Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa"

Transkrypt

1 Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa

2 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3

3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3

4 Łańcuch Markowa (jednorodny) wydział klub P dom wydział stołówka klub dom wydział stołówka klub dom stołówka X 0 = dom, X 1 = w, X 2 = s, X 3 = w, X 4 = d, X 5 = s,...

5 (nieformalna) Łańcuch Markowa, ang. Markov Chain (MC) Dane mamy: przestrzeń stanów Σ, macierz przejścia P, P i,j prawdopodobieństwo przejścia ze stanu i-tego do j-tego w jednym kroku, j P i,j = 1 (ma to być prawdopodobieństwo), stan początkowy p 0 (lub rozkład P 0, z którego ma pochodzić stan początkowy),

6 (nieformalna) Dynamika: jako stan w kroku t = 0 wybieramy stan początkowy p 0 (lub losujemy go z rozkładu P 0 ), w kroku t > 0 jesteśmy w stanie i, stan dla kroku t + 1 wybieramy losowo, ale zgodnie z tablicą przejść, tj. stan 1-szy z prawdopodobieństwem P i,1, stan 2-gi z prawdopodobieństwem P i,2, stan i-ty z prawdopodobieństwem P i,i, itd. Jeżeli znamy stan w chwili t, to przejście do roku t + 1 nie zależy od stanu w krokach t 1, t 2... (własność Markowa).

7 (formalna) Łańcucha Markowa Łańcuch Markowa, ang. Markov Chain (MC) jest to proces stochastyczny (tj. ciąg zminnych losowych), taki że prawdopodobieństwo znalezienia się w kroku t-ym w stanie x zależy tylko od stanu łańcucha w kroku t 1 -ym: P(X t = x X t 1 = x t 1, X t 2 = x t 2,..., X 0 = x 0 ) = = P(X t = x X t 1 = x t 1 ).

8 Interpretacja Łańcucha Markowa Peprezentacja MC w postaci (ważonego) grafu skierowanego : wierzchołkami są wszystkie stany Σ, jeżeli prawdopodobieństwo bezpośredniego przejścia z i do j jest dodatnie P ij > 0, to dodajemy krawędź (i, j) do grafu (z wagą P ij ), krawędzie nie muszą być symetryczne, wagi krawędzi wychodzących z wierzchołka sumują się do jedynki, w/w własność nie musi zachodzić dla krawędzi wchodzących.

9 Interpretacja Łańcucha Markowa wydział klub P dom wydział stołówka klub dom wydział stołówka klub dom stołówka

10 Stan przechodni Łańcucha Markowa a stan a jest przechodni, jeżeli istnieje ścieżka wychodząca z a bez powrotu b c

11 Stan porwacający Łańcucha Markowa a stan a jest powracający (rekurencyjny), jeżeli każda ścieżka wychodząca z a kiedyś może powrócić z powrotem do a b c

12 Klasa rekursji Łańcucha Markowa klasa rekursji maksymalny zbiór stanów powracających, pomiędzy którymi można swobodnie przechodzić, może być więcej niż jedna klasa rekursji, klasy rekursji można znaleźć algorytmami BFS lub DFS wyszukując silnie spójne składowe w grafie skierowanym,

13 Klasa rekursji Łańcucha Markowa klasa rekursji maksymalny zbiór stanów powracających, pomiędzy którymi można swobodnie przechodzić, może być więcej niż jedna klasa rekursji, klasy rekursji można znaleźć algorytmami BFS lub DFS wyszukując silnie spójne składowe w grafie skierowanym,

14 Łańcuch nieprzywiedlny jeżeli z wszystkich stanów da się dojść do wszystkich innych (jest tylko jedna klasa rekursji, która obejmuje wszystkie stany), to łańcuch nazywamy nieprzywiedlnym b a c

15 Stan okresowy / nieokresowy Stan a jest nieokresowy (ang. aperiodic), jeżeli z każdego stanu da się dojść do wszystkich innych oraz gcd{i : P(a } {{ } a) > 0} = 1 w i krokach d a b c a b c

