KORELACJE I REGRESJA LINIOWA
|
|
- Bronisław Marciniak
- 8 lat temu
- Przeglądów:
Transkrypt
1 KORELACJE I REGRESJA LINIOWA
2 Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem matematycznym zależności pomiędzy dwoma zmiennymi
3 Korelacje i regresja liniowa Badamy [%] wyciek soków tkankowych z tkanki mięśniowej ryb w czasie chłodniczego przechowywania przez 2, 4, 6, 8 i 10 dni. Chcemy określić wpływ długości przechowywania na wielkość wycieku. X Zmienna niezależna Y Zmienna zależna Czas Wyciek 2 1,7 4 2,2 6 3,2 8 3,6 10 4,5 n=5 L-ba par zmiennych X i Y
4 Korelacje i regresja liniowa ,5 3 2,5 2 1,5 1 0, ,5 4, ,5 3 1,5 2, ,5 1 0,5 0,
5 Korelacje i regresja liniowa ,5 3 2,5 2 1,5 1 0, ,5 4, ,5 3 1,5 2, ,5 1 0,5 0,
6 Korelacje i regresja liniowa 5 4,5 4 3,5 3 2,5 2 1,5 1 0,
7 Analiza korelacji Metoda graficzna Kowariancja Współczynnik korelacji rang Spearmana Współczynnik korelacji liniowej Pearsona
8 Analiza korelacji Metoda graficzna Kowariancja Współczynnik korelacji rang Spearmana Współczynnik korelacji liniowej Pearsona
9 Metoda graficzna Do wykrycia zależności (korelacji) służą wykresy rozrzutu Wyniki układają się wzdłuż linii Jest zależność! Wyniki układają się w rozmytą chmurę punktów Brak zależności!
10 Metoda graficzna Do wykrycia zależności (korelacji) służą wykresy rozrzutu Zależność wprosproporcjonalna Zależność odwrotnie proporcjonalna
11 Analiza korelacji Metoda graficzna Kowariancja Współczynnik korelacji rang Spearmana Współczynnik korelacji liniowej Pearsona
12 Kowariancja Liczbowa miara zależności dwóch zmiennych X i Y cov X, Y = 1 n n i=1 x i x 2 y i y Zmienne X i Y są niezależne jeśli cov(x,y)=0
13 Kowariancja Cov(X,Y) > 0 Cov(X,Y) < 0 zależność wprostproporcjonalna (ze wzrostem x rośnie y) zależność odwrotnie proporcjonalna (ze wzrostem x maleje y) Możemy ocenić kierunek zależności, ale nie możemy ocenić jej siły!
14 Analiza korelacji Metoda graficzna Kowariancja Współczynnik korelacji rang Spearmana Współczynnik korelacji liniowej Pearsona
15 Współczynnik korelacji liniowej Pearsona Między zmiennymi X i Y istnieje zależność liniowa, jeżeli najlepszym przybliżeniem obserwowanego związku jest linia prosta obliczając r Pearsona mierzymy, jak blisko linii prostej najlepiej opisującej ich związek liniowy leżą punkty
16 Współczynnik korelacji liniowej Pearsona Dla populacji generalnej: r = r cov(x, Y) σ X σ(y)
17 Dla próby: Współczynnik korelacji liniowej Pearsona r = n i=1 n i=1 x i x y i y n i=1 x i x 2 y i y 2
18 Współczynnik korelacji liniowej Pearsona Właściwości: r przyjmuje wartości z przedziału od -1 do +1 Znak r wskazuje, czy zależność jest wprostproporcjonalna (dodatni r) czy odwrotnie proporcjonalna (ujemny r) Wielkość r wskazuje, jak blisko linii prostej znajdują się punkty X i Y można zamieniać miejscami bez wpływu na wartość r Korelacja między X i Y niekoniecznie oznacza związek przyczynowy
19 Współczynnik korelacji liniowej Pearsona r = 1 Idealna zależność liniowa wprostproporcjonalna r = -1 Idealna zależność liniowa odwrotnie proporcjonalna
20 Współczynnik korelacji liniowej Pearsona r = 0,90 r = -0,90 Silna zależność liniowa wprostproporcjonalna Silna zależność liniowa odwrotnie proporcjonalna
21 Współczynnik korelacji liniowej Pearsona r = 0 r = -0,5 Brak zależności Umiarkowana zależność liniowa odwrotnie proporcjonalna
22 Współczynnik korelacji liniowej Pearsona Na podstawie wartości r oceniamy siłę zależności: r = 0 zmienne nieskorelowane 0 < r 0,3 korelacja niska 0,3 < r 0,5 korelacja przeciętna (średnia) 0,5 < r 0,7 korelacja wysoka 0,7 < r 0,9 korelacja bardzo wysoka 0,9 < r < 1 korelacja prawie pełna
23 Współczynnik korelacji liniowej Pearsona Aby ocenić korelację pomiędzy zmiennymi należy znać: poziom istotności p współczynnika r (określa, czy korelacje jest/nie jest statystycznie istotna) wartość r (siła korelacji) znak +/- przy r (zależność wprost/odwrotnie proporcjonalna)
24 Współczynnik korelacji liniowej Pearsona Jak ocenić czy r jest istotny? Hipoteza zerowa: Hipoteza alternatywna: H 0 : r =0 H 1 : r 0 1) Korzystamy z tablic wartości krytycznych r kr ( =0,05, n) 2) Wykorzystujemy funkcję testową t-studenta
25 Współczynnik korelacji liniowej Pearsona Jak ocenić czy r jest istotny? Hipoteza zerowa: Hipoteza alternatywna: H 0 : r =0 H 1 : r 0 1) Korzystamy z tablic wartości krytycznych r kr ( =0,05, n)
26
27 Współczynnik korelacji liniowej Pearsona Jak ocenić czy r jest istotny? Hipoteza zerowa: Hipoteza alternatywna: H 0 : r =0 H 1 : r 0 1) Korzystamy z tablic wartości krytycznych r kr ( =0,05, n) r<r kr - przyjmujemy hipotezę H 0 r>r kr - przyjmujemy hipotezę H 1
28 Współczynnik korelacji liniowej Pearsona Jak ocenić czy r jest istotny? Hipoteza zerowa: H 0 : r =0 Hipoteza alternatywna: H 1 : r 0 2) Wykorzystujemy funkcję testową t-studenta t = r (1 r 2 ) n 2 t kr (, f=n-2) Z tablic rozkładu t-studenta
29 Współczynnik korelacji liniowej Pearsona Jak ocenić czy r jest istotny? Hipoteza zerowa: H 0 : r =0 Hipoteza alternatywna: H 1 : r 0 2) Wykorzystujemy funkcję testową t-studenta t<t kr - przyjmujemy hipotezę H 0 t>t kr - przyjmujemy hipotezę H 1
30 Współczynnik korelacji liniowej Pearsona Stosujemy gdy: zmienne mają rozkład normalny ORAZ zależność ma charakter liniowy
31 Współczynnik korelacji liniowej Pearsona Kiedy nie należy obliczać r: istnieje nieliniowy związek między dwoma zmiennymi (np. związek kwadratowy
32 Współczynnik korelacji liniowej Pearsona Kiedy nie należy obliczać r: występuje jedna lub więcej wartości odstających
33 Współczynnik korelacji liniowej Pearsona Kiedy nie należy obliczać r: dane zawierają podgrupy, dla których średnie poziomy wartości dla co najmniej jednej zmiennej są różne
34 Analiza korelacji Metoda graficzna Kowariancja Współczynnik korelacji rang Spearmana Współczynnik korelacji liniowej Pearsona
35 Współczynnik korelacji rang Spearmana Alternatywa dla współczynnika korelacji liniowej Pearsona. Nadaje się również do analizy zależności nieliniowych. Stosujemy, gdy: zmienne nie mają rozkładu normalnego ORAZ/LUB zależność ma charakter nieliniowy
36 Współczynnik korelacji rang Spearmana Uporządkowanym od najmniejszej do największej wartości zmiennym nadaje się rangi i wylicza R Spearmana: R = 1 6 n i=1 D 2 n(n 2 1) n ilość pomiarów D - różnica rang Przyjmuje wartości od -1 do +1 interpretacja taka jaka dla r Pearsona
37 Współczynnik korelacji rang Spearmana R = 1 6 n i=1 D 2 n(n 2 1) X Y ranga X ranga Y D D^ ,5 1 1,5 2, ,5 4, ,5 1,5 2,25 suma 11,5
38 Współczynnik korelacji rang Spearmana Jak ocenić czy R jest istotny? Hipoteza zerowa: Hipoteza alternatywna: H 0 : R =0 H 1 : R 0 Korzystamy z tablic wartości krytycznych R kr ( =0,05, n)
39
40 Współczynnik korelacji rang Spearmana Jak ocenić czy R jest istotny? Hipoteza zerowa: Hipoteza alternatywna: H 0 : R =0 H 1 : R 0 Korzystamy z tablic wartości krytycznych R kr ( =0,05, n) R<R kr - przyjmujemy hipotezę H 0 R>R kr - przyjmujemy hipotezę H 1
41 Istotność różnic między wsp. korelacji Gdy wykonujemy dwie serie niezależnych pomiarów (dwie pary zmiennych X i Y), dla każdej pary możemy uzyskać różny współczynnik korelacji. Aby ocenić, czy istotnie się między sobą różnią, wykorzystujemy funkcję t-studenta.
