Modele ARIMA prognoza, specykacja
|
|
- Aleksandra Matysiak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Modele ARIMA prognoza, specykacja Wst p do ekonometrii szeregów czasowych wiczenia 3 5 marca 2010
2 Plan prezentacji 1 Specykacja modelu ARIMA 2 3
3 Plan prezentacji 1 Specykacja modelu ARIMA 2 3
4 Funkcja autokorelacji (ACF) Pokazuje korelacj warto±ci szeregu z kolejnymi opó¹nieniami tego samego szeregu: opó¹nienie 1 r 1 opó¹nienie 2 r 2 opó¹nienie 3 r 3 itd. Szacujemy na podstawie danych, obliczaj c wspóªczynniki korelacji liniowej Pearsona.
5 Wspóªczynnik korelacji cz stkowej Wspóªczynnik korelacji mi dzy i oraz j z wykluczeniem wpªywu l: r ij.l = r ij r il r jl ( ) (1 r 2 il ) 1 r 2 jl
6 Funkcja autokorelacji cz stkowej (PACF) Pokazuje korelacj warto±ci szeregu z kolejnymi opó¹nieniami tego samego szeregu, z wykluczeniem wpªywu opó¹nie«ni»szego rz du: opó¹nienie 1 r 1 (tak samo jak w ACF) opó¹nienie 2 korelacja cz stkowa warto±ci bie» cej z 2 opó¹nieniem z wykluczeniem wpªywu 1 opó¹nienia opó¹nienie 3 korelacja cz stkowa warto±ci bie» cej z 3 opó¹nieniem z wykluczeniem wpªywu 1 i 2 opó¹nienia opó¹nienie 4 korelacja cz stkowa warto±ci bie» cej z 4 opó¹nieniem z wykluczeniem wpªywu 1, 2 i 3 opó¹nienia itd.
7 Funkcje ACF i PACF jako kryterium doboru p,q Sposób post powania podpowiadany przez korelogram: dla modeli AR(p): szukamy punktu uci cia na wykresie PACF dla modeli MA(q): szukamy punktu uci cia na wykresie ACF dla modeli ARMA(p,q): zwi kszamy stopniowo p i q, staraj c si wyczy±ci wykres ACF i PACF Zaczynamy od Zmienna / Korelogram. Nast pnie, po oszacowaniu modelu ARMA, ogl damy ACF i PACF reszt losowych.
8 ACF i PACF: przykªad (1) Proces AR(1): Correlogram of P2 Autocorrelation Partial Correlation AC PAC Q-Stat Prob
9 ACF i PACF: przykªad (2) Proces MA(1): Correlogram of P4 Autocorrelation Partial Correlation AC PAC Q-Stat Prob
10 Testy statystyczne i miary dopasowania testy istotno±ci (t) testy autokorelacji Q (Ljung-Box) i efektów ARCH UWAGA! Interpretacja R-kwadrat mo»e by myl ca zwracamy raczej uwag na kryteria informacyjne pomagaj rozstrzyga mi dzy konkurencyjnymi modelami kompromis mi dzy dopasowaniem a oszcz dn parametryzacj
11 Plan prezentacji 1 Specykacja modelu ARIMA 2 3
12 Zadanie A Specykacja modelu ARIMA Oszacowano równanie nast puj cego procesu ARMA: y t = 0, 4y t 1 0, 05y t 2 + 0, 3ε t 1 + ε t a) Zbadaj stacjonarno± i odwracalno± procesu. b) Próba ko«czy si w grudniu 2009 r. Wiemy,»e y = 1, 5 y = 0, 5, ε = 0, 3, ε = 0, 2. Wyznacz prognozy na stycze«, luty i marzec c) Wyznacz jeszcze raz te prognozy wiedz c,»e ε = 0, 1.
13 Prognoza Specykacja modelu ARIMA 1 Horyzont prognozy musi nale»e do zakresu czasowego pliku. 2 W pliku musz by wszystkie niezb dne warto±ci zmiennych egzogenicznych w horyzoncie prognozy (je»eli to model ARIMAX). 3 Analiza / Prognoza... w oknie modelu. 4 Je»eli model jest dynamiczny (opó¹nienia zmiennej endogenicznej), mo»na wybra prognoz dynamiczn lub statyczn : 1 dynamiczna: jako przyszªe warto±ci y t 1, y t 2 itd. w charakterze zmiennych obja±niaj cych u»yte zostan poprzednie prognozy; 2 statyczna: jako przyszªe warto±ci y t 1, y t 2 itd. zostan u»yte dane z pliku (o ile s dost pne).
14 Zadanie B Specykacja modelu ARIMA Otwórz plik arma.gdt i oszacuj dla tych danych pewien oszcz dnie sparametryzowany proces ARMA. 1 Oce«jego stacjonarno± / odwracalno± na podstawie podanej przez Gretl informacji o pierwiastkach wielomianu charakterystycznego. 2 Dokonaj jego prognozy na 10 okresów w przód.
15 Zadanie C Specykacja modelu ARIMA Plik arma_identykacja.gdt zawiera 9 szeregów czasowych, wygenerowanych przez procesy ARMA(p,q), przy czym p = 0, 1, 2 i q = 0, 1, 2 (wszystkie mo»liwe kombinacje). Zidentykuj poszczególne procesy.
16 Plan prezentacji 1 Specykacja modelu ARIMA 2 3
17 2 Wybierz 2 z szeregów czasowych analizowanych na pierwszych zaj ciach (z wyj tkiem stopy bezrobocia). Oszacuj dla nich modele ARIMA o specykacji, któr uznasz za najbardziej adekwatn na podstawie testów stacjonarno±ci oraz znanych Ci kryteriów doboru opó¹nie«(acf, PACF, kryteria informacyjne, testy istotno±ci i autokorelacji). Przedstaw uzasadnienie wybranej specykacji. Oce«stacjonarno± / odwracalno± obu procesów (przedstaw wªasne obliczenia, traktuj c wynik z Gretla jako sprawdzenie ich poprawno±ci). Dokonaj prognozy na 4 okresy w przód.
Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Ekonometria - wykªad 8
Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Wst p do ekonometrii II
Wst p do ekonometrii II Wykªad 2: Modele ARIMA. Filtr Kalmana (2) WdE II 1 / 46 Plan wykªadu 1 Modele ARIMA Modele AR, MA, ARMA, ARIMA i ARIMAX Specykacja modelu ARIMA Modele sezonowe: SARIMA 2 Filtr Kalmana
Analiza szeregów czasowych bezrobocia i inflacji w Danii
Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Analiza szeregów czasowych bezrobocia i inflacji w Danii Projekt zaliczeniowy z przedmiotu: Analiza Szeregów Czasowych
Szeregi czasowe, analiza zależności krótkoi długozasięgowych
Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t
Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych)
Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych) (studium przypadku) Nazwa przedmiotu: ekonometria finansowa I (22204), analiza szeregów czasowych
1.1 Opis danych Dekompozycja szeregu ARIMA Prognoza Podsumowanie Opis danych...
1 Szereg niesezonowy... 3 1.1 Opis danych... 3 1.2 Dekompozycja szeregu... 3 1.3... 3 1.4 ARIMA... 10 1.5 Prognoza... 12 1.6 Podsumowanie... 15 2 Szereg sezonowy... 15 2.1 Opis danych... 15 2.2 Dekompozycja
Ekonometria. wiczenia 7 Modele nieliniowe. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 7 Modele nieliniowe (7) Ekonometria 1 / 19 Plan wicze«1 Nieliniowo± : co to zmienia? 2 Funkcja produkcji Cobba-Douglasa 3 Nieliniowa MNK (7) Ekonometria 2 / 19 Plan prezentacji 1 Nieliniowo±
Ekonometria. wiczenia 4 Prognozowanie. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 4 Prognozowanie (4) Ekonometria 1 / 18 Plan wicze«1 Prognoza punktowa i przedziaªowa 2 Ocena prognozy ex post 3 Stabilno± i sezonowo± Sezonowo± zadanie (4) Ekonometria 2 / 18 Plan
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
7.4 Automatyczne stawianie prognoz
szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu
Stanisław Cichocki Natalia Nehrebecka. Wykład 5
Sanisław Cichocki Naalia Nehrebecka Wkład 5 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 2 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA
Testowanie stopnia zintegrowania. czasowego. Wst p do ekonometrii szeregów czasowych wiczenia 1. Andrzej Torój. 19 lutego 2010
szeregu czasowego Wst p do ekonometrii szeregów czasowych wiczenia 1 19 lutego 2010 Plan prezentacji 1 Szereg czasowy, poj cie stacjonarno±ci 2 3 4 5 6 7 Plan prezentacji 1 Szereg czasowy, poj cie stacjonarno±ci
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
ROZWIĄZANIA PRZYKŁADOWYCH ZADAŃ. KORELACJA zmiennych jakościowych (niemierzalnych)
ROZWIĄZANIA PRZYKŁADOWYCH ZADAŃ KORELACJA zmiennych jakościowych (niemierzalnych) Zadanie 1 Zapytano 180 osób (w tym 120 mężczyzn) o to czy rozpoczynają dzień od wypicia kawy czy też może preferują herbatę.
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and
Ekonometria. wiczenia 3 Autokorelacja, heteroskedastyczno±, wspóªliniowo± Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 3 Autokorelacja, heteroskedastyczno±, wspóªliniowo± (3) Ekonometria 1 / 29 Plan wicze«1 Wprowadzenie 2 Normalny rozkªad 3 Autokorelacja 4 Heteroskedastyczno± Test White'a Odporne bª
Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe?
Prognozowanie Co trzeba wiedzieć korzystając z modelu ARIMA Marta Płonka Predictive Solutions W trzecim już artykule dotyczącym szeregów czasowych przyjrzymy się modelom ARIMA. Dzisiaj skupimy się na metodzie
Ekonometria. wiczenia 2 Werykacja modelu liniowego. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 2 Werykacja modelu liniowego (2) Ekonometria 1 / 33 Plan wicze«1 Wprowadzenie 2 Ocena dopasowania R-kwadrat Skorygowany R-kwadrat i kryteria informacyjne 3 Ocena istotno±ci zmiennych
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące
Specyfikacja techniczna banerów Flash
Specyfikacja techniczna banerów Flash Po stworzeniu własnego banera reklamowego należy dodać kilka elementów umożliwiających integrację z systemem wyświetlającym i śledzącym reklamy na stronie www. Specyfikacje
Analiza Szeregów Czasowych. Egzamin
Analiza Szeregów Czasowych Egzamin 12-06-2018 Zadanie 1: Zadanie 2: Zadanie 3: Zadanie 4: / 12 pkt. / 12 pkt. / 12 pkt. / 14 pkt. Projekt zaliczeniowy: Razem: / 100 pkt. / 50 pkt. Regulamin egzaminu 1.
Ekonometria. wiczenia 8 Modele zmiennej jako±ciowej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 8 Modele zmiennej jako±ciowej (8) Ekonometria 1 / 25 Plan wicze«1 Modele zmiennej jako±ciowej 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3 Predykcja
2 Model neo-keynsistowski (ze sztywnymi cenami).
1 Dane empiryczne wiczenia 5 i 6 Krzysztof Makarski Szoki popytowe i poda»owe jako ¹ródªa uktuacji. Wspóªczynnik korelacji Odchylenie standardowe (w stosunku do PKB) Cykliczno± Konsumpcja 0,76 75,6% procykliczna
Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 1 Regresja liniowa i MNK (1) Ekonometria 1 / 25 Plan wicze«1 Ekonometria czyli...? 2 Obja±niamy ceny wina 3 Zadania z podr cznika (1) Ekonometria 2 / 25 Plan prezentacji 1 Ekonometria
Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne
Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Warunki stacjonarności modelu AR(p) y n = β 1 y n 1 + β 2 y n 2 + + β
Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW
Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest
MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 254 263 MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE Agnieszka Tłuczak Zakład Ekonometrii i Metod Ilościowych, Wydział Ekonomiczny
1. Ekonometria jako dyscyplina naukowa (przedmiot, metodologia, teorie ekonomiczne). Model ekonometryczny, postać modelu, struktura, klasyfikacja.
1. Ekonometria jako dyscyplina naukowa (przedmiot, metodologia, teorie ekonomiczne). Model ekonometryczny, postać modelu, struktura, klasyfikacja. Zadanie 1. Celem zadania jest oszacowanie modelu opisującego
Analiza szeregów czasowych: 7. Liniowe modele stochastyczne
Analiza szeregów czasowych: 7. Liniowe modele stochastyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Liniowe modele stochastyczne Niech {y n } N n=1 będzie pewnym ciagiem danych
1. Szereg niesezonowy 1.1. Opis szeregu
kwaralnych z la 2000-217 z la 2010-2017.. Szereg sezonowy ma charaker danych model z klasy ARIMA/SARIMA i model eksrapolacyjny oraz d prognoz z ych modeli. 1. Szereg niesezonowy 1.1. Opis szeregu Analizowany
WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego
WYKŁAD: Szeregi czasowe I Zaawansowane Metody Uczenia Maszynowego Szereg czasowy (X t ) - ciąg zmiennych losowych indeksowany parametrem t (czas). Z reguły t N lub t Z. Dotąd rozpatrywaliśmy: (X t )- ciąg
Ekonometria - wykªad 1
Ekonometria - wykªad 1 0. Wprowadzenie Barbara Jasiulis-Goªdyn 28.02.2014 2013/2014 Ekonometria Literatura [1] B. Borkowski, H. Dudek, W. Szczesny, Ekonometria. Wybrane Zaganienia, PWN, Warszawa 2003.
WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ
WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ Anna Gutt- Kołodziej ZASADY OCENIANIA Z MATEMATYKI Podczas pracy
REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
Rozdzia 5. Uog lniona metoda najmniejszych kwadrat w : ::::::::::::: Podstawy uog lnionej metody najmniejszych kwadrat w :::::: Zastos
Spis tre ci PRZEDMOWA :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 11 CZ I. Wprowadzenie do modelowania ekonometrycznego ::::::::::: 13 Rozdzia 1. Modelowanie ekonometryczne ::::::::::::::::::::::::::::::
Moduł. Rama 2D suplement do wersji Konstruktora 4.6
Moduł Rama 2D suplement do wersji Konstruktora 4.6 110-1 Spis treści 110. RAMA 2D - SUPLEMENT...3 110.1 OPIS ZMIAN...3 110.1.1 Nowy tryb wymiarowania...3 110.1.2 Moduł dynamicznego przeglądania wyników...5
I. Szereg niesezonowy
Spis I. Szereg niesezonowy 1.1. Opis danych 1.2. Dekompozycja szeregu w programie Demetra 1.3. Analiza szeregu w STATA 1.4. Model ekstrapolacyjny 1.5. Model ARIMA 1.6. P II Szereg sezonowy 2.1. Opis danych
PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY
Joanna Chrabołowska Joanicjusz Nazarko PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY NA PRZYKŁADZIE PRZEDSIĘBIORSTWA HANDLOWEGO TYPU CASH & CARRY Wprowadzenie Wśród wielu prognoz szczególną rolę w zarządzaniu
Projekt z Ekonometrii Dynamicznej
Projekt z Ekonometrii Dynamicznej Tomasz Tymecki L.p. Nazwa 1 KGHM 2 ORBIS 3 FERRUM 4 VISTULA 5 BORYSZEW 6 MOSTOSTALZAB 7 BYTOM 8 FORTE 9 PRÓCHNIK 1 ŻYWIEC 11 Indeks WIG 12 Indeks WIG2 Spis treści I. Analiza
Etapy modelowania ekonometrycznego
Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,
Termostaty V2, V4 i V8 Regulatory temperatury bezpo redniego działania F CHARAKTERYSTYKA:
Termostaty V2, V4 i V8 Regulatory temperatury bezpo redniego działania 3.4.01-F CHARAKTERYSTYKA: siła zamkni cia 200 N, 400 N i 800 N do zaworów grzewczych lub chłodz cych solidne i godne zaufania zakres
WYMAGANIA EDUKACYJNE Z PRZEDMIOTÓW ZAWODOWYCH ODBYWAJĄCYCH SIĘ W SZKOLNYM LABORATORIUM CHEMICZNYM
WYMAGANIA EDUKACYJNE Z PRZEDMIOTÓW ZAWODOWYCH ODBYWAJĄCYCH SIĘ W SZKOLNYM LABORATORIUM CHEMICZNYM PSO jest uzupełnieniem Wewnątrzszkolnego Systemu Oceniania obowiązującego w GCE. Precyzuje zagadnienia
Analiza szeregów czasowych: 5. Liniowe modele stochastyczne
Analiza szeregów czasowych: 5. Liniowe modele stochastyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Dwa rodzaje modelowania 1. Modelowanie z pierwszych zasad. Znamy prawa
Zarządzanie Zasobami by CTI. Instrukcja
Zarządzanie Zasobami by CTI Instrukcja Spis treści 1. Opis programu... 3 2. Konfiguracja... 4 3. Okno główne programu... 5 3.1. Narzędzia do zarządzania zasobami... 5 3.2. Oś czasu... 7 3.3. Wykres Gantta...
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Ekonometria Przestrzenna
Ekonometria Przestrzenna Wykªad 6: Zªo»one modele regresji przestrzennej (6) Ekonometria Przestrzenna 1 / 21 Plan wykªadu 1 Modele zªo»one 2 Model SARAR 3 Model SDM (Durbina) 4 Model SDEM 5 Zadania (6)
Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk
Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1
Ćwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
Tadeusz Kufel Uniwersytet Mikołaja Kopernika w Toruniu. Narzędzia ekonometrii dynamicznej w oprogramowaniu GRETL
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Mikołaja Kopernika
Kurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
Analiza regresji - weryfikacja założeń
Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.
Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13
Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych
Niestacjonarne zmienne czasowe własności i testowanie
Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza
Czasowy wymiar danych
Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji
Wprowadzenie do teorii prognozowania
Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
1 WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA SZEREGÓW CZASOWYCH Nazwa w języku angielskim ANALYSIS OF TIME SERIES Kierunek studiów (jeśli dotyczy): Matematyka Specjalność (jeśli
E k o n o m e t r i a S t r o n a 1
E k o n o m e t r i a S t r o n a Liniowy model ekonometryczny Jednorównaniowy liniowy model ekonometryczny (model regresji wielorakiej) można zapisać w postaci: y = α + α x + α x +... + α x + ε, t =,,...,
Makroekonomia Zaawansowana
Makroekonomia Zaawansowana wiczenia 3 Racjonalne oczekiwania i krytyka Lucasa MZ 1 / 15 Plan wicze«1 Racjonalne oczekiwania 2 Krytyka Lucasa 3 Zadanie MZ 2 / 15 Plan prezentacji 1 Racjonalne oczekiwania
Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
Metoda Johansena objaśnienia i przykłady
Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian
Stanisław Cichocki Natalia Neherbecka
Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
1 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA SZEREGÓW CZASOWYCH Nazwa w języku angielskim ANALYSIS OF TIME SERIES Kierunek studiów (jeśli dotyczy):
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
FINANSOWE SZEREGI CZASOWE WYKŁAD 3
FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Interpolacja PWSZ Gªogów, 2009 Interpolacja Okre±lenie zale»no±ci pomi dzy interesuj cymi nas wielko±ciami, Umo»liwia uproszczenie skomplikowanych funkcji (np. wykorzystywana
ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15
ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku
Platforma Aukcyjna Marketplanet. Podręcznik Oferenta. Aukcja dynamiczna zniŝkowa
Platforma Aukcyjna Marketplanet Podręcznik Oferenta Aukcja dynamiczna zniŝkowa (c) 2008 Otwarty Rynek Elektroniczny S.A. 1. Spis treści 1. SPIS TREŚCI... 2 2. WSTĘP... 3 3. LOGOWANIE DO SYSTEMU... 3 4.
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Stanisław Cihcocki. Natalia Nehrebecka
Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Metoda najmniejszych kwadratów
Model ekonometryczny Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między poziomem wykształcenia a wysokością zarobków Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między
U C H W A Ł A NR XIX/81/2008. Rady Gminy Ostrowite z dnia 21 maja 2008 roku. u c h w a l a s ię:
U C H W A Ł A NR XIX/81/2008 Rady Gminy Ostrowite z dnia 21 maja 2008 roku w sprawie regulaminu udzielania pomocy materialnej o charakterze socjalnym dla uczniów. Na podstawie art. 90f. ustawy z dnia 7
Temat: Czy świetlówki energooszczędne są oszczędne i sprzyjają ochronie środowiska? Imię i nazwisko
Temat: Czy świetlówki energooszczędne są oszczędne i sprzyjają ochronie środowiska? Karta pracy III.. Imię i nazwisko klasa Celem nauki jest stawianie hipotez, a następnie ich weryfikacja, która w efekcie
PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA NIEMIECKIEGO
PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA NIEMIECKIEGO Zasady ogólne Ocenianie wewnątrzszkolne na przedmiocie język niemiecki ma na celu: 1) informowanie ucznia o poziomie jego osiągnięć edukacyjnych i jego
W Katedrze znajduje się pokój socjalny, z którego mogą skorzystad studenci w czasie przerwy pomiędzy zajęciami. Na terenie Zakładu Toksykologii
Regulamin dwiczeo z Toksykologii realizowanych w Katedrze i Zakładzie Toksykologii dla studentów Biotechnologii Medycznej Wydziału Lekarskiego II Uniwersytetu Medycznego w Poznaniu 1. Ćwiczenia z toksykologii
Ekonometria. wiczenia 5 i 6 Modelowanie szeregów czasowych. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 5 i 6 Modelowanie szeregów czasowych (5-6) Ekonometria 1 / 30 Plan prezentacji 1 Regresja pozorna 2 Testowanie stopnia zintegrowania szeregu 3 Kointegracja 4 Modele dynamiczne (5-6)
Stacjonarność Integracja. Integracja. Integracja
Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:
PAKIET MathCad - Część III
Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad
Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota
Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych
Niestacjonarne zmienne czasowe własności i testowanie
Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 1: Opis ogólny i plan pracy Nazwa przedmiotu: ekonometria finansowa I (22204), analiza szeregów czasowych
EKONOMETRIA. Prof. dr hab. Eugeniusz Gatnar.
EKONOMETRIA Prof. dr hab. Eugeniusz Gatnar egatnar@mail.wz.uw.edu.pl Sprawy organizacyjne Wykłady - prezentacja zagadnień dotyczących: budowy i weryfikacji modelu ekonometrycznego, doboru zmiennych, estymacji
wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia
wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. wiczenia 1 2 do wiczenia 3 4 Badanie do±wiadczalne 5 pomiarów 6 7 Cel Celem wiczenia jest zapoznanie studentów z etapami przygotowania i
PRZEDMIOTOWY SYSTEM OCENIANIA Z PODSTAW PSYCHOLOGII W KLASIE DRUGIEJ. Ocenianie wewnątrzszkolne na przedmiocie podstawy psychologii ma na celu:
PRZEDMIOTOWY SYSTEM OCENIANIA Z PODSTAW PSYCHOLOGII W KLASIE DRUGIEJ Zasady ogólne Ocenianie wewnątrzszkolne na przedmiocie podstawy psychologii ma na celu: 1. informowanie ucznia o poziomie jego osiągnięć
Wdrożenie modułu płatności eservice dla systemu Virtuemart 2.0.x
Wdrożenie modułu płatności eservice dla systemu Virtuemart 2.0.x Wersja 02 Styczeń 2016 Centrum Elektronicznych Usług Płatniczych eservice Sp. z o.o. Spis treści 1. Wstęp... 3 1.1. Przeznaczenie dokumentu...
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk
Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 5 & 6 Szaeregi
Wykªad 6: Model logitowy
Wykªad 6: Model logitowy Ekonometria Stosowana SGH Model logitowy 1 / 18 Plan wicze«1 Modele zmiennej jako±ciowej idea 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3
Analiza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.