Laboratorium z podstaw automatyki
|
|
- Ksawery Dobrowolski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności, dobór układów i parametrów regulacji, identyfikacja obiektów Kierunek studiów: Transport, Stacjonarne pierwszego stopnia Prowadzący: dr hab. inż. Arkadiusz Parus mgr inż. Mateusz Saków Szczecin 2015 r.
2 Spis treści: I. Cel ćwiczenia... 3 II. Stabilność liniowych układów ciągłych... 3 III. Wpływ sprzężenia zwrotnego na stabilność obiektów... 6 Charakterystyki częstotliwościowe zamkniętego układu regulacji... 7 IV. Dobór układów i parametrów regulacji... 9 Dobór regulatora - sposób regulacji ciągłej Dobór nastaw regulatora - sposób regulacji ciągłej Regulacja nieciągła - dwustanowa V. Identyfikacja obiektów dynamicznych VI. Sprawozdanie VII. Literatura VIII. Indywidualne zestawy danych
3 I. Cel ćwiczenia Celem ćwiczenia jest nabycie podstawowych umiejętności ułatwiających analizę stabilności modeli oraz doboru regulatorów do sterowania obiektami. Student w ramach ćwiczenia będzie analizował wpływ parametrów regulacji na stabilność pracy całego symulowanego systemu. II. Stabilność liniowych układów ciągłych Stabilnością nazywa się zdolność układu do powrotu do stanu równowagi po ustaniu działania sygnału wymuszającego, który to sygnał wytrącił ze stanu równowagi badany obiekt. Od każdego obiektu z punktu widzenia automatyki wymaga się, aby w pełni podlegał sterowaniu. Oznacza to, że na podstawie konkretnego sygnału wymuszającego, obiekt zwróci pewien odpowiadający mu sygnał odpowiedzi. Podstawowym celem badania stabilności układu automatyki jest sprawdzenie po uruchomienia takiego układu czy nie grozi mu utrata stabilności. Jeżeli na rozważny układ automatyki (rys. 1) nie zadziałamy żadnym sygnałem wymuszającym (1), Rys. 1 Rozważany układ automatyki (1) to oczekujemy od tego układu automatyki aby w sygnale wyjściowym znajdowała się jedynie składowa przejściowa (2) (2) takie układu nazywa się autonomicznymi. Właściwości dynamiczne układu autonomicznego opisuje się za pomocą równania drgań własnych lub równania swobodnego w postaci (3): (3) lub w dziedzinie czasu (4): 3
4 (4) taki układ można nazwać układem stabilnym, kiedy w nieskończonej chwili czasowej oraz dla dowolnych warunków początkowych odpowiedź układu będzie dążyła do wartości zerowej (5): (5) Rozwiązaniem ogólnym równania (4), są pierwiastki wielomianu charakterystycznego, które mają postać (7): (6) Równanie (6) w dziedzinie zespolonej będzie miało w każdym przypadku liczbę pierwiastków i tym samym liczbę rozwiązań równą. Występują dwa rodzaje pierwiastków, takie które posiadają urojoną część zerową oraz takie pierwiastki z częścią urojoną dodatnią. Dla pierwiastków jednokrotnych, rozwiązanie ogólne równania (4) przyjmuje postać funkcji wykładniczej zmiennej zespolonej (7):, (7) gdzie jest stałą całkowania zależną od warunków początkowych. Dla pierwiastków wielokrotnych odpowiednio składnik przy będzie wyrażeniem sumy pierwiastków wielokrotnych. Dla pierwiastków jednokrotnych, możliwe są przypadki gdy ten pierwiastek jest: 1. Rzeczywisty - przebieg czasowy składnika odpowiedzi badanego układu dynamicznego związany z tym pierwiastkiem przyjmie postać (8). (8) 2. Zespolony o części rzeczywistej różnej od zera - dla pierwiastków z częścią urojoną z teorii wielomianów wiadomo, że istnieje także drugi pierwiastek wyrażający się liczbą zespoloną sprzężoną, który odpowiada parze (9): (9) 4
5 przebieg czasowy odpowiedzi został przedstawiony wzorem (10):, (10) gdzie i są stałymi całkowania. 3. Zespolony o zerowej części rzeczywistej - odpowiada mu przebieg opisujący drgania niegasnące. Wtedy równanie (10) przyjmuje postać (11): (11) Warunkiem koniecznym i wystarczającym stabilności układu liniowego jest to, by wszystkie pierwiastki równania charakterystycznego (bieguny wypadkowej transmitancji operatorowej tego układu) miały części rzeczywiste ujemne, czyli aby na płaszczyźnie zmiennej zespolonej s leżały po lewej półpłaszczyźnie. Zadanie do wykonania w ramach sprawozdania: 1. Dla indywidualnych danych z poprzedniego ćwiczenia laboratoryjnego - tabela 1, określić rodzaj pierwiastków oraz parametry a i B. Na podstawie parametrów a i B wykreślić charakterystyki odpowiedzi, dla przedstawionych poniżej rozwiązań równania charakterystycznego (12-14): (12) (13) (14) przyjąć:, przyjąć:, 2. Odpowiedzieć na pytania: a) czy układ jest stabilny? b) Jak zachowuje się układ? c) Jakie parametry powinny się zmienić aby uzyskać obiekt niestabilny? d) Jakie parametry i jakie wartości powinny przyjmować aby uzyskać obiekt niestabilny? 5