16 Stan okresowy / nieokresowy Stan a jest nieokresowy (ang. aperiodic), jeżeli z każdego stanu da się dojść do wszystkich innych oraz gcd{i : P(a } {{ } a) > 0} = 1 w i krokach d a b c a b okresowy nieokresowy c

17 Błądzenie losowe Łańcucha Markowa

18 Łańcucha Markowa błądzenie losowe, modelowanie procesów biologicznych, fizycznych, społecznych etc. narzędzia statystyczne, symulowanie rynków finansowych, rozumowanie przy niepewnej wiedzy, np. w sieciach bayesowskich, algorytm generowania z dowolnego rozkładu (alg. Metropolisa-Hastingsa), algorytmy typu symulowanego wyżarzania (następy wykład).

19 Losowanie z rozkładu dyskretnego dane niech będzie n kategorii z przypisanymi prawdopodobieństwami p 1,.., p n. x 2 p=0.09 x 1 p=0.04 x 8 p=0.11 chcemy wylosować jedną z kategorii z odpowiadającym jej prawdopodobieństwem x 3 p=0.25 x 7 p=0.26 P(X = i) = p i x 4 p=0.01 x 5 p=0.09 x 6 p=0.15

20 Algorytm naiwny Łańcucha Markowa P(X = i) = p i oblicz s i := i j=1 p j dla i = 1..n wylosuj u U (0,1) I := 1 while (s i < u) I + + return I Wartości s 1 do s n można liczyć na bieżąco w trakcie działania pętli. Jeżeli losowanie będzie wielokrotnie powtarzane, to zapamiętujemy je w tablicy.

21 Algorytm podziału odcinka wygeneruj u U (0,1) l := 0 r := n do c := (l + r)/2 if (u > s c ) l := c else r := c while (l < r 1) return r

22 Algorytm generowania wylosuj u 1 Ex(p 1 ), u 2 Ex(p 2 )..., u n Ex(p n ) np. algorytmem odwracania dystrybuanty, Ex(λ) wylosuj T U (0,1) zwróć 1 λ ln(t ) znajdź indeks i, taki że u i = min(u 1,..., u n ) zwróć i

23 Istnienie Szukanie stanu stacjonarnego 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3

24 Twierdzenie Łańcucha Markowa Istnienie Szukanie stanu stacjonarnego Niech P (n) ij = (P n ) ij = prawdopodobieństwo przejścia z i do j w dokładnie n krokach. Ponadto niech łańcuch Markowa opisywany przez P będzie nieprzywiedlny i nieokresowy. Wtedy istnieje wektor probabilistyczny π i, i π i = 1, i π i > 0, taki że lim n + P(n) ij = π j.

25 Istnienie Szukanie stanu stacjonarnego Rozkład stacjonarny rozkład π nazywany jest rozkładem stacjonarnym łańcucha Markowa, odpowiednio długo symulowany MC zbiega do swojego rozkładu stacjonarnego (o ile go posiada).

26 Istnienie Szukanie stanu stacjonarnego Rozkład stacjonarny Interpretacja po dłuższym czasie obserwator może stwierdzić, że łańcuch popadł w rutynę, lokalnie nadal zachowuje się zgodnie z zadaną tablicą przejść, w szerszym oknie czasowym, ilość czasu spędzona w poszczególnych stanach zaczyna się stabilizować,

27 Jak znalźć rozkład stacjonarny Istnienie Szukanie stanu stacjonarnego Dane: łańcuch Markowa opisany przez macierz przejścia P. Cel: chcemy znaleźć rozkład stacjonarny π.

28 Istnienie Szukanie stanu stacjonarnego Obserwacja przyp. P ij = prawdopodobieństwo przejścia z i do j w jednym kroku prawdopodobieństwo przejścia z i do j w dwóch krokach, przechodząc przez k wynosi zatem P(i k j) = P ik P kj prawdopodobieństwo przejścia z i do j w dokładnie dwóch krokach, ale przez dowolny wierzchołek pośredni P(i k j) = P ik P kj

