WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA"

Transkrypt

1 ELEMENTY TEORII GRAFÓW Literatura: N.Deo Teoria grafów i e zastosowania... PWN (1980) Ross, Wright Matematyka yskretna PWN (199) R.Wilson Wprowazenie o teorii grafów PWN (1999) J.Kulikowski Zarys teorii grafów PWN (198) GRAFY postawowe efinice Graf: G = ( V, E ) V = { 1,,..., n } - ziór wierzchołków grafu E { {i, } : i i i, V }- ziór krawęzi grafu Terminologia: graf = graf symetryczny, graf nieskierowany, graf niezorientowany Rysunek grafu: wierzchołek i przestawiamy symolicznie i krawęź {i, } przestawiamy ako ocinek łączący wa wierzchołki i Przykła grafu i ego rysunku G = ( V, E ): V = { 1,..., }, E = {{1, }, {1, }, {1, }, {, }, {, }, {, }} Graf skierowany: G = ( V, A ) V = { 1,,..., n } - ziór wierzchołków grafu A V V - ziór łuków grafu Terminologia: graf skierowany = igraf, graf zorientowany Rysunek grafu skierowanego: wierzchołek i przestawiamy symolicznie i łuk (i, ) przestawiamy ako ocinek skierowany o enego wierzchołka o rugiego i Przykła grafu skierowanego i ego rysunku G = ( V, A ): V = { 1,..., }, A = {(1, ), (1, ), (, ), (, ), (, ), (, ), (, ), (, )} Dla grafu skierowanego G = ( V, A ) efiniuemy pochony graf nieskierowany G = ( V, E ): { i, } E ( i, ) A (, i ) A, i MATEMATYKA DYSKRETNA () J.Sikorski Strona 1 /

2 Przykła grafu pochonego V = { 1,..., }, E = {{1, }, {1, }, {, }, {, }, {, }} Związek grafów z relacami Dla grafu skierowanego G = ( V, A ): A relaca na ziorze V Dla grafu (nieskierowanego) G = ( V, E ): E może wynikać z relaci R na ziorze V, która est ona symetryczna i nie est zwrotna: ( i, ) R (, i ) R { i, } E STOPNIE WIERZCHOŁKÓW Graf (nieskierowany) la G = ( V, E ) i ego krawęzi e = { i, } E mówimy, że wierzchołki i, są incyentne z krawęzią e (krawęź e łączy wa wierzchołki i, ). Wierzchołki incyentne z aną krawęzią nazywamy wierzchołkami sąsienimi. V ziór wierzchołków sąsienich z wierzchołkiem i : V = { V : {i, } E } = V stopień wierzchołka i (inne stosowane oznaczenie eg ) Wierzchołek stopnia 0 nazywamy wierzchołkiem izolowanym. Dla pozioru M V efiniuemy: V M = { M : {i, } E } M = V M stopień wierzchołka i wzglęem pozioru M Przykła wyznaczania stopni wierzchołków w grafie 1 V(1) = {,,, } (1) = ; V() = {1,, } () = ; V() = () = 0 (wierzchołek izolowany) la M = {, }: M (1) =, M () = 1, M () = 0 Graf skierowany la G = ( V, A ) i ego łuku a = ( i, ) A mówimy, że wierzchołki i, są incyentne z łukiem a (łuk a prowazi z wierzchołka i o ). Wierzchołki incyentne z anym łukiem nazywamy opowienio ego początkiem i końcem () V ziór końców łuków wychozących z wierzchołka i : V = { V : (i, ) A } V ziór początków łuków wchozących o wierzchołka i : V = { V : (, i) A } = V stopień wyściowy wierzchołka i = V stopień weściowy wierzchołka i = stopień wierzchołka i Dla pozioru M V efiniuemy: V M = { M : (i, ) A } V M = { M : {, i} A } M M M = M = V M stopień wyściowy wierzchołka i wzglęem M = V M stopień weściowy wierzchołka i wzglęem M M stopień wierzchołka i wzglęem M MATEMATYKA DYSKRETNA () J.Sikorski Strona /

3 Przykła wyznaczania stopni wierzchołków w grafie skierowanym V () = {,, } () = ; V () = {, } () = ; () = V () = {} () = 1; V () = {} () = 1; () = la M = {, }: () =, () = 1, M () = M Twierzenie (lemat o uściskach łoni) Dla owolnego grafu (nieskierowanego) G = ( V, E ) zachozi Twierzenie Dla owolnego grafu skierowanego G = ( V, A ) zachozi MACIERZ INCYDENCJI M = = E = Graf (nieskierowany) G = ( V, E ) ziór wierzchołków V = { 1,,..., n }, ziór krawęzi E = {e 1, e,..., e m } { { i, }: i, V } Macierz incyenci grafu: I E = [ a i : i =1,..., n, =1,..., m ] 1 esli i e ai = 0 w przeciwnym przypaku Przykła wyznaczania macierzy incyenci V = { 1,,,, } E = {e 1, e, e, e, e, e } = {{1, }, {1, }, {, }, {, }, {, }, {, }} e 1 A e1 e e e e e 1 e e e e e (1) = () = I E = () = () = () = 1 Σ = 1 Graf skierowany (ez pętli) G = ( V, A ) ziór wierzchołków V = { 1,,..., n }, ziór krawęzi A = {a 1, a,..., a m } V V Macierz incyenci grafu skierowanego ez pętli: I A = [ a i : i =1,..., n, =1,..., m ] 1 esli a = ( k, i) ai = 1 esli a = ( i, k) 0 w przeciwnym przypaku MATEMATYKA DYSKRETNA () J.Sikorski Strona /

4 Przykła wyznaczania macierzy incyenci V = { 1,, }, E = {a 1, a, a, a } = {(1, ), (, 1), (, 1), (, )} a 1 a 1 a a a 1 a a a (1) = 1, (1) =, (1) = I A = () = 1, () = 1, () = () =, () = 1, () = Σ =, Σ =, Σ = 8 Twierzenie (raz eszcze) Dla grafu (nieskierowanego) zachozi: Dla grafu skierowanego zachozi: = E = = Dowó Wystarczy policzyć sumy niezerowych elementów o enakowych znakach w opowienich macierzach incyenci Wniosek W owolnym grafie skierowanym lu nieskierowanym licza wierzchołków stopnia nieparzystego est parzysta A! MACIERZ SĄSIEDZTWA WIERZCHOŁKÓW Graf (nieskierowany) G = ( V, E ), V = { 1,,..., n } Macierz sąsieztwa wierzchołków grafu: B E = [ i : i =1,..., n, =1,..., n ] i = i 1 esli { i, } E = 0 w przeciwnym przypaku Przykła wyznaczania macierzy sąsieztwa wierzchołków V = { 1,,,, } (1) = () = B E = () = () = () = 1 (1) = () = () = () = () = 1 MATEMATYKA DYSKRETNA () J.Sikorski Strona /

5 Graf skierowany G = ( V, A ), V = { 1,,..., n } Macierz sąsieztwa wierzchołków grafu: B A = [ i : i =1,..., n, =1,..., n ] i 1 esli ( i, ) A = 0 w przeciwnym przypaku Przykła wyznaczania macierzy sąsieztwa wierzchołków V = { 1,, } (1) = B A = () = () = (1) = 1 () = () = 1 TYPY GRAFÓW Dwa grafy (nieskierowane) G = ( V, E ) i G = ( V, E ) są izomorficzne, eśli istniee wzaemnie enoznaczne owzorowanie f : V 11 V, takie że la owolne pary wierzchołków i, V zachozi { i, } E { f, f () } E Dla grafów skierowanych G = ( V, A ) i G = ( V, A ) warunek ma postać Izomorfizm grafów zapisuemy: Przykła grafów izomorficznych ( i, ) A ( f, f () ) A G G 1 8 e a c h g f Owzorowanie wykazuące izomorficzność: i 1 8 f a c e f g h Graf nazywamy regularnym, eśli wszystkie wierzchołki maa ten sam stopień. Uwaga Dwa grafy regularne o te same liczie wierzchołków i tym samym stopniu wierzchołków nie muszą yć izomorficzne. MATEMATYKA DYSKRETNA () J.Sikorski Strona /

6 Przykła ilustruący uwagę Graf nazywamy pełnym, eśli la każe pary wierzchołków istniee krawęź łącząca te wierzchołki. Symoliczne oznaczenie grafu pełnego o n wierzchołkach K n K 1 K K K K Graf nazywamy wuzielnym, eśli ziór ego wierzchołków można pozielić na wa rozłączne poziory, tak że żane wa wierzchołki należące o tego samego pozioru nie są sąsienie. G = ( V 1 V, E ) V 1 = r, V = s, V 1 V = Graf G = ( V 1 V, E ) nazywamy pełnym grafem wuzielnym, eśli est wuzielny i zawiera wszystkie krawęzie łączące wierzchołki ze zioru V 1 z wierzchołkami ze zioru V. Oznaczenie pełnego grafu wuzielnego K r, s Przykłay pełnych grafów wuzielnych K, K 1, Pografem grafu G = ( V, E ) nazywamy owolny graf G = ( V, E ), la którego V V oraz E E. Graf est planarny (płaski), eśli można go narysować na płaszczyźnie ez przecięć krawęzi. Twierzenie (Kuratowski, 190) Graf est planarny wtey i tylko wtey, gy nie zawiera pografu, który można otrzymać z grafów K lu K, przez poział krawęzi (czyli wprowazenie oatkowych wierzchołków stopnia ). MATEMATYKA DYSKRETNA () J.Sikorski Strona /

7 MATEMATYKA DYSKRETNA () J.Sikorski Strona / Przykłay zastosowania twierzenia Kuratowskiego o stwierzenia nieplanarności Graf Petersena a e f g i h c a e f g i h c graf Petersena nie est planarny

Wykład 1. Wprowadzenie do teorii grafów

Wykład 1. Wprowadzenie do teorii grafów Wykła 1. Wprowazenie o teorii grafów 1 / 111 Literatura 1 W. Lipski; Kombinatoryka la programistów. 2 T. Cormen, Ch. E. Leiserson, R. L. Rivest; Wprowazenie o algorytmów. 3 K. A. Ross, Ch. R. B. Wright;

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

G. Wybrane elementy teorii grafów

G. Wybrane elementy teorii grafów Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 1: Definicja grafu. Rodzaje i części grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Podstawowe pojęcia i klasy grafów Wykład 1 Grafy nieskierowane Definicja Graf nieskierowany (graf) G = (V,E) jest to uporządkowana para składająca się z niepustego skończonego zbioru wierzchołków V oraz

Bardziej szczegółowo

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - KOLOKWIUM 2

MATEMATYKA DYSKRETNA - KOLOKWIUM 2 1 MATEMATYKA DYSKRETNA - KOLOKWIUM 2 GRUPA A RACHUNKI+KRÓTKIE WYJAŚNIENIA! NA TEJ KARTCE! KAŻDA DODATKOWA KARTKA TO MINUS 1 PUNKT! Imię i nazwisko...... Nr indeksu... 1. (3p.) Znajdź drzewo o kodzie Prufera

Bardziej szczegółowo

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0 WYKŁAD nr 4. Zaanie programowania nieliniowego ZP. Ekstrema unkcji jenej zmiennej o ciągłych pochonych Przypuśćmy ze punkt jest punktem stacjonarnym unkcji gzie punktem stacjonarnym nazywamy punkt la którego

Bardziej szczegółowo

Ilustracja S1 S2. S3 ściana zewnętrzna

Ilustracja S1 S2. S3 ściana zewnętrzna Grafy płaskie G=(V,E) nazywamy grafem płaskim, gdy V jest skończonym podzbiorem punktów płaszczyzny euklidesowej, a E to zbiór krzywych Jordana (łamanych) o końcach w V i takich, że: 1) rożne krzywe mają

Bardziej szczegółowo

Wyk lad 3 Grupy cykliczne

Wyk lad 3 Grupy cykliczne Wyk la 3 Grupy cykliczne Definicja 3.1. Niech a bezie elementem grupy (G,, e). Jeżeli istnieje liczba naturalna k taka, że a k = e, to najmniejsza taka liczbe naturalna k nazywamy rzeem elementu a. W przeciwnym