42 Istotność różnic między wsp. korelacji Hipoteza zerowa: H 0 : r 1 = r 2 Hipoteza alternatywna: H 1 : r 1 r 2 t r = 1 2 ln 1 + r 1 (1 r 2 ) 1 r 1 (1 + r 2 ) n 1 3 (n 2 3) n 1 + n 2 6 t kr ( =0,05, f=n 1 +n 2-4) t r <t kr - przyjmujemy hipotezę H 0 t r >t kr - przyjmujemy hipotezę H 1
43 Analiza regresji liniowej
44 Analiza regresji liniowej Regresja liniowa jest rozszerzeniem korelacji liniowej i pozwala na: graficzną prezentację linii prostej dopasowanej do wykresu rozrzutu określenie równania opisujące zależność dwóch zmiennych w postaci y = a + b* x zmienna zależna wyraz wolny współczynnik kierunkowy prostej zmienna niezależna
45 Wynik testu Analiza regresji liniowej Iloraz inteligencji
46 Wynik testu Analiza regresji liniowej y = a + b* x Iloraz inteligencji
47 Analiza regresji liniowej W jaki sposób wyznaczana jest linia regresji liniowej? przez minimalizację sumy kwadratów odchyleń punktów doświadczalnych od linii regresji tzw. metoda najmniejszych kwadratów (y i y i obl ) 2 = min y i wartości doświadczalne y i obl wartości obliczone z równania regresji
48 Analiza regresji liniowej
49 Analiza regresji liniowej W jaki sposób wyznaczana jest linia regresji liniowej y=a+b*x? Sprowadza się to do obliczenia współczynników a i b b = n x i y i x i y i n x i 2 x i 2 a = y i b x i n = y b x
50 Analiza regresji liniowej y = a + b*x a i b wyznaczamy na podstawie danych empirycznych ; a i b pewnym oszacowaniem rzeczywistych wartości i b a i b obarczone są błędem! Obliczamy go na podstawie wariancji resztowej σ r 2 = y i y i obl 2 n 2
51 Analiza regresji liniowej Dla współczynnika b: σ b 2 = n σ r 2 n x i 2 x i 2 Dla współczynnika a: σ a 2 = σ b 2 n x i 2
52 Analiza regresji liniowej Dokładność wyznaczenia współczynników: = a t(p, f=n-2) a b = b t(p, f=n-2) b
53 Analiza regresji liniowej Sprawdzamy, czy a i b istotnie różnią się od 0: Hipoteza zerowa: H 0 : a=0 H 0 : b=0 Hipoteza alternatywna: H 1 : a 0 H 1 : b 0 t a = a 0 σ a = a σ a t b = b 0 σ b = b σ b t kr (, f=n-2) t a (t b ) <t kr - przyjmujemy hipotezę H 0 t a (t b ) >t kr - przyjmujemy hipotezę H 1
54 Analiza regresji liniowej y = a+ b*x Współczynniki a i b muszą istotnie różnić się od 0 aby były uwzględnione w równaniu. Jeśli b=0 wartości y są stałe (równe a) Jeśli a=0 równanie upraszcza się do y=b*x
55 Analiza regresji liniowej Jeśli chcemy sprawdzić, czy a i b są zgodne z wartościami literaturowymi (sens fizyko-chem): Hipoteza zerowa: H 0 : a=a 0 H 0 : b=b 0 Hipoteza alternatywna: H 1 : a a 0 H 1 : b b 0 t a = a a 0 σ a t b = b b 0 σ b t kr (, f=n-2) t a (t b ) <t kr - przyjmujemy hipotezę H 0 t a (t b ) >t kr - przyjmujemy hipotezę H 1
56 Analiza regresji liniowej Do czego służy wyznaczone równanie? 1) Na podstawie znanych x obliczamy y 2) Na podstawie znanych y obliczamy x
57 Analiza regresji liniowej Do czego służy wyznaczone równanie? 1) Na podstawie znanych x obliczamy y y k =a+b*x k Błąd wyznaczenia y k σ yk = σ r 2 n + x k x 2 σ b 2 y = y k t(,f=n-2) yk Im x k jest bardziej oddalony od wartości średniej, tym większy błąd oszacowania
58 Analiza regresji liniowej Wynik testu Im x k jest bardziej oddalony od wartości średniej, tym przedział ufności jest szerszy x IQ
59 Analiza regresji liniowej Do czego służy wyznaczone równanie? 2) Na podstawie znanych y obliczamy x Błąd wyznaczenia x k x k =(y k -a)/b σ xk = 1 b σ r 2 n + y k y 2 b 2 σ b 2 x = x k t(,f=n-2) xk Im y k jest bardziej oddalony od wartości średniej, tym większy błąd oszacowania
60 Analiza regresji liniowej Wynik testu 60 y Im y k jest bardziej oddalony od wartości średniej, tym przedział ufności jest szerszy IQ
61 Analiza regresji liniowej Ocena dobroci dopasowania Współczynnik korelacji liniowej Pearsona Współczynnik determinacji Współczynnik indeterminacji Analiza reszt
62 Analiza regresji liniowej Ocena dobroci dopasowania Współczynnik korelacji liniowej Pearsona Współczynnik determinacji Współczynnik indeterminacji Analiza reszt
63 Analiza regresji liniowej Ocena dobroci dopasowania Współczynnik korelacji liniowej Pearsona Im r bliższy 1 tym lepsza jakość modelu
64 Analiza regresji liniowej Ocena dobroci dopasowania Współczynnik korelacji liniowej Pearsona Współczynnik determinacji Współczynnik indeterminacji Analiza reszt
65 Analiza regresji liniowej Ocena dobroci dopasowania Współczynnik determinacji r 2 współczynnik korelacji liniowej Pearsona podniesiony do kwadratu Podawany w postaci: - ułamkowej [0,1] - procentowej 0-100% Im bliższy 1 tym lepsza jakość modelu
66 Analiza regresji liniowej Ocena dobroci dopasowania Współczynnik korelacji liniowej Pearsona Współczynnik determinacji Współczynnik indeterminacji Analiza reszt
67 Analiza regresji liniowej Ocena dobroci dopasowania Współczynnik indeterminacji 2 = 1- r 2 tzw. współczynnik rozbieżności Podawany w postaci: - ułamkowej [0,1] - procentowej 0-100% Im bliższy 0 tym lepsza jakość modelu
68 Analiza regresji liniowej Ocena dobroci dopasowania Współczynnik korelacji liniowej Pearsona Współczynnik determinacji Współczynnik indeterminacji Analiza reszt
69 Analiza regresji liniowej Ocena dobroci dopasowania Analiza reszt e i e i = y i y i obl Reszty powinny spełniać rozkład normalny, mieć charakter losowy i nie wykazywać autokorelacji Normalność reszt badamy testem chi-kwadrat lub testem Kołmogorowa-Smirnowa Losowość reszt oceniamy na wykresie
70 reszty Analiza regresji liniowej Reszty losowo znajdują się powyżej i poniżej 0
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Bardziej szczegółowoPDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
Bardziej szczegółowoKorelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy
Bardziej szczegółowoRozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
Bardziej szczegółowoX Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9
Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Bardziej szczegółowoRegresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Bardziej szczegółowoSTATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Bardziej szczegółowoAnaliza Współzależności
Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka
Bardziej szczegółowoWspółczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Bardziej szczegółowoX WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15
X WYKŁAD STATYSTYKA 14/05/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 10 ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Kowariancja 3. Współczynnik korelacji liniowej definicja 4. Estymacja współczynnika
Bardziej szczegółowoStatystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoWprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Bardziej szczegółowoĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI
ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoTestowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
Bardziej szczegółowoWeryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoZJAZD 4. gdzie E(x) jest wartością oczekiwaną x
ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych
Bardziej szczegółowoPOLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych
Bardziej szczegółowoSpis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Bardziej szczegółowoĆWICZENIE 11 NIEPARAMETRYCZNE TESTY ISTOTNOŚCI
ĆWICZENIE 11 NIEPARAMETRYCZNE TESTY ISTOTNOŚCI ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności
Bardziej szczegółowoAnaliza współzależności dwóch cech I
Analiza współzależności dwóch cech I Współzależność dwóch cech W tym rozdziale pokażemy metody stosowane dla potrzeb wykrywania zależności lub współzależności między dwiema cechami. W celu wykrycia tych
Bardziej szczegółowoStatystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Dwuczynnikowa analiza wariancji (2-way
Bardziej szczegółowoMetodologia badań psychologicznych. Wykład 12. Korelacje
Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów
Bardziej szczegółowoZadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Bardziej szczegółowoREGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
Bardziej szczegółowo( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
Bardziej szczegółowoR-PEARSONA Zależność liniowa