6 III. Wpływ sprzężenia zwrotnego na stabilność obiektów Sprzężenie zwrotne - oddziaływanie sygnałów wyjściowych układu, na jego sygnały wejściowe. Polega na otrzymywaniu przez układ (urządzenie sterujące w układzie) informacji o różnicy pomiędzy sygnałem zadanym, a sygnałem zrealizowanym przez obiekt na podstawie, także sygnału z obiektu sterującego. Sprzężenia zwrotne można podzielić, na dodatnie i ujemne. Przykład układu automatyki z sprzężeniem zwrotnym został przedstawiony na rys. 2. Rys. 2 Obiekt automatyki ze sprzężeniem zwrotnym Sprzężenie zwrotne ujemne stanowi podstawowy mechanizm samoregulacyjny. Ma ono za zadanie utrzymanie wartości parametru wejściowego na zadanym poziomie przez kontrolowany obiekt. Zachodzi ono np. wtedy, gdy jakiekolwiek zakłócenia powodujące odchylenie wartości parametru od zadanej wartości prowadzące do zmiany wartości parametru wyjściowego w stronę przeciwną, a więc do kompensacji efektu tego odchylenia. W przypadku sprzężenia zwrotnego ujemnego wartość parametru przeważnie oscyluje wokół wartości zadanej. Samo sprzężenie zwrotne, jednak nie wystarcza do stabilnej pracy układu, również nie gwarantuje poprawności jego działania. Sprzężenie zwrotne dodatnie polega na tym, że w sytuacji zakłócenia jakiegoś parametru w układzie, układ ten dąży do zmiany wartości parametru w kierunku zgodnym z kierunkiem działania np. zakłócenia, w którym nastąpiło odchylenie od wartości zadanej. Sprzężenie zwrotne dodatnie powoduje zatem narastanie odchylenia, tym samym obiekt z punktu widzenia automatyki będzie śmiało można uznać za niestabilny. Aby wyznaczyć transmitancję obiektu automatyki ze sprzężeniem zwrotnym, należy w początkowej fazie dokonać analizy występujących sygnałów w systemie pokazanym na rys. 2. Występują tam trzy główne sygnały. Sygnał zadany X, sygnał odpowiedzi Y oraz sygnał błędu E. Dwa z trzech sygnałów znamy ponieważ X - zadajemy, a Y - mierzymy. Sygnał błędu (zw. także uchybem) jest możliwy do wyznaczenia na podstawie znajomości sygnałów zadanego i odpowiedzi. Uchyb E, przyjmuje postać równania (15): (15) 6
7 gdzie, jest transmitancją czujnika w sprzężeniu zwrotnym obiektu automatyki. Dla znanego możliwe jest wyznaczanie odpowiedzi takiego obiektu (16): (16) gdzie, jest transmitancją obiektu, który ma być wysterowany. Do równania (16), możliwe jest podstawie równania (15), otrzymujemy wówczas (17): (17) Przekształcając równanie (17), do postaci (18): (18) Przy wiedzy, że szukana jest transmitancja układu automatyzacji ze sprzężeniem zwrotnym. Opisana stosunkiem sygnałów wyjściowego do wejściowego, możliwe jest wyznaczenie takiej zależności z równania (18), równaniem (19): (19) Charakterystyki częstotliwościowe zamkniętego układu regulacji Do analizy częstotliwościowej wykorzystywane są trzy rodzaje charakterystyk: 1. Amplitudowo - częstotliwościowa 2. Fazowo - częstotliwościowa 3. Amplitudowo - fazowo - częstotliwościowa Pierwszy rodzaj charakterystyki czyli amplitudowa - częstotliwościowa, służy do analizy z jaką amplitudą będzie drgał model przy pewnej częstotliwości wymuszenia oddziałującej na ten model. Do wykreślenia charakterystyki amplitudowo - częstotliwościowej wymagana jest znajomość równania (9) opisującego transmitancję obiektu w dziedzinie częstotliwości. Operator Laplace'a, do analizy częstotliwościowej przyjmuje następującą postać, poprzez przekształcenie Fouriera (14): (20) 7
8 gdzie jest częstością drgań kołowych, natomiast, liczbą zespoloną. Podstawiając do równania (9), równanie (14) otrzymamy (15): (21) W przypadku wyznaczania analitycznego charakterystyk częstotliwościowych konieczne było by przekształcenie transmitancji do takiej postaci, w której w mianowniku nie występowała by jednostka urojona. W środowisku Matlab nie jest to konieczne ponieważ za pomocą funkcji imag() oraz real() możliwe jest oddzielenie części urojonych od rzeczywistych na konkretnych wartościach. Charakterystyka amplitudowo - częstotliwościowa występuje w funkcji częstotliwości dlatego też należy na podstawie częstotliwości wyliczyć odpowiednie wartości częstości kołowej z równania (16): (22) gdzie jest wektorem wartości częstotliwości. Przebieg charakterystyki amplitudowo - częstotliwościowej zatem będzie modułem wartości urojonych oraz rzeczywistych części transmitancji obiektu oznaczonej jako (17): (23) Drugą charakterystyką jest przebieg fazowo - częstotliwościowy. Przygotowanie modelu jest identyczne z tą różnicą, że tym razem wyznaczamy przesunięcie w fazie w funkcji częstotliwości, gdzie jest to stosunek części urojonej do rzeczywistej części transmitancji obiektu oznaczonej jako (18):. (24) Trzecią charakterystyką jest przebieg amplitudowo - fazowo - częstotliwościowy. Przygotowanie modelu jest również identyczne z tą różnicą, że tym razem wyznaczamy części urojone oraz rzeczywistych osobno. Na wykresie osi odciętych (X) występują wartości rzeczywiste, natomiast na osi rzędnych (Y) występują wartości urojone. Wykres ten zwany jest także płaszczyzną Nyquista. Zadanie do wykonania w ramach sprawozdania: Modele, na których należy przeprowadzić analizę to (25-27): 8