Bardziej szczegółowo

Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków

Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków Wykłady popularne z matematyki Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków Joanna Jaszuńska Politechnika Warszawska, 6 maja 2010 Grafy Wykłady popularne z matematyki,

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 8/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1A/14 Literatura obowiązkowa [1] K.A.Ross, Ch.R.B.Wright: Matematyka Dyskretna. Wydawnictwo Naukowe PWN, Warszawa 1996 [2] R.L.Graham,

Bardziej szczegółowo

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia

Bardziej szczegółowo

6. Wstępne pojęcia teorii grafów

6. Wstępne pojęcia teorii grafów 6. Wstępne pojęcia teorii grafów Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 6. Wstępne pojęcia teorii grafów zima 2016/2017

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie

Bardziej szczegółowo

Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń

Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 15 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja

Bardziej szczegółowo

Spis treści Podstawowe definicje Wielomian charakterystyczny grafu Grafy silnie regularne

Spis treści Podstawowe definicje Wielomian charakterystyczny grafu Grafy silnie regularne Spis treści 1 Podstawowe definicje 4 1.1 Grafy................................ 4 1.2 Przykłady grafów......................... 12 1.2.1 Grafy puste i pełne.................... 12 1.2.2 Grafy dwudzielne.....................

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

KURS MATEMATYKA DYSKRETNA

KURS MATEMATYKA DYSKRETNA KURS MATEMATYKA DYSKRETNA LEKCJA 28 Grafy hamiltonowskie ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Drogę nazywamy

Bardziej szczegółowo

0. ELEMENTY LOGIKI. ALGEBRA BOOLE A

0. ELEMENTY LOGIKI. ALGEBRA BOOLE A WYKŁAD 5() ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań Matematyka zbudowana jest z pierwotnych twierdzeń (nazywamy

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

Algorytmy z powracaniem

Algorytmy z powracaniem Algorytmy z powracaniem Materiały Grafem nazywamy zbiór G = (V, E), gdzie: V jest zbiorem wierzchołków (ang. vertex) E jest zbiorem krawędzi (E można też określić jako podzbiór zbioru nieuporządkowanych

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

. Podstawy Programowania 2. Grafy i ich reprezentacje. Arkadiusz Chrobot. 9 czerwca 2016

. Podstawy Programowania 2. Grafy i ich reprezentacje. Arkadiusz Chrobot. 9 czerwca 2016 Podstawy Programowania 2 Grafy i ich reprezentacje Arkadiusz Chrobot Zakład Informatyki 9 czerwca 2016 1 42 Plan 1 Wstęp 2 Teoria grafów 3 Grafy jako struktury danych 4 Zastosowania grafów 2 42 Wstęp Wstęp

Bardziej szczegółowo

Przekształcenie całkowe Fouriera

Przekształcenie całkowe Fouriera Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy

Bardziej szczegółowo

E ' E G nazywamy krawędziowym zbiorem

E ' E G nazywamy krawędziowym zbiorem Niech G będzie grafem spójnym. Wierzchołek x nazywamy rozcinającym, jeśli G\{x} jest niespójny. Niech G będzie grafem spójnym. V ' V G nazywamy zbiorem rozcinającym jeśli G\V' jest niespójny Niech G będzie

Bardziej szczegółowo

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie:

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie: Graf ( graf ogólny) to para G( V, E), gdzie: V jest zbiorem wierzchołków, ( czasami zwanymi węzłami lub punktami grafu) E jest rodziną ( być może powtarzających się) krawędzi, czyli jedno- i dwu- elementowych

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Grafy i Zastosowania. 9: Digrafy (grafy skierowane) c Marcin Sydow

Grafy i Zastosowania. 9: Digrafy (grafy skierowane) c Marcin Sydow 9: Digrafy (grafy skierowane) Spis zagadnień Digrafy Porządki częściowe Turnieje Przykłady: głosowanie większościowe, ścieżka krytyczna Digraf (graf skierowany) Digraf to równoważny termin z terminem graf

Bardziej szczegółowo

GRAFY i SIECI. Graf: G = ( V, E ) - para uporządkowana

GRAFY i SIECI. Graf: G = ( V, E ) - para uporządkowana GRAFY podstwowe definicje GRAFY i SIECI Grf: G = ( V, E ) - pr uporządkown V = {,,..., n } E { {i, j} : i j i i, j V } - zbiór wierzchołków grfu - zbiór krwędzi grfu Terminologi: grf = grf symetryczny,

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk Warszawa, ul. Newelska 6, tel.

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk Warszawa, ul. Newelska 6, tel. WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk 01-447 Warszawa, ul. Newelska 6, tel. 22 3486544 Wydział Informatyki Kierunek studiów Profil Stopień studiów Forma

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku ( Rozdział 1 Grafy skierowane W tym rozdziale zajmiemy siȩ algorytmami wyszukiwania najkrótszej drogi w grafach skierowanych Każdej krawȩdzi

Bardziej szczegółowo

Wielomiany Hermite a i ich własności

Wielomiany Hermite a i ich własności 3.10.2004 Do. mat. B. Wielomiany Hermite a i ich własności 4 Doatek B Wielomiany Hermite a i ich własności B.1 Definicje Jako postawową efinicję wielomianów Hermite a przyjmiemy wzór Roriguesa n H n (x)

Bardziej szczegółowo

Analityczne metody kinematyki mechanizmów

Analityczne metody kinematyki mechanizmów J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier

Bardziej szczegółowo

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane: Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem

Bardziej szczegółowo

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka Grafy planarne Przemysław Gordinowicz Instytut Matematyki, Politechnika Łódzka Grafy i ich zastosowania Wykład 12 Plan prezentacji 1 Wprowadzenie 2 Podstawy 3 Fundamentalne twierdzenie 4 Kolorowanie grafów

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

Grafy i grafy skierowane. Izomorfizmy grafów

Grafy i grafy skierowane. Izomorfizmy grafów TEORIA GRAFÓW I SIECI - ROZDZIAL I Grafy i grafy skierowane. Izomorfizmy grafów Rozważmy rysunki 1. Schemat mostów na rzece Pregole w Królewcu 2. Drzewo prawdopodobieństwa przy rzucie moneta 3. Schemat

Bardziej szczegółowo

Grafy dla każdego. dr Krzysztof Bryś. Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska.

Grafy dla każdego. dr Krzysztof Bryś. Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska. Grafy dla każdego dr Krzysztof Bryś brys@mini.pw.edu.pl Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska www.mini.pw.edu.pl Warszawa, 28 marca 2015 Graf składa się z elementów pewnego zbioru

Bardziej szczegółowo

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych. SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Rozważamy graf G = (V, E) Dwie krawędzie e, e E nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie G nazywamy dowolny

Bardziej szczegółowo

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący

Bardziej szczegółowo

Matematyka dyskretna - 5.Grafy.

Matematyka dyskretna - 5.Grafy. Matematyka dyskretna - 5.Grafy. W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

Geometria Różniczkowa II wykład dziesiąty

Geometria Różniczkowa II wykład dziesiąty Geometria Różniczkowa II wykła ziesiąty Wykła ziesiąty rozpoczyna serię wykłaów poświęconych geometrii symplektycznej. Zajmować się bęziemy głównie zastosowaniami geometrii symplektycznej w mechanice,

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i

Bardziej szczegółowo

Wprowadzenie do teorii grafów. Dr inż. Krzysztof Lisiecki

Wprowadzenie do teorii grafów. Dr inż. Krzysztof Lisiecki 1 Reguły gry (1): Uczymy się systematycznie Nie używamy telefonów Zaliczamy w terminie 2 Kontakt: konsultacje poniedziałek 8.45 10.15 (pokój wykładowców) e-mail : krzysztof.lisiecki@p.lodz.pl lub krzysztof@lisiecki.org.pl

Bardziej szczegółowo

Opracowanie prof. J. Domsta 1

Opracowanie prof. J. Domsta 1 Opracowanie prof. J. Domsta 1 Algorytm FLEURY'ego: Twierdzenie 6.5 G-graf eulerowski. Wtedy cykl Eulera otrzymujemy nastepująco: a) Start w dowolnym wierzchołku b) Krawędzie w dowolnej kolejności po przebyciu

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania SYSTEMY DYNAMICZNE

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania SYSTEMY DYNAMICZNE Politechnika Gańska Wyział Elektrotechniki i Automatyki Katera Inżynierii Systemów Sterowania SYSTEMY DYNAMICZNE Stabilność systemów ynamicznych Materiały pomocnicze o ćwiczeń Termin T7 Opracowanie: Kazimierz

Bardziej szczegółowo

Wykład 10 Grafy, algorytmy grafowe

Wykład 10 Grafy, algorytmy grafowe . Typy złożoności obliczeniowej Wykład Grafy, algorytmy grafowe Typ złożoności oznaczenie n Jedna operacja trwa µs 5 logarytmiczna lgn. s. s.7 s liniowa n. s.5 s. s Logarytmicznoliniowa nlgn. s.8 s.4 s

Bardziej szczegółowo

Elementy teorii grafów Elementy teorii grafów

Elementy teorii grafów Elementy teorii grafów Spis tresci 1 Spis tresci 1 Często w zagadnieniach praktycznych rozważa się pewien zbiór obiektów wraz z zależnościami jakie łączą te obiekty. Dla przykładu można badać pewną grupę ludzi oraz strukturę

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 53

Bardziej szczegółowo

Zadania z badań operacyjnych Przygotowanie do kolokwium pisemnego

Zadania z badań operacyjnych Przygotowanie do kolokwium pisemnego Zaania z baań operacyjnych Przygotowanie o kolokwium pisemnego 1..21 Zaanie 1.1. Dane jest zaanie programowania liniowego: 4x 1 + 3x 2 max 2x 1 + 2x 2 1 x 1 + 2x 2 4 4x 2 8 x 1, x 2 Sprowazić zaanie o

Bardziej szczegółowo

Ścieżki w grafach. Grafy acykliczne i spójne

Ścieżki w grafach. Grafy acykliczne i spójne TEORIA GRAFÓW I SIECI - ROZDZIAL II Ścieżki w grafach. Grafy acykliczne i spójne Ścieżka lub droga w grafie [digrafie] G nazywamy dowolny ciag d = (a 0, k 1, a 1,..., k n, a n ), gdzie n N {0}, a i V G,

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA TYPY GRAFÓW c.d. Graf nazywamy dwudzielnym, jeśli zbiór jego wierzchołków można podzielić na dwa rozłączne podzbiory, tak że żadne dwa wierzchołki należące do tego samego podzbioru nie są sąsiednie. G

Bardziej szczegółowo

Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów II Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Graf planarny Graf planarny Graf, który może być narysowany tak, by uniknąć przecinania się krawędzi, nazywamy grafem

Bardziej szczegółowo

Teoria grafów dla małolatów

Teoria grafów dla małolatów Teoria grafów dla małolatów Andrzej P.Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka w szkole podstawowej kojarzy się przede wszystkim z arytmetyką, ale współcześni matematycy rzadko

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów

Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów Drzewa: Drzewo (ang. tree) jest strukturą danych zbudowaną z elementów, które nazywamy węzłami (ang. node).

Bardziej szczegółowo

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO TRYGONOMETRIA Trygonometria to dział matematyki, którego przedmiotem badań są związki między bokami i kątami trójkątów oraz tzw. funkcje trygonometryczne. Trygonometria powstała i rozwinęła się głównie

Bardziej szczegółowo

Algorytmiczna teoria grafów Problem policjantów i złodziei - Cops and robbers problem

Algorytmiczna teoria grafów Problem policjantów i złodziei - Cops and robbers problem Algorytmiczna teoria grafów Problem policjantów i złodziei - problem hannafurmanczyk@infugedupl 26012016 hannafurmanczyk@infugedupl Nowakowski, Winkler 1983 Opis Gra w policjantów i złodzieja toczona jest

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: MATEMATYKA DYSKRETNA Discrete mathematics Forma studiów: Stacjonarne Poziom kwalifikacji: Kod przedmiotu: A_06 Rok: I obowiązkowy w ramach treści

Bardziej szczegółowo

Wykład 7. Algorytmy grafowe

Wykład 7. Algorytmy grafowe Wykład Algorytmy grafowe Algorytmy grafowe i podstawowe algorytmy przeszukiwania Problem Definicje i własności Reprezentacja Przeszukiwanie wszerz (Breadthirst Search) Przeszukiwanie w głąb (Depthirst

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1 Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem

Bardziej szczegółowo

Ogólne wiadomości o grafach

Ogólne wiadomości o grafach Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,

Bardziej szczegółowo

Grafy podstawowe pojęcia

Grafy podstawowe pojęcia 71 Grafy podstawowe pojęcia Graf jest najbardziej złożoną strukturą dynamiczną. W przeciwieństwie do drzewa i listy, które są szczególnymi przypadkami grafów, nie nakładamy tu żadnych ograniczeń, jeśli

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Informacje

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Kolorowanie

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 15/15 Twierdzenie Dla grafu prostego następujące warunki są równoważne: 1) jest drzewem, 2) nie zawiera cykli i ma krawędzi, 3)

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

Teoria węzłów matematycznych - warkocze. Karolina Krzysztoń 10B2

Teoria węzłów matematycznych - warkocze. Karolina Krzysztoń 10B2 Teoria węzłów matematycznych - warkocze Karolina Krzysztoń 10B2 Pojęcie węzła W matematyce węzły to zamknięte pętle umieszczone w przestrzeni trójwymiarowej, czyli zaplątane sznurki z połączonymi końcami.

Bardziej szczegółowo

prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska

prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Bioinformatyka wykła 8: mapowanie prof. r ha. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Mapowanie Pojęcie mapowanie onosi się o różnych prolemów Trzeci etap skłaania sekwencji genomowej

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie

Bardziej szczegółowo

Teoria grafów i sieci 1 / 58

Teoria grafów i sieci 1 / 58 Teoria grafów i sieci 1 / 58 Literatura 1 B.Korte, J.Vygen, Combinatorial optimization 2 D.Jungnickel, Graphs, Networks and Algorithms 3 M.Sysªo, N.Deo Metody optymalizacji dyskretnej z przykªadami w Turbo

Bardziej szczegółowo

Szymon G l ab. Struktury losowe II Graf losowy. Instytut Matematyki, Politechnika Lódzka

Szymon G l ab. Struktury losowe II Graf losowy. Instytut Matematyki, Politechnika Lódzka Instytut Matematyki, Politechnika Lódzka Graf losowy jako granica Fraisse Przez K graf oznaczmy rodzinȩ wszystkich skończonych grafów (np. na N). Niech G bȩdzie granic a Fraisse rodziny K graf. Strukturȩ

Bardziej szczegółowo

Zadania z ćwiczeń #18 (pon. 7 maja) Matematyka Dyskretna

Zadania z ćwiczeń #18 (pon. 7 maja) Matematyka Dyskretna Zadania z ćwiczeń #18 (pon. 7 maja) Matematyka Dyskretna Q1.: Mamy dany zbiór artykułów, z których każdy ma co najmniej k z n możliwych tagów. Chcemy bardzo z grubsza pokategoryzować artykuły w jak najmniejszą

Bardziej szczegółowo

Matematyka dyskretna - 6.Grafy

Matematyka dyskretna - 6.Grafy Matematyka dyskretna - 6.Grafy W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

ELEMENTY TEORII WĘZŁÓW

ELEMENTY TEORII WĘZŁÓW Łukasz Janus 10B2 ELEMENTY TEORII WĘZŁÓW Elementarne deformacje węzła Równoważność węzłów Węzły trywialne Ruchy Reidemeistera Twierdzenie o równoważności węzłów Grafy Powtórzmy Diagram węzła Węzły reprezentuje

Bardziej szczegółowo

6a. Grafy eulerowskie i hamiltonowskie

6a. Grafy eulerowskie i hamiltonowskie 6a. Grafy eulerowskie i hamiltonowskie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny6a. w Krakowie) Grafy eulerowskie i hamiltonowskie

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo