Identyfikacja i modelowanie struktur i procesów biologicznych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Identyfikacja i modelowanie struktur i procesów biologicznych"

Transkrypt

1 Identyfikacja i modelowanie struktur i procesów biologicznych Laboratorium 1: Modele ciągłe. Model Lotki-Volterry. mgr inż. Urszula Smyczyńska AGH Akademia Górniczo-Hutnicza 1. Ćwiczenie 1: Rozwiązanie równania różniczkowego Pierwsze, wstępne ćwiczenie polega na rozwiązaniu w 'u jednego z prostych równań różniczkowych oraz porównanie uzyskanego wyniku ze znanym rozwiązaniem analitycznym. W każdej grupie zbudowany zostanie jeden z poniżej opisanych modeli Prawo Malthus'a Prawo Malthus'a (1798) jest wyidealizowanym modelem demograficznym rozwoju populacji ludzkiej, sformułowanym jako następujące równanie: x liczebność populacji t - czas dx dt =rx r współczynnik wzrostu populacji w przeliczeniu na osobę. Można przyjąć r=b d, przy czym b będzie współczynnikiem urodzeń, a d współczynnikiem umieralności Rozwój populacji przy ograniczonej pojemności środowiska Bardziej realistyczny niż w poprzednim przykładzie model rozwoju populacji zakłada ograniczoną pojemność środowiska i jest sformułowany następująco: K pojemność środowiska dx dt =r x ( 1 x K ) Pozostałe oznaczenia - jak w przykładzie 1. 1

2 1.3. Prawo rozpadu promieniotwórczego Dobrze znane prawo opisuje zmiany (spadek) ilości substancji promieniotwórczej w czasie. W formie równania różniczkowego wygląda ono następująco: N ilość substancji promieniotwórczej t - czas λ stała rozpadu dn dt = λ N 1.4. Model stężenia leku w krwiobiegu pacjenta (wg Błąd: Nie znaleziono źródła odwołania) Model opisuje stężenie leku w osoczu krwi w następujący sposób: C stężenie leku w krwiobiegu t - czas dc dt = kc +C z(t) k współczynnik naturalnego zanikania leku C z (t) ilość leku podawanego na jednostkę czasu Wersja A: Stałe tempo dostarczania leku Przyjmujemy, że lek jest dostarczany ze stałą szybkością, czyli: Równanie przyjmuje zatem postać: C z (t)=i dc = kc +I dt Wersja B: Szybkość podawania leku maleje liniowo Przyjmujemy, że lek podawany jest początkowo z szybkością I 0, która z czasem maleje liniowo, czyli: C z (t)=i 0 v t 2

3 Całe równanie ma wtedy postać: dc dt = kc +I 0 v t Uwaga: Aby zachować sens fizyczny modelu, należy dopilnować, aby C z (t) nie przyjmowało wartości ujemnych, np. ograniczając czas symulacji. Można także założyć, że spadek szybkości podawania leku trwa do momentu jej wyzerowania lub osiągnięcia innej z góry zadanej wartości; natomiast sama symulacja może trwać dłużej Masa na sprężynie (oscylator harmoniczny) Położenie masy na sprężynie opisujemy następująco: m masa t - czas k współczynnik sprężystości m d2 x = kx (prawo Hooke'a F= kx ) 2 dt 3

4 2. Ćwiczenie 2: Model Lotki-Volterry Model Volterry, pierwotnie (1926) sformułowany jako wyjaśnienie wahań liczebności populacji ryb w Adriatyku, opisuje zależność wielkości dwóch populacji współistniejących na zasadzie drapieżnik-ofiara lub ewentualnie pasożyt-żywiciel. Jest to model ciągły, dynamiczny (opisuje zmiany w czasie), zbudowany jako układ 2 równań różniczkowych: { dx =Ax Bxy (1) dt dy = Cy+ Dxy (2) dt x liczebność ofiar y liczebność drapieżników A tempo rozmnażania populacji ofiar B tempo redukcji populacji ofiar przez drapieżniki C umieralność drapieżników D tempo przyrostu populacji drapieżników wskutek zjadania ofiar Równanie (1) charakteryzuje zmiany liczby ofiar, która wzrasta w tempie proporcjonalnym do ich aktualnej liczności (Ax), a maleje z szybkością zależną zarówno od liczby ofiar jak i drapieżników (-Bxy). Równanie (2) podobnie opisuje rozwój populacji drapieżników, która maleje, gdy zwierzęta umierają w tempie zależnym od ich aktualnej liczby (-Cy), natomiast zwiększa się z szybkością zależącą od ich aktualnej liczby oraz dostępności pożywienia ofiar (Dxy). 4

5 3. Rozwiązywanie równań różniczkowych w 'u Do rozwiązywania numerycznego równań różniczkowych lub ich układów można wykorzystać m.in. pakiet, będący częścią oprogramowania Matlab. Poniżej znajdują się podstawowe informacje o modelowaniu procesów w tym pakiecie, które mogą się przydać podczas zajęć Uruchamianie 'a W oknie głównym (Command Window) Matlab'a wpisujemy komendę simulink Nowy model File New Model lub Ctrl+N 3.3. Budowanie modelu jest środowiskiem graficznym, w którym modele konstruuje się przez wstawianie i łączenie odpowiednich elementów obliczeniowych bloczków. Umieszczona poniżej tabela zawiera opis bloczków, które mogą się przydać podczas wykonywania ćwiczenia. Sum Nazwa Schemat Opis Kategoria Suma 2 lub więcej wartości. Klikając dwukrotnie LPM 1 na bloczek można go modyfikować, np. zmienić znak + na oraz zmienić ilość sumowanych zmiennych. Subtract Różnica. Działa analogicznie do bloku Sum. Product Mnożenie 2 lub więcej liczb. Konfiguracja podobnie jak w bloczku Sum. Divide Dzielenie 1 LPM lewy przycisk myszy 5

6 Gain Nazwa Schemat Opis Kategoria Wzmocnienie. Mnożenie wartości wejściowej przez stałą. Wartość wzmocnienia ustalamy w parametrach bloku (po kliknięciu 2 razy LPM); opcjonalnie może to być zmienna z przestrzeni roboczej (Workspace) Matlab'a. Constant Stała. Wartość ustalamy w parametrach bloku lub pobieramy zmienną z Workspace Matlab'a. Sources Integrator Obliczanie całki funkcji (sygnału) podanej na wejściu. W ustawieniach bloku ustalamy warunek początkowy; opcjonalnie może on być drugim, oprócz funkcji podcałkowej wejściem bloku (klikamy na blok 2x LPM i w parametrach zmieniamy Initial condition source z internal na external) Continuous Derivative Różniczkowanie funkcji wejściowej. Continuous Scope Oscyloskop. Wyświetla wykres funkcji wejściowej. Sinks To Workspace Eksport wartości wejściowej blokczku do przestrzeni roboczej Matlab'a. Sinks XY Graph Wykres zależności y od x. Sinks Mux Łączenie wielu sygnałów w jeden. Wykorzystujemy go np. gdy chcemy w jednym bloku Scope mieć kilka wykresów lub przesłać jednocześnie kilka zmiennych do Workspace Matlab'a. Signal Routing 6

7 Step Nazwa Schemat Opis Kategoria Funkcja progowa. W parametrach określamy wartości początkową i końcową oraz, kiedy ma nastąpić zmiana. Sources Ramp Funkcja o liniowo narastającej/malejącej wartości. W parametrach określamy m.in. wartość początkową i tempo jej zmian. Sources 3.4. Parametry symulacji Parametry symulacji ustawiamy w oknie modelu przez menu Simulation Configuration Parameters... lub skrótem Ctrl+E. Możemy ustawić m.in.: 1. Czas początku (Start time) i końca symulacji (Stop time). 2. Metodę całkowania numerycznego (Solver). 3. Parametry metody rozwiązywania: Typ (Type): ze stałym (Fixed-step) lub zmiennym (Variable-step) krokiem całkowania. Minimalny (Min step size) i maksymalny krok (Max step size) Uruchomienie symulacji Symulację uruchamiamy z menu Simulation Start, skrótem Ctrl+T lub ikoną na pasku. 7

8 4. Literatura [1 3] 1. Tadeusiewicz, R., Jaworek, J., Kańtoch, E., Miller, J., Pięciak, T., Przybyło, J.: Wprowadzenie do modelowania systemów biologicznych oraz ich symulacji w środowisku MATLAB. UMCS, Lublin (2012). 2. Murray, J.D.: Mathematical Biology : I. An Introduction, Third Edition. Springer (2002). 3. Brauer, F., Castillo-Chavez, C.: Mathematical models in population biology and epidemiology. Springer (2012). 8

c - częstość narodzin drapieżników lub współczynnik przyrostu drapieżników,

c - częstość narodzin drapieżników lub współczynnik przyrostu drapieżników, SIMULINK 3 Zawartość Równanie Lotki-Volterry dwa słowa wstępu... 1 Potrzebne elementy... 2 Kosmetyka 1... 3 Łączenie elementów... 3 Kosmetyka 2... 6 Symulacja... 8 Do pobrania... 10 Równanie Lotki-Volterry

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów i Sygnałów

Cyfrowe Przetwarzanie Obrazów i Sygnałów Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX0 Wprowadzenie Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się ze środowiskiem Matlab/Simulink wraz

Bardziej szczegółowo

Uruchamianie Aby uruchomić środowisko Simulink należy wpisać w command window Matlaba polecenie simulink lub kliknąć na pasku zadań ikonę programu:

Uruchamianie Aby uruchomić środowisko Simulink należy wpisać w command window Matlaba polecenie simulink lub kliknąć na pasku zadań ikonę programu: SIMULINK 1 Zawartość O środowisku... 1 Uruchamianie... 1 Idea tworzenia modeli... 2 Pierwszy prosty model figury Lissajou... 2 Drugi prosty model wahadło matematyczne... 6 O środowisku Simulink jest częścią

Bardziej szczegółowo

Podstawy Informatyki 1. Laboratorium 8

Podstawy Informatyki 1. Laboratorium 8 Podstawy Informatyki 1 Laboratorium 8 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z nakładką SIMULINK oraz zdobycie praktycznych umiejętności tworzenia i symulowania modeli z wykorzystaniem tej

Bardziej szczegółowo

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013 SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych

Bardziej szczegółowo

Modele układów dynamicznych - laboratorium. SIMULINK - wprowadzenie

Modele układów dynamicznych - laboratorium. SIMULINK - wprowadzenie Modele układów dynamicznych - laboratorium SIMULINK - wprowadzenie SIMULINK Simulink to przybornik (toolbo) pakietu Matlab przeznaczony do symulacji układów dynamicznych w trybie graficznym. Simulink to

Bardziej szczegółowo

Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy SIMULINKA

Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy SIMULINKA Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy SIMULINKA Simulink jest

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 6

INSTRUKCJA DO ĆWICZENIA NR 6 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 6 PRZEDMIOT TEMAT OPRACOWAŁ BIOMECHANIKA INŻYNIERSKA Dynamika kończyny górnej badania modelowe Dr inż.

Bardziej szczegółowo

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa TECHNIKI REGULACJI AUTOMATYCZNEJ

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa TECHNIKI REGULACJI AUTOMATYCZNEJ Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa TECHNIKI REGULACJI AUTOMATYCZNEJ Laboratorium nr 2 Podstawy środowiska Matlab/Simulink część 2 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

Laboratorium 1. Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi

Laboratorium 1. Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi Laboratorium 1 1. Cel ćwiczenia Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi Zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,

Bardziej szczegółowo

Rys 1 Schemat modelu masa- sprężyna- tłumik

Rys 1 Schemat modelu masa- sprężyna- tłumik Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].

Bardziej szczegółowo

Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. wyświetla listę tematów pomocy. wyświetla okno pomocy (Help / Product Help)

Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. wyświetla listę tematów pomocy. wyświetla okno pomocy (Help / Product Help) Wybr ane za gadnienia elektr oniki współczesnej Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. 1 Cel ćwiczenia Pierwsze zajęcia laboratoryjne z zakresu przetwarzania sygnałów mają na celu

Bardziej szczegółowo

Laboratorium Komputerowego Wspomagania Analizy i Projektowania

Laboratorium Komputerowego Wspomagania Analizy i Projektowania Laboratorium Komputerowego Wspomagania Analizy i Projektowania Ćwiczenie 6. Symulacja obiektów dynamicznych w środowisku SIMULINK. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował

Bardziej szczegółowo

LABORATORIUM MODELOWANIA I SYMULACJI

LABORATORIUM MODELOWANIA I SYMULACJI Wydział Elektryczny Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczenie 6 Wykorzystanie nakładki SIMULINK do budowy i symulacji modeli dynamicznych. 1. Cel ćwiczenia. Celem

Bardziej szczegółowo

Materiały dodatkowe. Simulink Real-Time

Materiały dodatkowe. Simulink Real-Time Katedra Inżynierii Systemów Sterowania Materiały dodatkowe Simulink Real-Time Opracowali: mgr inż. Tomasz Karla Data: Listopad, 2016 r. Wstęp Simulink Real-Time jest środowiskiem pozwalającym na tworzenie

Bardziej szczegółowo

Wprowadzenie do SIMULINKA

Wprowadzenie do SIMULINKA Wprowadzenie do SIMULINKA 1. WSTĘP SIMULINK jest pakietem oprogramowania służącym do modelowania, symulacji i analizowania układów dynamicznych. Można implementować w nim zarówno układy liniowe jak i nieliniowe

Bardziej szczegółowo

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera

Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera Arkadiusz Syta A. Syta (Politechnika Lubelska) 1 / 19 Wstęp Przegląd wybranych pakietów oprogramowania i funkcji Rozwiązywanie równań

Bardziej szczegółowo

Modelowanie matematyczne a eksperyment

Modelowanie matematyczne a eksperyment Modelowanie matematyczne a eksperyment Budowanie modeli w środowisku Hildegard Urban-Woldron Ogólnopolska konferencja, 28.10. 2011, Warszawa Plan Budowanie modelu w środowisku Równania i wartości Uruchomienie

Bardziej szczegółowo

LABORATORIUM 5: Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego

LABORATORIUM 5: Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego LABORATORIUM 5: Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego Uwagi (pominąć, jeśli nie ma problemów z wykonywaniem ćwiczenia) 1. Jeśli pojawiają się błędy przy próbie symulacji:

Bardziej szczegółowo

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi

Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi . Cele ćwiczenia Laboratorium nr Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE ZJAWISKA REZONANSU W SZEREGOWYM OBWODZIE RLC PRZY POMOCY PROGRAMU MATLAB/SIMULINK Autor: Tomasz Trawiński, Strona /7 . Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Zajęcia wprowadzające. BHP stanowisk

Bardziej szczegółowo

A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t

A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t B: 1 Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych 1. ZałóŜmy, Ŝe zmienna A oznacza stęŝenie substratu, a zmienna B stęŝenie produktu reakcji chemicznej

Bardziej szczegółowo

WPROWADZENIE DO ŚRODOWISKA SCICOS

WPROWADZENIE DO ŚRODOWISKA SCICOS Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCICOS Materiały pomocnicze do ćwiczeń laboratoryjnych Oryginał: Modeling and Simulation in Scilab/Scicos Stephen L.

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

MODELE WIELOPOPULACYJNE. Biomatematyka Dr Wioleta Drobik

MODELE WIELOPOPULACYJNE. Biomatematyka Dr Wioleta Drobik MODELE WIELOPOPULACYJNE Biomatematyka Dr Wioleta Drobik UKŁADY RÓWNAŃ RÓŻNICZKOWYCH ZWYCZAJNYCH Warunek początkowy: x(t 0 )=x 0, y(t 0 )=y 0 Funkcje f i g to zadane funkcje ciągłe trzech zmiennych: t,

Bardziej szczegółowo

Prototypowanie systemów sterowania

Prototypowanie systemów sterowania Prototypowanie systemów sterowania Prowadzący: dr hab. inż. Mateusz Dybkowski, prof. Pwr. mgr inż. Szymon Bednarz Opracował: mgr inż. Szymon Bednarz Wrocław 2019 Laboratorium nr 4 Prototypowanie układów

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Wprowadzenie do programu MultiSIM

Wprowadzenie do programu MultiSIM Ćw. 1 Wprowadzenie do programu MultiSIM 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z programem MultiSIM służącym do symulacji działania układów elektronicznych. Jednocześnie zbadane zostaną podstawowe

Bardziej szczegółowo

Sterowanie w programie ADAMS regulator PID. Przemysław Sperzyński

Sterowanie w programie ADAMS regulator PID. Przemysław Sperzyński Sterowanie w programie ADAMS regulator PID Przemysław Sperzyński Schemat regulatora K p e t e t = u zad t u akt (t) M = K p e t + K i e t + K d de(t) u zad uakt M K i e t K d de t Uchyb regulacji człony

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYKA

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYKA AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYKA II rok Kierunek Transport Temat: Minimalizacja funkcji logicznych. Projektowanie układów logicznych. Opracował

Bardziej szczegółowo

1.3. Proste przykłady wykorzystania Scicosa

1.3. Proste przykłady wykorzystania Scicosa 8 Rozdział 1. Trudne początki - podstawy Scicosa 1.3. Proste przykłady wykorzystania Scicosa 1.3.1. Generacja sinusoidy Spotkanie z Scicosem rozpoczniemy od bardzo prostego przykładu generowania funkcji

Bardziej szczegółowo

Ploter I-V instrukcja obsługi

Ploter I-V instrukcja obsługi L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE Ploter I-V instrukcja obsługi Opracowali: Grzegorz Gajoch & Piotr Rzeszut REV. 1.0 1. OPIS PROGRAMU Ploter I-V służy do zbierania charakterystyk prądowo napięciowych

Bardziej szczegółowo

Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym.

Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym. Ćwiczenie 1 Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym. Środowisko symulacyjne Symulacja układu napędowego z silnikiem DC wykonana zostanie w oparciu o środowisko symulacyjne

Bardziej szczegółowo

Rys.1. Model cieplny odcinka toru prądowego reprezentowany elementami biblioteki Power System Blockset

Rys.1. Model cieplny odcinka toru prądowego reprezentowany elementami biblioteki Power System Blockset Ćwiczenie 4 Modelowanie procesu nagrzewania toru prądowego narzędziami Simulinka w Matlabie Wprowadzenie Celem ćwiczenia jest modelowanie procesu nagrzewania toru prądowego z wykorzystaniem różnorodnych

Bardziej szczegółowo

E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy

E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu Dynamicznych Nazwa modułu w języku

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Ćwiczenia nr 4. Arkusz kalkulacyjny i programy do obliczeń statystycznych

Ćwiczenia nr 4. Arkusz kalkulacyjny i programy do obliczeń statystycznych Ćwiczenia nr 4 Arkusz kalkulacyjny i programy do obliczeń statystycznych Arkusz kalkulacyjny składa się z komórek powstałych z przecięcia wierszy, oznaczających zwykle przypadki, z kolumnami, oznaczającymi

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy

Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Ćw. 0 Wprowadzenie do programu MultiSIM

Ćw. 0 Wprowadzenie do programu MultiSIM Ćw. 0 Wprowadzenie do programu MultiSIM 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z programem MultiSIM słuŝącym do symulacji działania układów elektronicznych. Jednocześnie zbadane zostaną podstawowe

Bardziej szczegółowo

Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski SYSTEMY SCADA

Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski SYSTEMY SCADA Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski SYSTEMY SCADA Laboratorium nr 14 PODSTAWY OBSŁUGI PROGRAMU WONDERWARE INTOUCH 10.1 Opracował: mgr inż. Marcel Luzar Cel: Konfiguracja

Bardziej szczegółowo

interaktywny pakiet przeznaczony do modelowania, symulacji, analizy dynamicznych układów ciągłych, dyskretnych, dyskretno-ciągłych w czasie

interaktywny pakiet przeznaczony do modelowania, symulacji, analizy dynamicznych układów ciągłych, dyskretnych, dyskretno-ciągłych w czasie Simulink Wprowadzenie: http://me-www.colorado.edu/matlab/imulink/imulink.htm interaktywny pakiet przeznaczony do modelowania, ymulacji, analizy dynamicznych układów ciągłych, dykretnych, dykretno-ciągłych

Bardziej szczegółowo

ĆWICZENIE 1. Farmakokinetyka podania dożylnego i pozanaczyniowego leku w modelu jednokompartmentowym

ĆWICZENIE 1. Farmakokinetyka podania dożylnego i pozanaczyniowego leku w modelu jednokompartmentowym ĆWICZENIE 1 Farmakokinetyka podania dożylnego i pozanaczyniowego leku w modelu jednokompartmentowym Celem ćwiczenia jest wyznaczenie parametrów farmakokinetycznych leków podanych w jednorazowych dawkach:

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Minimalizacja funkcji logicznych.

Bardziej szczegółowo

Materiały dodatkowe. Simulink PLC Coder

Materiały dodatkowe. Simulink PLC Coder Katedra Inżynierii Systemów Sterowania Materiały dodatkowe Simulink PLC Coder Opracowali: mgr inż. Tomasz Karla Data: Listopad, 2016 r. Dodatkowe informacje Materiały dodatkowe mają charakter ogólny i

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Kultywator rolniczy - dobór parametrów sprężyny do zadanych warunków pracy

Kultywator rolniczy - dobór parametrów sprężyny do zadanych warunków pracy Metody modelowania i symulacji kinematyki i dynamiki z wykorzystaniem CAD/CAE Laboratorium 6 Kultywator rolniczy - dobór parametrów sprężyny do zadanych warunków pracy Opis obiektu symulacji Przedmiotem

Bardziej szczegółowo

7.2.1 Przeglądarka elementów i dostęp do pomocy

7.2.1 Przeglądarka elementów i dostęp do pomocy 7. Badania układów dynamiki w trybie graficznym Cenioną przez użytkowników własnością opisywanych programów obliczeniowych jest możliwość graficznego definiowania badanych układów. Tą funkcjonalność zapewniają

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII. Roman Kaula

POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII. Roman Kaula POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII Roman Kaula ZASTOSOWANIE NOWOCZESNYCH NARZĘDZI INŻYNIERSKICH LabVIEW oraz MATLAB/Simulink DO MODELOWANIA UKŁADÓW DYNAMICZNYCH PLAN WYKŁADU Wprowadzenie

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Maxima i Visual Basic w Excelu

Maxima i Visual Basic w Excelu 12 marca 2013 Maxima - zapoznanie z programem Maxima to program - system algebry komputerowej. Podstawowa różnica w stosunku do klasycznych programów obliczeniowych jest możliwość wykonywania obliczeń

Bardziej szczegółowo

Różniczkowanie numeryczne

Różniczkowanie numeryczne Różniczkowanie numeryczne Przyjmijmy, że funkcja ciągła y = f(x) = 4sin(3x)e -x/2, gdzie x 0,2π, dana jest w postaci dyskretnej jako ciąg wartości y odpowiadających zmiennej niezależnej x, również danej

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania Wprowadzenie do Simulinka w środowisku MATLAB Materiały pomocnicze do ćwiczeń laboratoryjnych

Bardziej szczegółowo

Podstawy Informatyki Computer basics

Podstawy Informatyki Computer basics Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji

Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji mgr inż.

Bardziej szczegółowo

Badanie diody półprzewodnikowej

Badanie diody półprzewodnikowej Badanie diody półprzewodnikowej Symulacja komputerowa PSPICE 9.1 www.pspice.com 1. Wyznaczanie charakterystyki statycznej diody spolaryzowanej w kierunku przewodzenia Rysunek nr 1. Układ do wyznaczania

Bardziej szczegółowo

Ćwiczenia 3. Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3. Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Współczynnik przyrostu naturalnego gdzie: U t - urodzenia w roku t Z t - zgony w roku t L t

Bardziej szczegółowo

Ćwiczenia 3. Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3. Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Współczynnik przyrostu naturalnego r = U t Z t L t gdzie: U t - urodzenia w roku t Z t - zgony

Bardziej szczegółowo

Laboratorium 1. Wprowadzenie do środowiska GnuRadio. I. Wprowadzenie

Laboratorium 1. Wprowadzenie do środowiska GnuRadio. I. Wprowadzenie Laboratorium 1 Wprowadzenie do środowiska GnuRadio I. Wprowadzenie GnuRadio jest darmowym oprogramowaniem wydanym w oparciu o licencję General Public License. Umożliwia użytkownikowi projektowanie oraz

Bardziej szczegółowo

Ćwiczenie Stany nieustalone w obwodach liniowych pierwszego rzędu symulacja komputerowa

Ćwiczenie Stany nieustalone w obwodach liniowych pierwszego rzędu symulacja komputerowa INSTYTUT SYSTEMÓW INŻYNIERII ELEKTRYCZNEJ TEORIA OBWODÓW ELEKTRYCZNYCH LABORATORIUM Ćwiczenie Stany nieustalone w obwodach liniowych pierwszego rzędu symulacja komputerowa Grupa nr:. Zespół nr:. Skład

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 (16.05.2014) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Współczynnik przyrostu naturalnego gdzie: U t - urodzenia w roku t Z t - zgony

Bardziej szczegółowo

numeryczne rozwiązywanie równań całkowych r i

numeryczne rozwiązywanie równań całkowych r i numeryczne rozwiązywanie równań całkowych r i Γ Ω metoda elementów brzegowych: punktem wyjściowym było rozwiązanie równania całkowego na brzegu obszaru całkowania równanie: wygenerowane z równania różniczkowego

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne ODE: ordinary differential equations Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2016 RÓWNANIA RÓŻNICZKOWE JEDNEJ ZMIENNEJ Motywacja Rozwiązania równań z 1, 2 lub

Bardziej szczegółowo

1 Kinetyka reakcji chemicznych

1 Kinetyka reakcji chemicznych Podstawy obliczeń chemicznych 1 1 Kinetyka reakcji chemicznych Szybkość reakcji chemicznej definiuje się jako ubytek stężenia substratu lub wzrost stężenia produktu w jednostce czasu. ν = c [ ] 2 c 1 mol

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

Analiza Matematyczna część 5

Analiza Matematyczna część 5 [wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 4

INSTRUKCJA DO ĆWICZENIA NR 4 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA UKŁADÓW MECHANCZNYCH Modelowanie fizyczne układu o dwóch stopniach

Bardziej szczegółowo

Techniki symulacji w budowie maszyn

Techniki symulacji w budowie maszyn Instytut Technologii Mechanicznej Techniki symulacji w budowie maszyn Ćwiczenie laboratoryjne nr 1: Symulacja zmian poziomu cieczy w zbiorniku oraz układzie zbiorników Opracowanie: Karol Miądlicki, mgr

Bardziej szczegółowo

1. Regulatory ciągłe liniowe.

1. Regulatory ciągłe liniowe. Laboratorium Podstaw Inżynierii Sterowania Ćwiczenie: Regulacja ciągła PID 1. Regulatory ciągłe liniowe. Zadaniem regulatora w układzie regulacji automatycznej jest wytworzenie sygnału sterującego u(t),

Bardziej szczegółowo

PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH

PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH ( Na przykładzie POWERSIM) M. Berndt-Schreiber 1 Plan Zasady modelowania Obiekty symbole graficzne Dyskretyzacja modelowania Predefiniowane

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Wprowadzenie do Simulinka w środowisku MATLAB Pytania i zadania do ćwiczeń laboratoryjnych

Bardziej szczegółowo

Materiały dodatkowe. Raspberry Pi

Materiały dodatkowe. Raspberry Pi Katedra Inżynierii Systemów Sterowania Materiały dodatkowe Raspberry Pi Opracowali: mgr inż. Tomasz Karla Data: Listopad, 2016 r. Dodatkowe informacje Materiały dodatkowe mają charakter ogólny i służą

Bardziej szczegółowo

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia: Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi

Bardziej szczegółowo

Dokąd on zmierza? Przemieszczenie i prędkość jako wektory

Dokąd on zmierza? Przemieszczenie i prędkość jako wektory A: 1 OK Muszę to powtórzyć... Potrzebuję pomocy Dokąd on zmierza? Przemieszczenie i prędkość jako wektory Łódź żegluje po morzu... Płynie z szybkością 10 węzłów (węzeł to 1 mila morska na godzinę czyli

Bardziej szczegółowo

Gromadzenie danych. Przybliżony czas ćwiczenia. Wstęp. Przegląd ćwiczenia. Poniższe ćwiczenie ukończysz w czasie 15 minut.

Gromadzenie danych. Przybliżony czas ćwiczenia. Wstęp. Przegląd ćwiczenia. Poniższe ćwiczenie ukończysz w czasie 15 minut. Gromadzenie danych Przybliżony czas ćwiczenia Poniższe ćwiczenie ukończysz w czasie 15 minut. Wstęp NI-DAQmx to interfejs służący do komunikacji z urządzeniami wspomagającymi gromadzenie danych. Narzędzie

Bardziej szczegółowo

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci

Bardziej szczegółowo

Walec na równi pochyłej

Walec na równi pochyłej Walec na równi pochyłej Program: Coach 6 Projekt: komputer H : C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6\Wideopomiary\Walec na rowni.cma Cel ćwiczenia Obserwacja ruchu postępowego

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling

Bardziej szczegółowo

Ćw. 0: Wprowadzenie do programu MultiSIM

Ćw. 0: Wprowadzenie do programu MultiSIM Ćw. 0: Wprowadzenie do programu MultiSIM Wstęp Celem ćwiczenia jest zapoznanie się z programem MultiSIM przeznaczonym do analiz i symulacji działania układów elektronicznych. Zaznajamianie się z tym programem

Bardziej szczegółowo

Kondensator, pojemność elektryczna

Kondensator, pojemność elektryczna COACH 03 Kondensator, pojemność elektryczna Program: Coach 6 Projekt: na ZMN060F CMA Coach Projects\PTSN Coach 6\ Elektronika/Kondensator.cma Przykład: Kondensator 1.cmr Cel ćwiczenia: I. Wprowadzenie

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Techniki programowania INP001002Wl rok akademicki 2017/18 semestr letni. Wykład 7. Karol Tarnowski A-1 p.

Techniki programowania INP001002Wl rok akademicki 2017/18 semestr letni. Wykład 7. Karol Tarnowski A-1 p. Techniki programowania INP001002Wl rok akademicki 2017/18 semestr letni Wykład 7 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Praca z repozytorium kodu Na podstawie: https://www.gnu.org/software/gsl/doc/html/index.html

Bardziej szczegółowo

Simulink MATLAB Przegląd obiektów i przykłady zastosowań

Simulink MATLAB Przegląd obiektów i przykłady zastosowań Simulink MATLAB Przegląd obiektów i przykłady zastosowań M. Berndt-Schreiber 1 Simulink MATLAB SIMULINK jest rozszerzeniem pakietu MATLAB; przy pomocy graficznego środowiska pozwala konstruować diagramy

Bardziej szczegółowo

1. Otwórz pozycję Piston.iam

1. Otwórz pozycję Piston.iam 1. Otwórz pozycję Piston.iam 2. Wybierz z drzewa wyboru poziomego Środowisko następnie Symulacja Dynamiczna 3. Wybierz Ustawienia Symulacji 4. W ustawieniach symulacji dynamicznej zaznacz: - Automatycznie

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

SYSTEMY TELEINFORMATYCZNE LAB TEMAT: INSTRUKCJA DO ĆWICZENIA NR 0 WPROWADZENIE DO PAKIETU MATLAB/SIMULINK SYSTEMY TELEINFORMATYCZNE

SYSTEMY TELEINFORMATYCZNE LAB TEMAT: INSTRUKCJA DO ĆWICZENIA NR 0 WPROWADZENIE DO PAKIETU MATLAB/SIMULINK SYSTEMY TELEINFORMATYCZNE SYSTEMY TELEINFORMATYCZNE INSTRUKCJA DO ĆWICZENIA NR 0 0 LAB TEMAT: WPROWADZENIE DO PAKIETU MATLAB/SIMULINK SYSTEMY TELEINFORMATYCZNE I. CEL ĆWICZENIA: Celem ćwiczenia jest wprowadzenie do pakietu oprogramowania

Bardziej szczegółowo

1. Aplikacja LOGO! App do LOGO! 8 i LOGO! 7

1. Aplikacja LOGO! App do LOGO! 8 i LOGO! 7 1. Aplikacja do LOGO! 8 i LOGO! 7 1.1. Przegląd funkcji Darmowa aplikacja umożliwia podgląd wartości parametrów procesowych modułu podstawowego LOGO! 8 i LOGO! 7 za pomocą smartfona lub tabletu przez sieć

Bardziej szczegółowo

Po uruchomieniu Lazarusa należy wybrać z paska górnego opcję Projekt i następnie Nowy Projekt. Pokaże się okno:

Po uruchomieniu Lazarusa należy wybrać z paska górnego opcję Projekt i następnie Nowy Projekt. Pokaże się okno: Po uruchomieniu Lazarusa należy wybrać z paska górnego opcję Projekt i następnie Nowy Projekt. Pokaże się okno: Należy wybrać Aplikacja, pojawi się puste okno Form1: Z zakładki standard należy wprowadzić

Bardziej szczegółowo

UWAGA. Program i przebieg ćwiczenia:

UWAGA. Program i przebieg ćwiczenia: Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi

Bardziej szczegółowo

MATLAB tworzenie własnych funkcji

MATLAB tworzenie własnych funkcji MATLAB tworzenie własnych funkcji Definiowanie funkcji anonimowych Własne definicje funkcji możemy tworzyć bezpośrednio w Command Window, są to tzw. funkcje anonimowe; dla funkcji jednej zmiennej składnia

Bardziej szczegółowo

Modelowanie biologicznych układów typu drapieżca - ofiara z wykorzystaniem błądzenia losowego.

Modelowanie biologicznych układów typu drapieżca - ofiara z wykorzystaniem błądzenia losowego. Modelowanie biologicznych układów typu drapieżca - ofiara z wykorzystaniem błądzenia losowego. Anna Rutkowska 135601 27 kwietnia 2007 1 Spis treści 1 Wstęp. 3 1.1 Cel pracy......................... 3 1.2

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. Wprowadzenie do Simulinka środowiska MATLAB. Materiały pomocnicze do ćwiczeń laboratoryjnych - - termin T3

PODSTAWY AUTOMATYKI. Wprowadzenie do Simulinka środowiska MATLAB. Materiały pomocnicze do ćwiczeń laboratoryjnych - - termin T3 WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Wprowadzenie do Simulinka środowiska MATLAB. Materiały pomocnicze do ćwiczeń laboratoryjnych - - termin T3

Bardziej szczegółowo