29 Istnienie Szukanie stanu stacjonarnego Obserwacja przyp. P ij = prawdopodobieństwo przejścia z i do j w jednym kroku prawdopodobieństwo przejścia z i do j w dwóch krokach, przechodząc przez k wynosi zatem P(i k j) = P ik P kj prawdopodobieństwo przejścia z i do j w dokładnie dwóch krokach, ale przez dowolny wierzchołek pośredni P(i j) = k P ik P kj

30 Istnienie Szukanie stanu stacjonarnego Obserwacja prawdopodobieństwo przejścia z i do j w dokładnie dwóch krokach przez dowolny wierzchołek pośredni P(i 2kroki j) = k P ik P kj zatem jest opisywane przez macierz P P = P 2, przez indukcję prawdopodobieństwo przejścia w krokach ze stanu i do j w k krokach jest opisywane przez macierz P k.

31 Istnienie Szukanie stanu stacjonarnego Sposób 1 oblicz macierz P i, gdzie i jest wysoką potęgą, zwróć jeden z wierszy otrzymanej macierzy, UWAGA: Algorytmu nie należy stosować z wyjątkiem sytuacji, gdy P jest mała.

32 Istnienie Szukanie stanu stacjonarnego Sposób 1 P = P 2 = P 4 = P 8 =

33 Istnienie Szukanie stanu stacjonarnego Sposób 2 Algorytm: symulujemy wstępnie dużą ilość kroków łańcucha, tak by zbiegł do rozkładu stacjonarnego, od określonego punktu przez N kolejnych iteracji zliczamy ilości stanów jakie przyjął łańcuch, za prawdopodobieństwo przyjęcia stanu i przyjmujemy ilość kroków, w których łańcuch był w stanie i-tym π i := N Czasem się go określa jako MCMC = Markov Chain Monte Carlo.

34 Istnienie Szukanie stanu stacjonarnego Sposób P = T = [ ]

35 Sposób 2 Łańcucha Markowa Istnienie Szukanie stanu stacjonarnego Problem: Kiedy zakończyć wstępną symulację?

36 Istnienie Szukanie stanu stacjonarnego Sposób 2 Algorytm: oznaczmy T wstępną ilość kroków, w kroku 0 z każdego ze stanów wypuszczamy osobną ewoluującą po sieci kopię łańcucha, jeżeli w pewnym kroku dwie kopie spotkają się w jednym stanie sklejają się i dalej ewoluują razem (równoważnie usuwamy jedną z kopii), jeżeli w kroku T wszystkie łańcuchy zostały sklejone do jednego, to kończymy etap, jeżeli nie to przyjmujemy T :=2T i kontynuujemy.

37 Sposób 2 Łańcucha Markowa Istnienie Szukanie stanu stacjonarnego Uwaga! istnieją łańcuchy Markowa, dla których ten algorytm się zapętli (ale dla takich nie istnieje rozkład stacjonarny nie spełniają założeń twierdzenia!). a b c a b c a b c 0 1 0

38 Za tydzień Łańcucha Markowa Istnienie Szukanie stanu stacjonarnego Wykorzystanie MC do konstrukcji stochastycznej dynamiki w sieci neuronowej (maszyna Boltzmanna).

39 Pytania Co to jest łańcuch Markowa? Podaj przykład. Podaj przykłady przywiedlnego i nieprzywiedlnego MC. Podaj przykłady okresowego i nieokresowego MC. Dla zadanej macierzy przejścia MC narysuj odpowiadający graf. Czy podany łańcuch Markowa zadany przez graf jest nieprzywiedlny / aperiodyczny? Czy podany łańcuch Markowa zadany przez macierz przejścia jest nieprzywiedlny / aperiodyczny?

40 Zaimplementuj algorytm symulujący MC o zadanej macierzy przejść P. Znajdź (numerycznie) rozkład stacjonarny zadanego łańcucha Markowa.

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład IV: dla łańcuchów Markowa 14 marca 2017 Wykład IV: Klasyfikacja stanów Kiedy rozkład stacjonarny jest jedyny? Przykład Macierz jednostkowa I wymiaru #E jest macierzą stochastyczną. Dla tej macierzy

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem

Bardziej szczegółowo

Algorytm Metropolisa-Hastingsa

Algorytm Metropolisa-Hastingsa Seminarium szkoleniowe, 25 kwietnia 2006 Plan prezentacji 1 Problem Metoda MCMC 2 Niezależny algorytm Metropolisa-Hastingsa Bła dzenie losowe Zbieżność procedury Metropolisa-Hastingsa Problem Metoda MCMC

Bardziej szczegółowo

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 19 marzec, 2012 Przykłady procesów Markowa (i). P = (p ij ) - macierz stochastyczna, tzn. p ij 0, j p ij =

Bardziej szczegółowo

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Uogólnienie na przeliczalnie nieskończone przestrzenie stanów zostało opracowane

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,

Bardziej szczegółowo

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 14 Maszyna Boltzmanna

Wstęp do sieci neuronowych, wykład 14 Maszyna Boltzmanna do sieci neuronowych, wykład 14 Maszyna Boltzmanna M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2014-01-21 Problemy z siecią Hopfilda

Bardziej szczegółowo

Analiza Algorytmów 2018/2019 (zadania na laboratorium)

Analiza Algorytmów 2018/2019 (zadania na laboratorium) Analiza Algorytmów 2018/2019 (zadania na laboratorium) Wybór lidera (do 9 III) Zadanie 1 W dowolnym języku programowania zaimplementuj symulator umożliwiający przetestowanie algorytmu wyboru lidera ELECT

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-12-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa 2010-12-07 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych

Bardziej szczegółowo

MODELOWANIE STOCHASTYCZNE CZĘŚĆ II - ŁAŃCUCHY MARKOWA. Biomatematyka Dr Wioleta Drobik-Czwarno

MODELOWANIE STOCHASTYCZNE CZĘŚĆ II - ŁAŃCUCHY MARKOWA. Biomatematyka Dr Wioleta Drobik-Czwarno MODELOWANIE STOCHASTYCZNE CZĘŚĆ II - ŁAŃCUCHY MARKOWA Biomatematyka Dr Wioleta Drobik-Czwarno Polecane Łańcuchy Markowa wizualnie: http://setosa.io/ev/markov-chains/ Procesy stochastyczne Procesem stochastycznym

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 Modele sieci rekurencyjnej Energia sieci 2 3 Modele sieci

Bardziej szczegółowo

Wielowymiarowy próbnik Gibbsa

Wielowymiarowy próbnik Gibbsa 29.05.2006 Seminarium szkoleniowe 30 maja 2006 Plan prezentacji Slgorytm MH i PG przypomnienie wiadomości Wielowymiarowy PG Algorytm PG z dopełnieniem Odwracalny PG Modele hierarchiczne Modele hybrydowe

Bardziej szczegółowo

Metody Rozmyte i Algorytmy Ewolucyjne

Metody Rozmyte i Algorytmy Ewolucyjne mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb

Bardziej szczegółowo

Geometryczna zbieżność algorytmu Gibbsa

Geometryczna zbieżność algorytmu Gibbsa Geometryczna zbieżność algorytmu Gibbsa Iwona Żerda Wydział Matematyki i Informatyki, Uniwersytet Jagielloński 6 grudnia 2013 6 grudnia 2013 1 / 19 Plan prezentacji 1 Algorytm Gibbsa 2 Tempo zbieżności

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-12-10 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Algorytmy MCMC i ich zastosowania statystyczne

Algorytmy MCMC i ich zastosowania statystyczne Algorytmy MCMC i ich zastosowania statystyczne Wojciech Niemiro Uniwersytet Mikołaja Kopernika, Toruń i Uniwersytet Warszawski Statystyka Matematyczna Wisła, grudzień 2010 Wykład 3 1 Łańcuchy Markowa Oznaczenia

Bardziej szczegółowo

Algorytmy MCMC i ich zastosowania statystyczne

Algorytmy MCMC i ich zastosowania statystyczne Algorytmy MCMC i ich zastosowania statystyczne Wojciech Niemiro Uniwersytet Mikołaja Kopernika, Toruń i Uniwersytet Warszawski Statystyka Matematyczna Wisła, grudzień 2010 Wykład 1 1 Co to jest MCMC? 2

Bardziej szczegółowo

Algorytmy stochastyczne laboratorium 03

Algorytmy stochastyczne laboratorium 03 Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość

Bardziej szczegółowo

ALHE. prof. Jarosław Arabas semestr 15Z

ALHE. prof. Jarosław Arabas semestr 15Z ALHE prof. Jarosław Arabas semestr 15Z Wykład 5 Błądzenie przypadkowe, Algorytm wspinaczkowy, Przeszukiwanie ze zmiennym sąsiedztwem, Tabu, Symulowane wyżarzanie 1. Błądzenie przypadkowe: Pierwszym krokiem

Bardziej szczegółowo

Grafy Alberta-Barabasiego

Grafy Alberta-Barabasiego Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

Modelowanie rynków finansowych z wykorzystaniem pakietu R

Modelowanie rynków finansowych z wykorzystaniem pakietu R Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Dane w postaci grafów Przykład: social network 3 Przykład: media network 4 Przykład: information network

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują

Bardziej szczegółowo

Algorytmy zrandomizowane

Algorytmy zrandomizowane Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

Prawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych

Prawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych w grafach przepływu informacji dla geometrycznych sieci neuronowych www.mat.uni.torun.pl/~piersaj 2009-06-10 1 2 3 symulacji Graf przepływu ładunku Wspóczynnik klasteryzacji X (p) p α Rozkłady prawdopodobieństwa

Bardziej szczegółowo

Algorytmy MCMC i ich zastosowania statystyczne

Algorytmy MCMC i ich zastosowania statystyczne Algorytmy MCMC i ich zastosowania statystyczne Wojciech Niemiro Uniwersytet Mikołaja Kopernika, Toruń i Uniwersytet Warszawski Statystyka Matematyczna Wisła, grudzień 2010 Wykład 2 1 Podstawowe idee symulacji

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

26 marzec, Łańcuchy Markowa z czasem ciągłym. Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136

26 marzec, Łańcuchy Markowa z czasem ciągłym. Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 26 marzec, 212 Łańcuchy z czasem ciągłym S = {, 1,..., }, B S = 2 S, ale T = [, ) lub T = (, ). Gdy S skończone,

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane. Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 213-11-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podaj przykład

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r= Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

( n) Łańcuchy Markowa X 0, X 1,...

( n) Łańcuchy Markowa X 0, X 1,... Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane.

Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane. Wstęp do sieci neuronowych, wykład 8. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 1-811-6 Projekt pn. Wzmocnienie potencjału dydaktycznego

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane. Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 212-11-28 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 20

Bardziej szczegółowo

Wokół wyszukiwarek internetowych

Wokół wyszukiwarek internetowych Wokół wyszukiwarek internetowych Bartosz Makuracki 23 stycznia 2014 Przypomnienie Wzór x 1 = 1 d N x 2 = 1 d N + d N i=1 p 1,i x i + d N i=1 p 2,i x i. x N = 1 d N + d N i=1 p N,i x i Oznaczenia Gdzie:

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2

Bardziej szczegółowo

Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Graniczne własności łańcuchów Markowa

Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Graniczne własności łańcuchów Markowa Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Graniczne własności łańcuchów Markowa Toruń, 2003 Co to jest łańcuch Markowa? Każdy skończony, jednorodny łańcuch Markowa

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

Sieci komputerowe. Wykład 8: Wyszukiwarki internetowe. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 8: Wyszukiwarki internetowe. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 8: Wyszukiwarki internetowe Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 8 1 / 37 czyli jak znaleźć igłę w sieci Sieci komputerowe

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podać przykład

Bardziej szczegółowo

3. Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

3. Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, Zadania z Rachunku Prawdopodobieństwa II - Mówimy, że i) ciąg miar probabilistycznych µ n zbiega słabo do miary probabilistycznej µ (ozn. µ n µ), jeśli fdµ n fdµ dla dowolnej funkcji ciągłej ograniczonej

Bardziej szczegółowo

MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk

MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk MNRP 18.03.2019r. Grzegorz Kowalczyk 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Definicja (σ - ciało) Niech Ω - dowolny zbiór. Rodzinę F P (Ω), gdzie P (Ω) jest rodziną wszystkich podzbiorów

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

Optymalizacja. Symulowane wyżarzanie

Optymalizacja. Symulowane wyżarzanie dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne

Bardziej szczegółowo

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1 Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy

Bardziej szczegółowo

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Plan laboratorium Generatory liczb pseudolosowych dla rozkładów dyskretnych: Generator liczb o rozkładzie równomiernym Generator

Bardziej szczegółowo

Zagadnienie najkrótszej drogi w sieci

Zagadnienie najkrótszej drogi w sieci L L Zagadnienie najkrótszej drogi w sieci 1 Rozważmy sieć, gdzie graf jest grafem skierowanym (digrafem) a jest funkcją określoną na zbiorze łuków. Wartość tej funkcji na łuku!"$#%'&, którą oznaczać będziemy

Bardziej szczegółowo

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n

Bardziej szczegółowo

Strategie ewolucyjne (ang. evolu4on strategies)

Strategie ewolucyjne (ang. evolu4on strategies) Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje

Bardziej szczegółowo

Modelowanie motywów łańcuchami Markowa wyższego rzędu

Modelowanie motywów łańcuchami Markowa wyższego rzędu Modelowanie motywów łańcuchami Markowa wyższego rzędu Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki 23 października 2008 roku Plan prezentacji 1 Źródła 2 Motywy i ich znaczenie Łańcuchy

Bardziej szczegółowo

Programowanie dynamiczne

Programowanie dynamiczne Programowanie dynamiczne Programowanie rekurencyjne: ZALETY: - prostota - naturalność sformułowania WADY: - trudność w oszacowaniu zasobów (czasu i pamięci) potrzebnych do realizacji Czy jest możliwe wykorzystanie

Bardziej szczegółowo

Fuzja sygnałów i filtry bayesowskie

Fuzja sygnałów i filtry bayesowskie Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna

Bardziej szczegółowo

Algorytmy stochastyczne Wykład 12, Uczenie parametryczne w sieciach bayesowskich

Algorytmy stochastyczne Wykład 12, Uczenie parametryczne w sieciach bayesowskich Algorytmy stochastyczne Wykład 2, Uczenie parametryczne w sieciach bayesowskich Jarosław Piersa 204-05-22 Zagadnienie uczenia sieci bayesowskich Problem mamy strukturę sieci bayesowskiej węzły, stany i

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 1- Generatory liczb losowych i ich wykorzystanie dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 5,12 października 2016 r.

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ. Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.

Bardziej szczegółowo

Wykład 10 Grafy, algorytmy grafowe

Wykład 10 Grafy, algorytmy grafowe . Typy złożoności obliczeniowej Wykład Grafy, algorytmy grafowe Typ złożoności oznaczenie n Jedna operacja trwa µs 5 logarytmiczna lgn. s. s.7 s liniowa n. s.5 s. s Logarytmicznoliniowa nlgn. s.8 s.4 s

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

1 Wartości własne oraz wektory własne macierzy

1 Wartości własne oraz wektory własne macierzy Rozwiązania zadania umieszczonego na końcu poniższych notatek proszę przynieść na kartkach Proszę o staranne i formalne uzasadnienie odpowiedzi Za zadanie można uzyskać do 6 punktów (jeżeli przyniesione

Bardziej szczegółowo

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

Badania operacyjne egzamin

Badania operacyjne egzamin Imię i nazwisko:................................................... Nr indeksu:............ Zadanie 1 Załóżmy, że Tablica 1 reprezentuje jeden z kroków algorytmu sympleks dla problemu (1)-(4). Tablica

Bardziej szczegółowo

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW RELACJE MIEDZY KLASAMI ZŁOŻONOŚCI Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 KLASY ZŁOŻONOŚCI KLASE ZŁOŻONOŚCI OPISUJE SIE PODAJAC: Model

Bardziej szczegółowo

W6 Systemy naprawialne

W6 Systemy naprawialne W6 Systemy naprawialne Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Plan wykładu 1. Graf stanów elementu naprawialnego / systemu 2. Analiza niezawodnościowa systemu model Markowa

Bardziej szczegółowo

Analiza algorytmów zadania podstawowe

Analiza algorytmów zadania podstawowe Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo