MODELE ROZWOJU POPULACJI Z UWZGLĘDNIENIEM WIEKU
|
|
- Konrad Zieliński
- 6 lat temu
- Przeglądów:
Transkrypt
1 MODELE ROZWOJU POPULACJI Z UWZGLĘDNIENIEM WIEKU Dr Wioleta Drobik-Czwarno
2 CIĄG FIBONACCIEGO Schemat:
3 JAK MOŻEMY ULEPSZYĆ DOTYCHCZASOWE MODELE? Wiek jest cecha różnicującą osobniki i mającą wpływ na ich wkład do populacji Osobniki bardzo młode i bardzo stare: mają znikomy wkład w reprodukcję charakteryzują się zwiększoną śmiertelnością
4 MODELE ZE STRUKTURĄ WIEKU Wyróżniamy d kolejnych klas wieku: x 0, x 1, x 2,, x d-1 o równej długości W jednym kroku czasowym (pokoleniu), o długości równej długości klasy, każdy osobnik może przejść do późniejszej klasy wiekowej lub zginąć Założenia: Wiek osobników zmienia się w sposób dyskretny Każda klasa wiekowa jest jednorodna Klasy różnią się śmiertelnością i rozrodczością Wszystkie osobniki z ostatniej klasy wiekowej giną
5 SCHEMAT ZMIAN LICZEBNOŚCI POPULACJI
6 POPULACJA PODZIELONA NA KLASY WIEKOWE Zakładamy, że poziom reprodukcji i śmiertelności zależy jedynie od wieku osobników Pierwsza klasa zawiera tylko osobniki młode jej rozmiar zależy wyłącznie od poziomu reprodukcji grup rodzicielskich: n(1, t 1) gdzie: d liczba grup wiekowych (klas wieku) t czas (pokolenie) f (1) n(1, t)... f(x) poziom reprodukcji grupy wiekowej x f ( d) n( d, t) n(x,t) liczebność grupy wiekowej x w pokoleniu t d x1 f ( x) n( x, t)
7 POPULACJA PODZIELONA NA KLASY WIEKOWE Rozmiar kolejnych klas wiekowych w roku następnym zależy od liczebności i przeżywalności w niższej klasie wiekowej: n( x 1, t 1) P( x) n( x, t) x 1 gdzie: x grupa wiekowa t czas (pokolenie) n(x,t) liczebność grupy wiekowej x w pokoleniu t P(x) śmiertelność w grupie wiekowej x
8 STRUKTURA POPULACJI Struktura populacji opisana jest za pomocą wektora, gdzie n(x,t) oznacza liczebność określonej grupy wiekowej x w pokoleniu t n( t) n(1, t) n(2, t) n( d, t) n(1,t) = osobniki nowonarodzone n(d,t) = osobniki najstarsze
9 STRUKTURA POPULACJI W KOLEJNYM POKOLENIU Strukturę populacji w kolejnym pokoleniu można otrzymać przez pomnożenie powyższego wektora przez macierz L zwaną macierzą projekcji lub macierzą Lesliego Macierz L zawiera informację o poziomie reprodukcji f(x) i przeżywalności P(x) w poszczególnych klasach: L f (1) P(1) 0 0 f (2) 0 P(2) P( d 1) f ( d) 0 0 Model macierzowy Lesliego: n( t 1) Ln( t)
10 WEKTOR A MACIERZ Wektor jednokolumnowa macierz Macierz prostokątna A o m wierszach i n kolumnach, oznaczaną [a ij ] m n :
11 MNOŻENIE MACIERZY Mnożenie macierzy przez wektor kolumnowy
12 KRZYWE PRZEŻYWALNOŚCI Krzywe przeżywalności funkcja opisująca liczbę osobników, które dożywają do określonego wieku jeśli znana jest początkowa liczebność grupy wiekowej (kohorty)
13 PRZYKŁAD 1 Struktura wiekowa populacji wraz ze współczynnikami reprodukcji oraz przeżywalności jednoroczne dwuletnie trzyletnie Liczebność początkowa Poziom reprodukcji Przeżywalność 0,8 0,5 0
14 PRZYKŁAD 1 Macierz Lesliego (projekcji) Rozwiązanie: Liczebności poszczególnych klas wiekowych
15 CO DALEJ? Własności rozwiązań zależą od postaci macierzy Lesliego oraz początkowego rozkładu wieku Przyszłość populacji możemy poznać stosując do niej twierdzenie Perrona-Frobeniusa: Największa wartość własna rzeczywistej nieujemnej kwadratowej macierzy jest rzeczywista i ma krotność 1 Wektor własny korespondujący z ta wartością własną jest ściśle dodatni Dla większości warunków początkowych populacja asymptotycznie osiąga rozkład wieku V 0 przy współczynniku rozrodczości λ 0
16 POPULACJA WYMIERAJĄCA Współczynnik wzrostu populacji: Populacja podzielona na trzy grupy wiekowe w zależności od dominującej wartości własnej 0 Źródło: Wstawki pokazują ewolucję procentowego udziału poszczególnych grup wiekowych w całości populacji
17 POPULACJA ROZWOJOWA Populacja podzielona na trzy grupy wiekowe w zależności od dominującej wartości własnej 0 Wstawki pokazują ewolucję procentowego udziału poszczególnych grup wiekowych w całości populacji Źródło:
18 POPULACJA STACJONARNA Populacja podzielona na trzy grupy wiekowe w zależności od dominującej wartości własnej 0 Wstawki pokazują ewolucję procentowego udziału poszczególnych grup wiekowych w całości populacji Źródło:
19 WŁAŚCIWOŚCI MODELU W większości warunków początkowych populacja asymptotycznie osiąga stały rozkład wieku Możliwe są także cykliczne zmiany struktury wieku Z sytuacją taką mamy do czynienia gdy mamy tylko dwie grupy wiekowe, a rozmnażają się tylko osobniki najstarsze
20 WŁAŚCIWOŚCI MODELU Wymaga dużej ilości danych Specyficzne dla wieku wskaźniki przeżywalności i rozrodu Nie uwzględnia podziału na płeć Nie uwzględnia istnienia stadiów rozwojowych nie wszystkie osobniki opuszczają daną klasę wiekową stadia rozwojowej wyróżniamy np. u owadów
21 PRZYKŁAD 2 Przedstaw na wykresie zmiany w strukturze wiekowej populacji o poniższej strukturze wejściowej na przestrzeni 5 kolejnych pokoleń jednoroczne dwuletnie Liczebność początkowa Poziom reprodukcji 0 0,8 Przeżywalność 0,7 0
22 PRZYKŁAD 3. JAK ZMIENIA SIĘ POPULACJA SZARAŃCZY W CZASIE? Aby odpowiedzieć na to pytanie musimy sprawdzić co dzieje na poszczególnych stadiach rozwojowych: Jajo 2% do nimfy, 5 % nimf do stadium imago Reprodukcja tylko w stadium imago samica składa przeciętnie 1000 jaj, po czym umiera Stadia rozwojowe: jajo, nimfa, dorosłe owady Model tylko dla samic Skonstruuj macierz Lesliego i oszacuj liczebności w poszczególnych klasach wiekowych dla 5 kolejnych pokoleń zakładając że zaczynamy od populacji liczącej 100 dorosłych samic
23 POPULUS Link Model: Single-Species-Dynamics > Aged-Structured-Growth Oznaczenia: t - pokolenie x klasa wiekowa S x liczba osobników, które przeżyły w klasie wiekowej x V x współczynnik reprodukcji dla klasy wiekowej x l x m x tabela przeżycia, ze średnią liczbą potomstwa na samicę w wieku x (m x ) oraz średnim prawdopodobieństwem przeżycia od urodzenia do wieku x ( x ) f(x) liczba potomstwa przypada na samicę w wieku x, które przeżywa λ współczynnik wzrostu populacji - proporcja osobników w klasie wiekowej x
24 ŹRÓDŁA Foryś U Matematyka w biologii, Wydawnictwa Naukowo- Techniczne, Warszawa. Sharov A Quantitative population ecology lecture notes. Wrzosek D Matematyka dla biologów. Wydawnictwa Uniwersytetu Warszawskiego. Program Populus
WYKŁAD 3. DYNAMIKA ROZWOJU POPULACJI
WYKŁAD 3. DYNAMIKA ROZWOJU POPULACJI MODELE Z CZASEM DYSKRETNYM BUDOWA MODELU MATEMATYCZNEGO DR WIOLETA DROBIK- CZWARNO STAN POPULACJI Stan populacji wyrażany jako liczebność lub zagęszczenie wszystkich
WYKŁAD 3. DYNAMIKA ROZWOJU
WYKŁAD 3. DYNAMIKA ROZWOJU POPULACJI MODELE Z CZASEM DYSKRETNYM DR WIOLETA DROBIK- CZWARNO MODELE ZMIAN ZAGĘSZCZENIA POPULACJI Wyróżniamy modele: z czasem dyskretnym wykorzystujemy równania różnicowe z
MODELE WIELOPOPULACYJNE. Biomatematyka Dr Wioleta Drobik
MODELE WIELOPOPULACYJNE Biomatematyka Dr Wioleta Drobik UKŁADY RÓWNAŃ RÓŻNICZKOWYCH ZWYCZAJNYCH Warunek początkowy: x(t 0 )=x 0, y(t 0 )=y 0 Funkcje f i g to zadane funkcje ciągłe trzech zmiennych: t,
Genetyka populacji. Analiza Trwałości Populacji
Genetyka populacji Analiza Trwałości Populacji Analiza Trwałości Populacji Ocena Środowiska i Trwałości Populacji- PHVA to wielostronne opracowanie przygotowywane na ogół podczas tworzenia planu ochrony
14 Modele z czasem dyskretnym
14 Modele z czasem dyskretnym Przykłady i zadania z tego rozdziału ilustrują materiał zawarty w rozdziałach 12 i 15 książki 141 Metoda pajęczynowa PRZYŁAD 141 Na poniższych rysunkach zilustrowano metodę
Wykład z modelowania matematycznego.
Wykład z modelowania matematycznego. Modele z jedną populacją. Problem. Szybkość zmian zagęszczenia populacji. Założenia. Ciągłość procesów zachodzących w populacji (nawet w najkrótszym przedziale czasowym
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
MODELE ODDZIAŁYWAŃ MIĘDZY DWIEMA POPULACJAMI
MODELE ODDZIAŁYWAŃ MIĘDZY DWIEMA POPULACJAMI Biomatematyka Dr Wioleta Drobik-Czwarno UKŁADY RÓWNAŃ RÓŻNICZKOWYCH ZWYCZAJNYCH UKŁADY RÓWNAŃ RÓŻNICZKOWYCH ZWYCZAJNYCH Warunek początkowy: x(t 0 )=x 0, y(t
4. Ubezpieczenie Życiowe
4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem
Konspekt lekcji biologii w gimnazjum klasa I
mgr Piotr Oleksiak Gimnazjum nr.2 wopatowie. Temat. Cechy populacji biologicznej. Konspekt lekcji biologii w gimnazjum klasa I Zakres treści: Populacja cechy charakterystyczne: liczebność, zagęszczenie,
Wprowadzenie do modelowania matematycznego w biologii. Na podstawie wykładów dr Urszuli Foryś, MIM UW
Wprowadzenie do modelowania matematycznego w biologii Na podstawie wykładów dr Urszuli Foryś, MIM UW Model matematyczny Jest to teoretyczny opis danego zjawiska na podstawie bieżącej wiedzy (często zwany
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2017 Mirosław Sobolewski (UW) Warszawa, 2017 1 / 10 Definicja Funkcja
PORÓWNYWANIE POPULACJI POD WZGLĘDEM STRUKTURY
PORÓWNYWANIE POPULACJI POD WZGLĘDEM STRUKTURY obliczanie dystansu dzielącego grupy (subpopulacje) wyrażonego za pomocą indeksu F Wrighta (fixation index) w modelu jednego locus 1 Ćwiczenia III Mgr Kaczmarek-Okrój
WYKŁAD 3. DYNAMIKA ROZWOJU
WYKŁAD 3. DYNAMIKA ROZWOJU POPULACJI DR WIOLETA DROBIK WSTĘP Podstawy matematyczne Ciąg Granica funkcji Ciągłość funkcji Pochodna i całka CIĄG Lista ponumerowanych elementów pewnego zbioru Ciąg to dowolna
MODELOWANIE I PROGNOZOWANIE ZAGROŻEŃ EPIDEMIOLOGICZNYCH
MODELOWANIE I PROGNOZOWANIE ZAGROŻEŃ EPIDEMIOLOGICZNYCH Epidemia - wystąpienie na danym obszarze zakażeń lub zachorowań na chorobę zakaźną w liczbie wyraźnie większej niż we wcześniejszym okresie albo
Analiza korespondencji
Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy
ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2013
ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2013 OPRACOWAŁY: ANNA ANWAJLER MARZENA KACZOR DOROTA LIS 1 WSTĘP W analizie wykorzystywany będzie model szacowania EWD.
dr hab. Dariusz Piwczyński, prof. nadzw. UTP
dr hab. Dariusz Piwczyński, prof. nadzw. UTP Cechy jakościowe są to cechy, których jednoznaczne i oczywiste scharakteryzowanie za pomocą liczb jest niemożliwe lub bardzo utrudnione. nominalna porządek
UKŁADY RÓWNAŃ LINIOWYCH
Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +
2. CZYNNIKI ZABURZAJĄCE RÓWNOWAGĘ GENETYCZNĄ
ZARZĄDZANIE POPULACJAMI ZWIERZĄT 2. CZYNNIKI ZABURZAJĄCE RÓWNOWAGĘ GENETYCZNĄ POPULACJI Fot. W. Wołkow Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt MIGRACJE Zmiana frekwencji
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2012
ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2012 OPRACOWAŁY: ANNA ANWAJLER MARZENA KACZOR DOROTA LIS 1 WSTĘP W analizie wykorzystywany będzie model szacowania EWD.
Ekotoksykologia 12/9/2016. Testy ekotoksykologiczne (według Leona i Van Gestela, 1994) Trzy powody, dla których warto robić krótkotrwałe testy
2/9/26 Ekotoksykologia Co mówią testy ekotoksykologiczne? Prof. dr hab. Ryszard Laskowski Instytut Nauk o Środowisku UJ Ul. Gronostajowa 7, Kraków pok. 2..2 http://www.eko.uj.edu.pl/laskowski /32 Testy
1 Genetykapopulacyjna
1 Genetykapopulacyjna Genetyka populacyjna zajmuje się badaniem częstości występowania poszczególnych alleli oraz genotypów w populacji. Bada także zmiany tych częstości spowodowane doborem naturalnym
Macierzowe algorytmy równoległe
Macierzowe algorytmy równoległe Zanim przedstawimy te algorytmy zapoznajmy się z metodami dekompozycji macierzy, możemy wyróżnić dwa sposoby dekompozycji macierzy: Dekompozycja paskowa - kolumnowa, wierszowa
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x.
Analiza numeryczna Lista nr 3 (ćwiczenia) Sprawdzić że macierz ma wartości własne2+ 222 2 2 Niechx R n Udowodnić że 2 0 0 x x 2 n x 3 NiechA R n n będzie macierzą symetryczną Wiadomo że wówczas istnieje
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136
Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 19 marzec, 2012 Przykłady procesów Markowa (i). P = (p ij ) - macierz stochastyczna, tzn. p ij 0, j p ij =
Zmienność. środa, 23 listopada 11
Zmienność http://ggoralski.com Zmienność Zmienność - rodzaje Zmienność obserwuje się zarówno między poszczególnymi osobnikami jak i między populacjami. Różnice te mogą mieć jednak różne podłoże. Mogą one
ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska
ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013
Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
ZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI. Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt
ZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI Fot. W. Wołkow Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt POPULACJA Zbiór organizmów żywych, które łączy
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
Układy równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
KARTA KURSU. Mathematics
KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie
Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych
Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie
D1. Algebra macierzy. D1.1. Definicje
D1. Algebra macierzy W niniejszym dodatku podamy podstawowe operacje macierzowe oraz niektóre techniki algebry macierzowej nie dbając szczególnie o formalizm matematyczny. Zakres jest wystarczający dla
Ćwiczenia 3. Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.
Ćwiczenia 3 Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Współczynnik przyrostu naturalnego gdzie: U t - urodzenia w roku t Z t - zgony w roku t L t
Ćwiczenia 3. Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.
Ćwiczenia 3 Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Współczynnik przyrostu naturalnego r = U t Z t L t gdzie: U t - urodzenia w roku t Z t - zgony
Egzamin test GRUPA A (c) maleje na przedziale (1, 6). 0, ,5 1
Matematyka dla Biologów Warszawa, stycznia 04. Imię i nazwisko:... Egzamin test GRUPA A nr indeksu:... Przy każdym z podpunktów wpisz, czy jest on prawdziwy (TAK) czy fałszywy (NIE). Za każde pytanie można
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Rozwiązania zadań testowych. a n, że a 1 = 5 oraz a n = 100. Podać sumy następujących n=1
Egzamin licencjacki (rozwiązania zadań) - 1-3 czerwca 014 r. Rozwiązania zadań testowych 1. Dany jest taki szereg zbieżny a n, że a 1 = 5 oraz a n = 100. Podać sumy następujących szeregów: a) (a n+1 +a
Zakres badań demograficznych
Zakres badań demograficznych wskaźnik rodności wskaźnik dzietności RUCH NATURALNY STAN I STRUKTURA LUDNOŚCI wskaźniki umieralności wskaźniki zgonów przeciętny dalszy czas trwania życia wskaźnik małżeństw
4. Ubezpieczenie Życiowe
4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego
EGZAMIN DYPLOMOWY, część II, Biomatematyka
Biomatematyka Niech a będzie recesywnym płciowo skojarzonym genem i załóżmy, że proces selekcji uniemożliwia kojarzenie się osobników płci męskiej o genotypie aa. Przyjmijmy, że genotypy AA, Aa i aa występują
Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.
Ćwiczenia 3 (16.05.2014) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Współczynnik przyrostu naturalnego gdzie: U t - urodzenia w roku t Z t - zgony
Przykład: matematyczny model populacji cykad
Lech Sławik Podstawy Maximy 14 Końcowy przykład.wxmx 1 / 7 Przykład: matematyczny model populacji cykad Do tej pory podawane przykłady ilustrowały pojedyńcze funkcje. Na zakończenie tej części skryptu
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
ZARZĄDZANIE POPULACJAMI ZWIERZĄT DRYF GENETYCZNY EFEKTYWNA WIELKOŚĆ POPULACJI PRZYROST INBREDU
ZARZĄDZANIE POPULACJAMI ZWIERZĄT DRYF GENETYCZNY EFEKTYWNA WIELKOŚĆ POPULACJI PRZYROST INBREDU DRYF GENETYCZNY ) Każdy żywy organizm wytwarza więcej gamet, niż zdolne jest przetrwać (Darwin). 2) Przypadek
Ćwiczenia 2. Tablice trwania życia. (life tables)
Ćwiczenia 2 Tablice trwania życia (life tables) Rodzaje tablic: kohortowa (wzdłużna), która obrazuje rzeczywisty proces wymierania wybranej generacji, przekrojowa, która przedstawia hipotetyczny proces
1 Podstawowe pojęcia z zakresu genetyki. 2 Podstawowy model dziedziczenia
Rachunek Prawdopodobieństwa MAP8 Wydział Matematyki, Matematyka Stosowana Projekt - zastosowania rachunku prawdopodobieństwa w genetyce Opracowanie: Antonina Urbaniak Podstawowe pojęcia z zakresu genetyki
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie
Ćwiczenia z zakresu Kalkulatora EWD
Strona1 Ćwiczenia z zakresu Kalkulatora EWD 1. Instalacja Kalkulatora Wymagania techniczne Windows XP, Vista, 7 lub nowszy; NET Framework 4.0 (do pobrania ze strony Microsoft 2. Przygotowanie danych do
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
Model przepływów międzygałęziowych (model Leontiewa)
Model przepływów międzygałęziowych (model Leontiewa) Maciej Grzesiak Przedstawimy tzw. analizę wejścia-wyjścia jako narzędzie do badań ekonomicznych. Stworzymy matematyczny model gospodarki, w którym można
Macierze Lekcja I: Wprowadzenie
Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m
Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
1 Wartości własne oraz wektory własne macierzy
Rozwiązania zadania umieszczonego na końcu poniższych notatek proszę przynieść na kartkach Proszę o staranne i formalne uzasadnienie odpowiedzi Za zadanie można uzyskać do 6 punktów (jeżeli przyniesione
EGZAMIN MAGISTERSKI, Biomatematyka
Biomatematyka 91...... Zadanie 1. (8 punktów) Liczebność pewnej populacji jest opisana równaniem różniczkowym: dn = r N(α N)(N β), (1) dt w którym, N(t) oznacza liczebność populacji w chwili t, a r > 0
Programowanie dynamiczne
Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem
Prognoza demograficzna dla gmin województwa dolnośląskiego do 2035 roku
Prognoza demograficzna dla gmin województwa dolnośląskiego do 2035 roku Stanisława Górecka Robert Szmytkie Samorządowa Jednostka Organizacyjna Województwa Dolnośląskiego 1 UWAGI WSTĘPNE Prognoza została
Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Graniczne własności łańcuchów Markowa
Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Graniczne własności łańcuchów Markowa Toruń, 2003 Co to jest łańcuch Markowa? Każdy skończony, jednorodny łańcuch Markowa
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II
Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,
Zagrajmy w ekologię gra dydaktyczna.
1 Zagrajmy w ekologię gra dydaktyczna. Czas trwania zajęć: 45 minut Podstawowe pojęcia: - populacja, - gatunek, - łańcuch pokarmowy, - sieć pokarmowa, - poziom troficzny, - producent, - konsument, - równowaga
Matematyka dla biologów Zajęcia nr 6.
Matematyka dla biologów Zajęcia nr 6. Dariusz Wrzosek 13 listopad 2017 Matematyka dla biologów Zajęcia 6. 13 listopada 2017 1 / 33 Analiza matematyczna Przez kilka wykładów będziemy omawiać podstawowe
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry
Zestaw 1 Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb)!!! trójki sąsiednich elementów tablicy
Zestaw 1 1. Napisać program pobierający od użytkownika liczbę całkowitą dodatnią R i liczbę rzeczywistą dodatnią S, a następnie informujący ile kolejnych liczb z ciągu 1, 1+R, 1+2R, 1+3R, należy dodać,
Stabilność II Metody Lapunowa badania stabilności
Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
Genetyka populacji. Efektywna wielkość populacji
Genetyka populacji Efektywna wielkość populacji DRYF GENETYCZNY Przypadkowe zmiany częstości alleli szczególnie ważne w małych populacjach 2015-10-22 2 DRYF GENETYCZNY Wybieramy z dużej populacji o p=q=0,5
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
SPRAWOZDANIE MERYTORYCZNE. z wykonanego zadania na rzecz postępu biologicznego w produkcji zwierzęcej
SPRAWOZDANIE MERYTORYCZNE z wykonanego zadania na rzecz postępu biologicznego w produkcji zwierzęcej zrealizowanego na podstawie decyzji Ministra Rolnictwa i Rozwoju Wsi nr 10/2016, znak: ŻWeoz/ek-8628-30/2016(1748),
Modele epidemiologiczne
Modele epidemiologiczne Anna Zesławska 20 maj 2013 Wstęp Wstęp Przyjrzymy się dwóm podstawowym modelom epidemiologicznym: bez nabywania odporności Model Kermacka-McKendricka SIR z jej uwzględnieniem Celem
EGZAMIN DYPLOMOWY, część II, Biomatematyka
Biomatematyka Badamy wpływ dwóch czynników mutagennych na DNA. W tym celu podczas każdej replikacji nić DNA poddawana jest na przemian działaniu pierwszego i drugiego czynnika wywołującego mutacje. Wiemy,
Zadania ze statystyki, cz.6
Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
1 Elementy teorii przeżywalności
1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO
D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska