiczne Układy dynamiczne Układy dynamiczne, i związana z nimi Teoria ergodyczna
Bardziej szczegółowoPROGRAM. XVIII Krajowej Konferencji Zastosowań Matematyki w Biologii i Medycynie
Niedziela 23 września 2012 16 00 18 00 Rejestracja uczestników 18 00 Kolacja 19 30 22 00 Rejestracja uczestników Poniedziałek 24 września 2012 9 15 Otwarcie konferencji Sesja I, przewodniczący: Mariusz
Bardziej szczegółowoTeoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.
Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz
Bardziej szczegółowoDobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
Bardziej szczegółowoMetody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej
Bardziej szczegółowoJanusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
Bardziej szczegółowoStrategie ewolucyjne (ang. evolution strategies)
Strategie ewolucyjne (ang. evolution strategies) 1 2 Szybki przegląd Rozwijane w Niemczech w latach 60-70. Wcześni badacze: I. Rechenberg, H.-P. Schwefel (student Rechenberga). Typowe zastosowanie: Optymalizacja
Bardziej szczegółowoTEORIA CHAOSU. Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska
TEORIA CHAOSU Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska Wydział MiNI Politechnika Warszawska Rok akademicki 2015/2016 Semestr letni Krótki kurs historii matematyki DEFINICJA
Bardziej szczegółowoTEORIA ERGODYCZNA. Bartosz Frej Instytut Matematyki i Informatyki Politechniki Wrocławskiej
TEORIA ERGODYCZNA Bartosz Frej Instytut Matematyki i Informatyki Politechniki Wrocławskiej Przedmiot zainteresowania Teoria ergodyczna to dziedzina matematyki zajmująca się badaniem przekształceń określonych
Bardziej szczegółowo