9 (25) (26) (27) (28) Dla transmitancji toru pomiarowego przyjąć: (29) (30) 1. Wykreślić 8 zestawów charakterystyk częstotliwościowych, dla obiektów i torów pomiarowych. 2. Na podstawie charakterystyk, określić wpływ toru pomiarowego na pracę systemu. 3. Sprawdzić zachowanie się układu i dla 4. Odpowiedzieć na pytanie: a) W którym przypadku wartości parametru k, obserwuje się zachowanie niestabilne dla obiektu i, dlaczego tak jest? b) Jaki wpływ na pracę systemu ma wzmocnienie k? c) Czy, któryś z obiektów (25-28), można bez analizy odpowiedzi układu uznać za niestabilny? IV. Dobór układów i parametrów regulacji Regulatory zajmują szczególne miejsce w automatyce. Ich podstawowym zadaniem jest uzyskanie wartości zadanej przez wielkość regulowaną, poprzez sprowadzenie błędu (uchybu) regulacji do wartości zerowej. Taki układ regulacji śmiało można uznać za dynamiczny dzięki temu, że osiągnięcie celu regulacji odbywa się w trakcie procesu regulacji w skończonym czasie. Ogólny schemat układu regulacji został przedstawiony na rys. 3. Rys. 3 Schemat układu automatycznej regulacji uwzględniającego układ regulacji z torem pomiarowym 9
10 Analizując powyższy rysunek widać, że występują tam cztery charakterystyczne sygnały: y(t) - wielkość regulowana, u(t) - sygnał sterowania, e(t) - błąd (uchyb) regulacji, x(t) - wartość zadana, Przy projektowaniu układu regulacji istotne znaczenie ma dobór odpowiedniego regulatora do sterowania danym procesem. Procedurze doboru podlegają także parametry takich regulatorów. Dobór regulatora - sposób regulacji ciągłej Podstawowym regulatorem, który jest wstanie regulować jakikolwiek proces w sposób ciągły jest regulator PID. Regulator PID składa się z członów: P - wzmocnienia pochodzącego od członu proporcjonalnego I - wzmocnienia pochodzącego od członu całkującego D - wzmocnienia pochodzącego od członu różniczkującego Schemat blokowy regulatora PID został przedstawiony na rys. 4. Rys. 4 Schematy blokowo regulatora PID Jak widać na rys. 4 występują dwa typy regulatorów PID, transmitancję pierwszego - (a), można opisać wzorem (31): (31) gdzie człon, człon, a człon. Zaletą regulatora 4.a, jest możliwość niezależnego, indywidualnego dobrania odpowiednich wzmocnień. 10
11 Regulator z rys. 4.b, można natomiast opisać równaniem (32): (32) W przypadku tego regulatora wzmocnienie proporcjonalne występuję jedno dla całej transmitancji. Dobór nastaw regulatora - sposób regulacji ciągłej Pierwszym sposobem doboru nastaw regulatora jest podejście eksperymentalne zw. także eksperymentem Zienglera - Nicholsa lub metodą drgań (oscylacji) granicznych. Sposób ten nadaje się do doboru nastaw dla obiektów, które np. nie są wstanie zniszczyć samych siebie bądź zagrozić osobom, które poszukują tych nastaw. Istnieją cztery charakterystyczne kroki doboru tych nastaw: 1. Przełączenie regulatora PID lub innego regulatora tylko na działania proporcjonalne, 2. Stopniowe zwiększanie wzmocnienia członu proporcjonalnego, do momentu wystąpienia pracy oscylacyjnej całego systemu. Określenie wzmocnienia graczniego, 3. Pomiar okresu oscylacji dla wzmocnienia granicznego, 4. Dobór nastaw dla odpowiedniego regulatora z tab. 1 Tab. 1 Zawiera parametry nastaw regulatora - metoda Zienglera - Nicholsa Metoda Drgań granicznych Typ regulatora P - - PI - PID Gdzie,, są parametrami regulatora Drugim sposobem jest wyznaczenie parametrów oraz w sposób analityczny. Korzysta się z warunków granicznych, wynikających z kryterium Nyquista. Kryterium Nyquista pozwala na zbadanie stabilności układów regulacji zamkniętej na podstawie charakterystyki amplitudowo - fazowo - częstotliwościowej. Oczywiście również w przypadku metody analitycznej należy zmodyfikować transmitancję regulatora, która uwzględniać będzie tylko wzmocnienie proporcjonalne. System traktujemy jako układ otwarty bez sprzężenia zwrotnego. 11
12 Istnieją dwie możliwości znalezienia parametrów granicznych: 1. Rozwiązania równania (33), względem, (33) 2. Rozwiązania równania (34), względem, (34) gdzie, a, jest transmitancją systemu całego systemu traktowane jako układ otwarty. Po wyznaczaniu parametrów oraz, korzystamy z tab. 1 i dobieramy nastawy tak jak to było przy metodzie doświadczalnej. Kolejna metoda, to metoda linii pierwiastkowych, gdzie liniami pierwiastkowymi nazywamy zbiór pierwiastków mianownika transmitancji układu zamkniętego dla zmieniającego się wzmocnienia proporcjonalnego. Ideą metody jest wyznaczenie linii pierwiastkowej i na ich podstawie przewidywanie zachowania się układu. Metoda ta nie wymaga znajomości odpowiedzi skokowej obiektu, ponieważ oczywiste jest w jakim obszarze pierwiastki są rzeczywiste, a w jakim zespolone i jakie zachowania obiektu im będą im towarzyszyły. Regulacja nieciągła - dwustanowa Regulacja dwustanowa znajduje duże zastosowanie, najczęściej w układach regulacji temperatury, jako jeden z prostych sposobów automatycznej regulacji. Tego rodzaju regulatory stosowane są ze względu na powszechne stosowanie dwustanowych elementów wykonawczych, np. grzałek, grzejników itp. Całkujący charakter wielu sterowanych obiektów, nie ma wpływu na jakość sterowania pochodzącego z regulatora dwustanowego, tym samym przebiegi uzyskane dzięki regulatorowi można uznać za stosunkowo dobrej jakości. Schemat do symulacji został pokazany na rys. 5. Rys. 5 Schemat systemu wyposażone w regulator dwustanowy 12
13 Na rysunku widać obiekt inercyjny pierwszego rzędu o parametrach m oraz h. Obiekt ten naśladuje zachowanie grzałki. Obiekt Relay pełni rolę regulatora dwustanowego podejmującego decyzję, w którym momencie włączyć obiekt, a w którym wyłączyć. Step jest to oczywiście podanie sygnału, który odzwierciedla sytuację podłączenia grzałki do zasilania. Zadanie do wykonania w ramach sprawozdania: 1. Dobrać parametry regulatora, metodą doświadczalną oraz przedstawić przebiegi odpowiedzi na skok jednostkowy o wartości 1, dla modelu : a) dla regulatora P, b) dla regulatora PI, c) dla regulatora PID, 2. Dobrać parametry regulatora, metodą analityczną oraz przedstawić przebiegi odpowiedzi na skok jednostkowy o wartości 1, dla modelu : a) dla regulatora P, b) dla regulatora PI, c) dla regulatora PID, 3. Zbudować model systemu wykorzystujący regulator dwustanowy (Przyjąć wartość skoku jednostkowego po 1 sekundzie do wartości k). Parametry modelu m oraz h. Parametry obiektu Relay: Switch on point = 2h, Switch off point = h. a) Przedstawić przebiegi odpowiedzi na skok jednostkowy - step b) Dokonać modyfikacji parametrów Switch on point i Switch off point, tak aby regulator włączał zasilanie częściej i rzadziej - przedstawić przebiegi. 4. Odpowiedzieć na pytania: a) Określić czas po jakim system uzyska stan ustalony po odpowiedzi na skok jednostkowy (podać metodę wyznaczania nastaw), dla modelu : dla regulatora P, dla regulatora PI, dla regulatora PID, b) Określić wartość uchybu statycznego po odpowiedzi na skok jednostkowy (podać metodę wyznaczania nastaw), dla modelu : dla regulatora P, dla regulatora PI, dla regulatora PID, c) Określić wartość przeregulowania po odpowiedzi na skok jednostkowy (podać metodę wyznaczania nastaw), dla modelu : dla regulatora P, dla regulatora PI, dla regulatora PID, d) Dla regulatora dwustanowego określić w pływ parametrów Switch on point i Switch off point na kształt pętli histerezy systemu sterowania. 13
14 V. Identyfikacja obiektów dynamicznych Procesy automatycznej regulacji są procesami dynamicznymi czyli zmieniającymi się w czasie. Ze względu na ten fakt konieczne jest analizowanie układów automatycznej regulacji pod kątem znajomości modeli dynamicznych wchodzących w skład całego systemu sterowania. Często bywa tak, że modele nie mają podanych parametrów i na podstawie danych charakterystyk należy je wyznaczyć. Postępowanie, którego celem jest wyznaczenie struktury oraz parametrów poszukiwanego modelu zwane jest identyfikacją. Rozróżnia się dwa podejścia do zidentyfikowania obiektu. Pierwszy to badanie zjawisk fizycznych zachodzących w identyfikowanym obiekcie. Drugi sposób to obserwowanie i analizowanie sygnałów wyjściowych podczas pracy obiektu. Na laboratoriach zostanie dokonania identyfikacja obiektu, za pomocą obserwacji sygnału wyjściowego z obiektu. Pierwszym etapem jest wykreślenie charakterystyki odpowiedzi obiektu, na tle sygnału zadanego oraz zaznaczenie linii charakterystycznych dla tej metody identyfikacji - rys 6. Rys. 6 Procedura identyfikacji obiektu Charakterystyka z rys. 6 dotyczy obiektu inercyjnego pierwszego rzędu (35): (35) Jak jest to widoczne na rys. 6, możliwe jest odczytanie (wyliczenia wzmocnienia obiektu k), bezpośrednio z charakterystyki y(t) obiektu, która jest odpowiedzią na skok jednostkowy x(t). Kolejny etap to wykreślenie stycznej jak na rys. 6 do przebiegu odpowiedzi y(t), w celu wyznaczenie stałej czasowej T. Punktem charakterystycznym, dla którego odczytujemy stałą 14
15 czasową T, jest przecięcie sie osi wzmocnienia ze styczną. Ważne jest aby pomniejszyć wartość odczytu czasu z osi odciętych o moment, w którym został podany sygnał zadany >0. Zadanie do wykonania w ramach sprawozdania: 1. Wyznaczyć parametry oraz obiektu inercyjnego pierwszego rzędu na podstawie charakterystyki ze strony 2. Porównać zidentyfikowany model z modelem z otrzymanych danych. VI. Sprawozdanie Sprawozdanie ma mieć formę podobną do skryptu. Wymagane jest aby zawierało: 1. Stronę tytułową (grupa dziekańska, podgrupa laboratoryjna, imię i nazwisko, datę oddania, temat laboratorium, nazwę laboratorium). 2. Odpowiednie rozdziały zgodnie ze skryptem: a) Cel ćwiczenia b) Stabilność liniowych układów ciągłych (wnioski w postaci odpowiedzi na pytania mają znajdować się dokładnie pod dotyczącą ich charakterystyką) c) Wpływ sprzężenia zwrotnego na stabilność obiektów (wnioski w postaci odpowiedzi na pytania mają znajdować się dokładnie pod dotyczącą ich charakterystyką) d) Dobór układów i parametrów regulacji (wnioski w postaci odpowiedzi na pytania mają znajdować się dokładnie pod dotyczącą ich charakterystyką, na jednej charakterystyce ma być widoczny sygnał wymuszenia oraz odpowiedzi modelu) e) Identyfikacja obiektów dynamicznych (wnioski w postaci odpowiedzi na pytania mają znajdować się dokładnie pod dotyczącą ich charakterystyką, na jednej charakterystyce ma być widoczny sygnał wymuszenia oraz odpowiedzi modelu) f) Wnioski - ogólne wnioski dotyczące ćwiczenia 3. Na laboratorium przewidziane jest 6 godzin. 4. Sprawozdanie należy złożyć przed rozpoczęciem kolejnego ćwiczenia w formie papierowej, w przeciwnym wypadku ocena ze sprawozdania będzie obniżana co dwa tygodnie o wartość 1. Sytuacja dotyczy także sprawozdań odrzuconych z powodu negatywnej oceny. 5. Każdy ze studentów posiada swój własny zestaw danych (Parametrów m,h,k) udostępniony w rozdziale VII skryptu. Numer zestawu odpowiada liście obecności ze strony 6. Oceny: a) 2 - brak oddania sprawozdania w terminie (pkt. 4) lub sytuacja, w której zwłoka w oddaniu sprawozdania obniżyła ocenę do poziomu <3. Student dopuścił się oszustwa lub skorzystał z danych innych niż zostały mu przydzielone. 15
16 b) 2,5-3,5 - Student wykonał wszystkie polecenia, jednak nie odpowiedział na żadne z pytań postawionych w skrypcie. Student nie przedstawił także sensowych wniosków. O ocenie waży jakość i poprawność wykonanych zadań ze skryptu. (2,5 nie zalicza sprawozdania). Sprawozdanie zostało oddane w terminie pkt. 4. c) 4-4,5 - Student wykonał wszystkie polecenia, odpowiedział na każde z pytań postawionych w skrypcie. Ilość odpowiedzi, które będą poprawne waży o ocenie. Sprawozdanie zostało oddane w terminie pkt. 4. d) 5 - Student wykonał wszystkie polecenia, odpowiedział na każde z pytań postawionych w skrypcie. Szczątkowa ilość odpowiedzi była niepoprawna. Student prawidłowo sformułował wnioski z ćwiczenia laboratoryjnego. Sprawozdanie zostało oddane w terminie pkt. 4. VII. Literatura [1] A. Dębowski, automatyka podstawy teorii, Warszawa: WNT, [2] Z. Trzaska, Modelowanie i symulacja układów elektrycznych, Warszawa: Wydawnictwo Politechniki Warszawskiej, [3] C. Anna, Modele dynamiki układów fizycznych dla inżynierów, Warszawa: WNT, [4] W. D. Henryk Urzędniczok, Laboratorium podstaw automatyki oraz wybór przykładów do ćwiczeń audotoryjnych, Gliwice: Wydawnictwo Politechniki Śląskiej,
17 VIII. Indywidualne zestawy danych W tab. 1. zostały przedstawione indywidualne dane dla każdego ze studentów. Tab. 2 Zawiera unikalne parametry modelu dla studentów Parametr Grupa dziekańska 1 Parametr Grupa dziekańska 2 Lp. m h k Lp. m h k 1 1,67 5, ,81 5, ,38 9, ,74 14, ,39 9, ,63 5, ,29 13, ,18 9, ,93 8, ,55 11, ,08 6, ,69 11, ,64 6, ,26 13, ,01 6, ,88 19, ,54 8, ,12 17, ,2 8, ,48 17, ,08 17, ,13 15, ,88 6, ,19 12, , ,05 15, ,3 8, ,33 10, ,14 18, ,41 12, ,31 18, ,02 11, , ,37 15, ,54 11, ,28 12, ,46 15, ,58 11, ,22 15, ,17 9, ,24 10, , ,43 15, ,59 6, ,22 16, ,1 9, ,41 17, ,59 11, ,02 16, , , ,22 7, ,18 19, ,17 5, ,75 11, , ,99 11, ,03 9, ,76 15, ,15 5, ,44 11, ,14 16, ,95 11, ,19 17, ,86 5, , ,04 13, ,81 14, ,39 7, ,59 12, , ,36 5, ,27 10, ,46 15, ,38 12, ,55 8, ,33 8, ,3 18, ,1 14, ,29 14,
Laboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Dobór parametrów układu regulacji, Identyfikacja parametrów obiektów dynamicznych Kierunek studiów: Transport, Stacjonarne
Laboratorium z podstaw automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,
Laboratorium z automatyki
Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:
1. Regulatory ciągłe liniowe.
Laboratorium Podstaw Inżynierii Sterowania Ćwiczenie: Regulacja ciągła PID 1. Regulatory ciągłe liniowe. Zadaniem regulatora w układzie regulacji automatycznej jest wytworzenie sygnału sterującego u(t),
Układ regulacji automatycznej (URA) kryteria stabilności
Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()
1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI
Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji
PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.
PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.
Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy
Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki
WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI. Badanie układu regulacji dwustawnej
POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ATOMATYKI I ELEKTRONIKI ĆWICZENIE Nr 8 Badanie układu regulacji dwustawnej Dobór nastaw regulatora dwustawnego Laboratorium z przedmiotu: ATOMATYKA
Ćwiczenie nr 6 Charakterystyki częstotliwościowe
Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na
Sposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID Instytut Automatyki i Robotyki Warszawa, 2015 Jakość układu regulacji Oprócz wymogu stabilności asymptotycznej, układom regulacji stawiane
Dobór parametrów regulatora - symulacja komputerowa. Najprostszy układ automatycznej regulacji można przedstawić za pomocą
Politechnika Świętokrzyska Wydział Mechatroniki i Budowy Maszyn Centrum Laserowych Technologii Metali PŚk i PAN Zakład Informatyki i Robotyki Przedmiot:Podstawy Automatyzacji - laboratorium, rok I, sem.
Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 9 - Dobór regulatorów. Instytut Automatyki i Robotyki Warszawa, 2017 Dobór regulatorów Podstawową przesłanką przy wyborze rodzaju regulatora są właściwości dynamiczne obiektu regulacji. Rysunek:
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
K p. K o G o (s) METODY DOBORU NASTAW Metoda linii pierwiastkowych Metody analityczne Metoda linii pierwiastkowych
METODY DOBORU NASTAW 7.3.. Metody analityczne 7.3.. Metoda linii pierwiastkowych 7.3.2 Metody doświadczalne 7.3.2.. Metoda Zieglera- Nicholsa 7.3.2.2. Wzmocnienie krytyczne 7.3.. Metoda linii pierwiastkowych
Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II
Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Zagadnienia na ocenę 3.0 1. Podaj transmitancję oraz naszkicuj teoretyczną odpowiedź skokową układu całkującego z inercją 1-go rzędu.
REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia
REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ Y o (s) - E(s) B(s) /T I s K p U(s) Z(s) G o (s) Y(s) T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Z-ZIP-103z Podstawy automatyzacji Basics of automation
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 01/013 Z-ZIP-103z Podstawy automatyzacji Basics of automation A. USYTUOWANIE MODUŁU
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
1. Opis teoretyczny regulatora i obiektu z opóźnieniem.
Laboratorium Podstaw Inżynierii Sterowania Ćwiczenie:. Opis teoretyczny regulatora i obiektu z opóźnieniem. W regulacji dwupołożeniowej sygnał sterujący przyjmuje dwie wartości: pełne załączenie i wyłączenie...
4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego
4. UKŁADY II RZĘDU. STABILNOŚĆ Podstawowe wzory Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat (4.1) Transmitancja układu zamkniętego częstotliwość naturalna współczynnik tłumienia Odpowiedź
Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia VI Dobór nastaw regulatora typu PID metodą Zieglera-Nicholsa.
Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia VI Dobór nastaw regulatora typu PID metodą Zieglera-Nicholsa. 1. Wprowadzenie Regulator PID (regulator proporcjonalno-całkująco-różniczkujący,
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium Automatyka Automatics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba
Regulacja dwupołożeniowa.
Politechnika Krakowska Wydział Inżynierii Elektrycznej i Komputerowej Zakład eorii Sterowania Regulacja dwupołożeniowa. Kraków Zakład eorii Sterowania (E ) Regulacja dwupołożeniowa opis ćwiczenia.. Opis
Automatyka i robotyka
Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli
Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący
INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki
Opracowano na podstawie: INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki 1. Kaczorek T.: Teoria sterowania, PWN, Warszawa 1977. 2. Węgrzyn S.: Podstawy automatyki, PWN, Warszawa 1980 3.
Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji mgr inż.
Badanie stabilności liniowych układów sterowania
Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny
Podstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
4. Właściwości eksploatacyjne układów regulacji Wprowadzenie. Hs () Ys () Ws () Es () Go () s. Vs ()
4. Właściwości eksploatacyjne układów regulacji 4.1. Wprowadzenie Zu () s Zy ( s ) Ws () Es () Gr () s Us () Go () s Ys () Vs () Hs () Rys. 4.1. Schemat blokowy układu regulacji z funkcjami przejścia 1
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami
PODSTAWY AUTOMATYKI I MIERNICTWA PRZEMYSŁOWEGO Laboratorium 3 Regulatory PID i ich strojenie, Regulacja dwupołożeniowa
Rok akademicki 2015/2016 Semestr letni PODSTAWY AUTOMATYKI I MIERNICTWA PRZEMYSŁOWEGO Laboratorium 3 Regulatory PID i ich strojenie, Regulacja dwupołożeniowa Wstęp teoretyczny: W układzie regulacji określa
Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji
Automatyka i sterowanie w gazownictwie Regulatory w układach regulacji Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Ogólne zasady projektowania
PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 206/207
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
Stabilność. Krzysztof Patan
Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu
Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena LABORATORIUM 4. PODSTAW 5. AUTOMATYKI
Instytut Automatyki i Robotyki Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena 1. 2. 3. LABORATORIUM 4. PODSTAW 5. AUTOMATYKI Ćwiczenie PA7b 1 Badanie jednoobwodowego układu regulacji
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208
ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013
SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: MODELOWANIE I SYMULACJA UKŁADÓW STEROWANIA Kierunek: Mechatronika Rodzaj przedmiotu: Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1.
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2.
1. Celem zadania drugiego jest przeprowadzenie badań symulacyjnych układu regulacji obiektu G(s), z którym zapoznaliśmy się w zadaniu pierwszym, i regulatorem cyfrowym PID, którego parametry zostaną wyznaczone
Regulacja dwupołożeniowa (dwustawna)
Regulacja dwupołożeniowa (dwustawna) I. Wprowadzenie Regulacja dwustawna (dwupołożeniowa) jest często stosowaną metodą regulacji temperatury w urządzeniach grzejnictwa elektrycznego. Polega ona na cyklicznym
Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 6 - Miejsce i rola regulatora w układzie regulacji Instytut Automatyki i Robotyki Warszawa, 2015 Regulacja zadajnik regulator sygnał sterujący (sterowanie) zespół wykonawczy przetwornik pomiarowy
Transmitancje układów ciągłych
Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Badanie i synteza kaskadowego adaptacyjnego układu regulacji do sterowania obiektu o
Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ
Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.
układu otwartego na płaszczyźnie zmiennej zespolonej. Sformułowane przez Nyquista kryterium stabilności przedstawia się następująco:
Kryterium Nyquista Kryterium Nyquista pozwala na badanie stabilności jednowymiarowego układu zamkniętego na podstawie przebiegu wykresu funkcji G o ( jω) układu otwartego na płaszczyźnie zmiennej zespolonej.
Regulatory o działaniu ciągłym P, I, PI, PD, PID
Regulatory o działaniu ciągłym P, I, PI, PD, PID Regulatory o działaniu ciągłym (analogowym) zmieniają wartość wielkości sterującej obiektem w sposób ciągły, tzn. wielkość ta może przyjmować wszystkie
WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNEJ D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 7. Badanie jakości regulacji dwupołożeniowej.
Cel ćwiczenia: Zapoznanie się z zasadą działania regulatora dwupołożeniowego oraz ocena jakości regulacji dwupołożeniowej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. Pytania
Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna
Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia statycznego obiektu inercyjnego I rzędu 2. orekcja
Informacje ogólne. Podstawy Automatyki I. Instytut Automatyki i Robotyki
Informacje ogólne 1 Podstawy Automatyki I Instytut Automatyki i Robotyki Autorzy programu: prof. dr hab. inż. Jan Maciej Kościelny, dr inż. Wieńczysław Jacek Kościelny Semestr V Liczba godzin zajęć według
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 5 BADANIE STABILNOŚCI UKŁADÓW ZE SPRZĘŻENIEM ZWROTNYM 1. Cel ćwiczenia Celem ćwiczenia jest ugruntowanie
Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNEJ D-1 LABORATORIUM Z AUTOMATYKI I ROBOTYKI Ćwiczenie nr 4. Badanie jakości regulacji dwupołożeniowej.
Cel ćwiczenia: Zapoznanie się z zasadą działania regulatora dwupołożeniowego oraz ocena jakości regulacji dwupołożeniowej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. Pytania
Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki mgr
przy warunkach początkowych: 0 = 0, 0 = 0
MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,
Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.
Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t
Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany).
SWB - Systemy wbudowane w układach sterowania - wykład 13 asz 1 Obiekt sterowania Wejście Obiekt Wyjście Obiekt sterowania obiekt, który realizuje proces (zaplanowany). Fizyczny obiekt (proces, urządzenie)
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
Rok akademicki: 2030/2031 Kod: RAR n Punkty ECTS: 7. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Podstawy automatyki Rok akademicki: 2030/2031 Kod: RAR-1-303-n Punkty ECTS: 7 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Automatyka i Robotyka Specjalność: - Poziom studiów: Studia
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku
Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku Przemysłowe Układy Sterowania PID Opracowanie: dr inż. Tomasz Rutkowski Katedra Inżynierii Systemów Sterowania
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
11. Dobór rodzaju, algorytmu i nastaw regulatora
205 11. Dobór rodzaju, algorytmu i nastaw regulatora 11.1 Wybór rodzaju i algorytmu regulatora Poprawny wybór rodzaju regulatora i jego algorytmu uzależniony jest od znajomości (choćby przybliżonej) właściwości
Automatyka i sterowania
Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie
Ćwiczenie nr 3 Układy sterowania w torze otwartym i zamkniętym
Ćwiczenie nr 3 Układy sterowania w torze otwartym i zamkniętym 1. Cel ćwiczenia Celem ćwiczenia jest analiza właściwości układu sterowania w torze otwartym, zamkniętym oraz zamkniętym z kompensacją zakłóceń.
REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ
REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ 1 1. Zadania regulatorów w układach regulacji automatycznej Do podstawowych zadań regulatorów w układach regulacji automatycznej należą: porównywanie wartości
Część 1. Transmitancje i stabilność
Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości
Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka
Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie
3 Podstawy teorii drgań układów o skupionych masach
3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny
Regulator P (proporcjonalny)
Regulator P (proporcjonalny) Regulator P (Proportional Controller) składa się z jednego członu typu P (proporcjonalnego), którego transmitancję określa wzmocnienie: W regulatorze tym sygnał wyjściowy jest
analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów:
Cel projektu. Projekt składa się z dwóch podstawowych zadań, mających na celu zaprojektowanie dla danej transmitancji: G( s) = m 2 s 2 e + m s + sτ gdzie wartości m 2 = 27, m = 2, a τ = 4. G( s) = 27s
Laboratorium elementów automatyki i pomiarów w technologii chemicznej
POLITECHNIKA WROCŁAWSKA Wydziałowy Zakład Inżynierii Biomedycznej i Pomiarowej Laboratorium elementów automatyki i pomiarów w technologii chemicznej Instrukcja do ćwiczenia Regulacja dwupołożeniowa Wrocław
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: SYSTEMY DYNAMICZNE 2. Kod przedmiotu: Esd 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Techniki Komputerowe
UWAGA 2. Wszystkie wyniki zapisywać na dysku Dane E: (dotyczy symulacji i pomiarów rzeczywistych)
Cel ćwiczenia: Zapoznanie się z budową i zasadą działania regulatorów ciągłych oraz ocena jakości regulacji ciągłej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. Pytania
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował
Regulator PID w sterownikach programowalnych GE Fanuc
Regulator PID w sterownikach programowalnych GE Fanuc Wykład w ramach przedmiotu: Sterowniki programowalne Opracował na podstawie dokumentacji GE Fanuc dr inż. Jarosław Tarnawski Cel wykładu Przypomnienie
Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA
Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Cel ćwiczenia: dobór nastaw regulatora, analiza układu regulacji trójpołożeniowej, określenie jakości regulacji trójpołożeniowej w układzie bez zakłóceń
SIMATIC S Regulator PID w sterowaniu procesami. dr inż. Damian Cetnarowicz. Plan wykładu. I n t e l i g e n t n e s y s t e m y z e
Plan wykładu I n t e l i g e n t n e s y s t e m y z e s p r zężeniem wizyjnym wykład 6 Sterownik PID o Wprowadzenie o Wiadomości podstawowe o Implementacja w S7-1200 SIMATIC S7-1200 Regulator PID w sterowaniu
Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii
Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).
E2_PA Podstawy automatyki Bases of automatic. Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. P KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Automatyka przemysłowa i sterowniki PLC Kod przedmiotu
Automatyka przemysłowa i sterowniki PLC - opis przedmiotu Informacje ogólne Nazwa przedmiotu Automatyka przemysłowa i sterowniki PLC Kod przedmiotu 06.2-WE-EP-APiSPLC Wydział Kierunek Wydział Informatyki,
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 9. Dobór nastaw
Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI
Politechnika Warszawska Instytut Automatyki i Robotyki Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI 1. Dobór rodzaju i nastaw regulatorów PID Rodzaje regulatorów 2 Regulatory dwustawne (2P)
Informatyczne Systemy Sterowania
Adam Wiernasz Nr albumu: 161455 e-mail: 161455@student.pwr.wroc.pl Informatyczne Systemy Sterowania Laboratorium nr 1 Prowadzący: Dr inż. Magdalena Turowska I. Wykaz modeli matematycznych członów dynamicznych