R-PEARSONA Zależność liniowa Interpretacja wyników: wraz ze wzrostem wartości jednej zmiennej (np. zarobków) liniowo rosną wartości drugiej zmiennej (np. kwoty przeznaczanej na wakacje) czyli np. im wyższe
Bardziej szczegółowoRegresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
Bardziej szczegółowoStatystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34
Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoTablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Bardziej szczegółowoAnaliza współzależności zjawisk. dr Marta Kuc-Czarnecka
Analiza współzależności zjawisk dr Marta Kuc-Czarnecka Wprowadzenie Prawidłowości statystyczne mają swoje przyczyny, w związku z tym dla poznania całokształtu badanego zjawiska potrzebna jest analiza z
Bardziej szczegółowoZależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),
Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer
Bardziej szczegółowoAnaliza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
Bardziej szczegółowoAnaliza korelacji
Analiza korelacji Zakres szkolenia Wstęp Podstawowe pojęcia korelacji Współczynnik korelacji liniowej Pearsona Współczynnik korelacji rang Spearmana Test istotności Zadania 2 Wstęp Do czego służy korelacja:
Bardziej szczegółowoWielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6
Zad. 1. Zbadano wydajność odmiany pomidorów na 100 poletkach doświadczalnych. W wyniku przeliczeń otrzymano przeciętną wydajność na w tonach na hektar x=30 i s 2 x =7. Przyjmując, że rozkład plonów pomidora
Bardziej szczegółowoOBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp
tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE
Bardziej szczegółowoStatystyka. Wykład 8. Magdalena Alama-Bućko. 23 kwietnia Magdalena Alama-Bućko Statystyka 23 kwietnia / 38
Statystyka Wykład 8 Magdalena Alama-Bućko 23 kwietnia 2017 Magdalena Alama-Bućko Statystyka 23 kwietnia 2017 1 / 38 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoTesty nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
Bardziej szczegółowoWykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
Bardziej szczegółowoSTATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna
Bardziej szczegółowoMODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Bardziej szczegółowoEstymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Bardziej szczegółowoWYKŁAD 8 ANALIZA REGRESJI
WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej
Bardziej szczegółowoZałóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb
Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę
Bardziej szczegółowoStatystyka. Wykład 9. Magdalena Alama-Bućko. 7 maja Magdalena Alama-Bućko Statystyka 7 maja / 40
Statystyka Wykład 9 Magdalena Alama-Bućko 7 maja 2018 Magdalena Alama-Bućko Statystyka 7 maja 2018 1 / 40 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
Bardziej szczegółowoSTATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 12 listopada 2017 1 Analiza współzależności dwóch cech 2 Jednostka zbiorowości - para (X,Y ). Przy badaniu korelacji nie ma znaczenia, która
Bardziej szczegółowoCechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona
Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności
Bardziej szczegółowoTESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
Bardziej szczegółowoZmienne zależne i niezależne
Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }
Bardziej szczegółowoWeryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
Bardziej szczegółowoRÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
Bardziej szczegółowoKorelacja krzywoliniowa i współzależność cech niemierzalnych
Korelacja krzywoliniowa i współzależność cech niemierzalnych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej
Bardziej szczegółowoElementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 6
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności
Bardziej szczegółowoRegresja i Korelacja
Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 4
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność
Bardziej szczegółowoREGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym.
REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. Zadanie 1 W celu ustalenia zależności między liczbą braków a wielkością produkcji części
Bardziej szczegółowoWeryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Bardziej szczegółowoLABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
Bardziej szczegółowoInżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA
Bardziej szczegółowoAdam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska
Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera
Bardziej szczegółowoOdchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1
Bardziej szczegółowoSpis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych
1 LaboratoriumV: Podstawy korelacji i regresji Spis treści Laboratorium V: Podstawy korelacji i regresji...1 Wiadomości ogólne...2 1. Wstęp teoretyczny....2 1.1 Korelacja....2 1.2 Funkcja regresji....5
Bardziej szczegółowoStatystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Bardziej szczegółowoparametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Bardziej szczegółowoSpis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Bardziej szczegółowoProjekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
Bardziej szczegółowoAnalizy wariancji ANOVA (analysis of variance)
ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza
Bardziej szczegółowoTeoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.
Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej
Bardziej szczegółowoREGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ
REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ Korelacja oznacza fakt współzależności zmiennych, czyli istnienie powiązania pomiędzy nimi. Siłę i kierunek powiązania określa się za pomocą współczynnika korelacji
Bardziej szczegółowoAnaliza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
Bardziej szczegółowoTemat: Badanie niezależności dwóch cech jakościowych test chi-kwadrat
Temat: Badanie niezależności dwóch cech jakościowych test chi-kwadrat Anna Rajfura 1 Przykład W celu porównania skuteczności wybranych herbicydów: A, B, C sprawdzano, czy masa chwastów na poletku zależy
Bardziej szczegółowoIdea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Bardziej szczegółowoWNIOSKOWANIE STATYSTYCZNE
STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących
Bardziej szczegółowoSpis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie...
Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów Wstęp... 13 1. Wprowadzenie... 19 1.1. Statystyka opisowa.................................. 21 1.2. Wnioskowanie
Bardziej szczegółowoStatystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde
Bardziej szczegółowoZawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami
Bardziej szczegółowoStatystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.
Bardziej szczegółowoPrzedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii
SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane
Bardziej szczegółowoWeryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Bardziej szczegółowoWnioskowanie statystyczne Weryfikacja hipotez. Statystyka
Wnioskowanie statystyczne Weryfikacja hipotez Statystyka Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
Bardziej szczegółowoWielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna
Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA, LISTA 3
STATYSTYKA MATEMATYCZNA, LISTA 3 1. Aby zweryfikować hipotezę o symetryczności monety; H: p = 0.5 przeciwko K: p 0.5 wykonano nią n = 100 rzutów. Wyznaczyć obszar krytyczny i zweryfikować hipotezę H gdy
Bardziej szczegółowoWykład 4 Związki i zależności
Wykład 4 Związki i zależności Rozważmy: Dane z dwiema lub więcej zmiennymi Zagadnienia do omówienia: Zmienne objaśniające i zmienne odpowiedzi Wykres punktowy Korelacja Prosta regresji Słownictwo: Zmienna
Bardziej szczegółowoWykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Bardziej szczegółowoρ siła związku korelacyjnego brak słaba średnia silna bardzo silna
Ćwiczenie 4 ANALIZA KORELACJI, BADANIE NIEZALEŻNOŚCI Analiza korelacji jest działem statystyki zajmującym się badaniem zależności pomiędzy rozkładami dwu lub więcej badanych cech w populacji generalnej.
Bardziej szczegółowo2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Bardziej szczegółowoĆwiczenie: Wybrane zagadnienia z korelacji i regresji.
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)
Bardziej szczegółowoStatystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów Ochrony Środowiska Teresa Jaworska-Gołąb 2017/18 Co czytać [1] H. Szydłowski, Pracownia fizyczna, PWN, Warszawa 1999. [2] A. Zięba, Analiza
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2
STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
Bardziej szczegółowoStatystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35
Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoCharakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
Bardziej szczegółowo