Analiza współzależności dwóch cech I
|
|
- Jan Urbaniak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Analiza współzależności dwóch cech I
2 Współzależność dwóch cech W tym rozdziale pokażemy metody stosowane dla potrzeb wykrywania zależności lub współzależności między dwiema cechami. W celu wykrycia tych prawidłowości materiał empiryczny może być przedstawiony w postaci szeregu korelacyjnego (inaczej prostego), tablicy korelacyjnej lub tablicy kontyngencji. Wybór miernika współzależności zależy m. in. od tego, czy dane są przedstawione w szeregu czy tablicy korelacyjnej lub tablicy kontyngencji.
3 Schemat szeregu korelacyjnego Wariant zmiennej niezależnej, X Wariant zmiennej zależnej, Y x 1 y 1 x 2 y 2 x y
4 Korelacja dwóch cech mierzalnych Jedną z najpopularniejszych miar zależności jest współczynnik korelacji Pearsona, r xy. Jego zastosowanie jest jednak ograniczone jedynie, gdy badamy dwie cechy (tu często zwane zmiennymi) mierzalne. Współczynnik korelacji Pearsona stosujemy, gdy: Informacje o rozkładach cech (zmiennych) X i Y są podane w postaci wykazu par indywidualnych wartości obu cech dla każdej z badanych jednostek statystycznych: (x 1, y 1 ), (x 2, y 2 ),, (x, y ).
5 Korelacja dwóch cech mierzalnych Wartości obu cech nie muszą być uporządkowane. Związek między jedną i drugą cechą jest w przybliżeniu liniowy, tzn. Jednostkowym przyrostom jednej cechy towarzyszy, średnio biorąc, stały przyrost lub stały spadek drugiej cechy. Wartości Y Wartości X
6 Korelacja dwóch cech mierzalnych Współczynnik korelacji Pearsona może być wyznaczony z następującego wzoru: gdzie r xy = cov(x, y) S x S y = cov(x, y) = 1 (x i x)(y i y) (x i x) 2 (x i x)(y i y), (y i y) 2, natomiast S x i S y są odchyleniami standardowymi cech X i Y.
7 Uwaga Liczbę cov(x,y) nazywamy kowariancją dwóch cech X i Y. Istnieje również uproszczony wzór na obliczenie kowariancji: cov(x, y) = x i y i xy.
8 Własności współczynnika korelacji Pearsona Jest miarą symetryczną, co oznacza, że obliczona siła i kierunek zależności są takie same jak w odwrotnym oznaczeniu cech, tzn. r xy = r yx. Jest miarą niemianowaną (współczynnik nie jest wyrażony w jednostkach fizycznych), dzięki czemu możliwe jest dokonywanie porównań siły korelacji dla różnych zestawów zmiennych. Jest miarą unormowaną, tzn. przyjmuje wartości z przedziału od -1 do +1.
9 Własności współczynnika korelacji Pearsona Pozwala na określenie nie tylko siły, ale i kierunku zależności między zmiennymi. Dodatni znak współczynnika wskazuje na sytuację, gdy wzrostowi jednej cechy towarzyszy na ogół wzrost wartości drugiej cechy. Ujemny znak współczynnika wskazuje na sytuację, gdy wzrostowi jednej cechy towarzyszy na ogół spadek wartości drugiej cechy.
10 Własności współczynnika korelacji Pearsona Współczynnik korelacji r xy równy 0 świadczyć może o zupełnym braku związku korelacyjnego między badanymi cechami (zmiennymi). Może też oznaczać, że nie jest spełnione założenie o liniowej zależności między zmiennymi. Im r xy bliższy wartości -1, tym silniejsza korelacja ujemna między zmiennymi, zaś im bliższy +1, tym silniejsza korelacja dodatnia między zmiennymi. Wartość r xy = -1 oznacza idealną korelację ujemną, r xy = 1 idealną korelację dodatnią (punkty układają się wzdłuż prostej).
11 Własności współczynnika korelacji Pearsona r xy = 1 r xy = 0,9 r xy = 0,5 r xy = 0 r xy = 0,5 r xy = 0,9 r xy = 1
12 Własności współczynnika korelacji Pearsona r xy = 0,
13 Własności współczynnika korelacji Pearsona r xy =
14 Własności współczynnika korelacji Pearsona Współczynnik korelacji jest określonym wskaźnikiem, a nie pomiarem na skali liniowej o jednostkowych mianach, nie można zatem mówić, iż zależność o sile r xy = 0,9 jest dwa razy większa niż dla r xy =0,45. Orientacyjnie przyjmuje się, że siła korelacji jest: niewyraźna, jeśli r xy 0,2; wyraźna, jeśli 0,2 < r xy 0,4; umiarkowana, jeśli 0,4 < r xy 0,7; znacząca, jeśli 0,7 < r xy 0,9; bardzo silna, jeśli r xy > 0,9.
15 Własności współczynnika korelacji Pearsona Współczynnik korelacji, podobnie jak średnia arytmetyczna, jest podatny na wartości skrajne. Może się zdarzyć, że jeśli rozszerzymy zakres badania (uwzględnimy więcej informacji, przebadamy więcej jednostek populacji) współczynnik korelacji znacznie się zmieni (wzrośnie lub spadnie), gdyż nowe jednostki badania bardziej lub mniej wygładzą wykres zależności korelacyjnej między badanymi cechami.
16 Przykład Wydajność pracy Staż pracy
17 Przykład Wydajność pracy Staż pracy
18 Przykład W pewnej firmie, zatrudniającej 10 pracowników, zbadano zależność między stażem pracy pracowników a ich wydajnością pracy. Uzyskano następujące dane: umer pracownika Staż pracy (w latach) Wydajność pracy (w szt./h)
19 Przykład Wydajność pracy Staż pracy
20 Przykład Staż pracy (w latach) Wydajność (w szt./h) x i y i = 10, x = 1 x i = = 5, y = 1 y i = = 15.
21 Przykład Staż pracy (w latach) x i Wydajność (w szt./h) y i x i x y i y (x i x) 2 (y i y) 2 (x i x)(y i y) = 10, (x i x) 2 = 60, (y i y) 2 = 102, (x i x)(y i y) = 78.
22 Przykład = 10, (x i x) 2 = 60, (y i y) 2 = 102, (x i x)(y i y) = 78. r xy = (x i x)(y i y) (x i x) 2 = (y i y) = 0,997. Wynik ten mówi, że wydajność pracy w bardzo silnym stopniu zależy od stażu pracy pracowników. Współczynnik korelacji jest bardzo bliski 1, zatem siła tej zależności jest bardzo duża. Ponieważ współczynnik ma znak dodatni, to korelacja jest dodatnia: im dłużej pracownik pracuje w tej firmie, tym na ogół wyższa jest jego wydajność.
23 Regresja prosta Przy wyznaczaniu współczynnika korelacji liniowej Pearsona interesowało nas zagadnienie siły i kierunku zależności między cechami X i Y. W wielu analizach warto scharakteryzować bardziej szczegółowo związek między nimi i wskazać na tę cechę, która jest przyczyną kształtowania się drugiej, czyli skutku. Mówimy wówczas o występowaniu związku przyczynowo-skutkowego. Do jego analizy posłużymy się metodą regresji prostej.
24 Analiza regresji Jest to metoda badania wpływu zmiennych uznanych za niezależne (objaśniające) na zmienną uznaną za zależną (objaśniającą, inaczej zmienną celu). Z uwagi na bardziej skomplikowane procedury analizy regresji przy wielu zmiennych niezależnych, poprzestaniemy na analizie tzw. regresji prostej, w której uwzględni się tylko jedną zmienną niezależną. Empiryczna funkcja regresji jest to analityczny sposób wyjaśnienia średnich wartości zmiennej zależnej Y przez konkretne wartości zmiennej niezależnej X.
25 Regresja prosta Funkcję regresji można przedstawić graficznie. W tym celu pary przyporządkowanych sobie wartości cech X i Y traktujemy jako współrzędne punktów w prostokątnym układzie współrzędnych. W zależności od zmienności wykres funkcji regresji może być linią prostą lub dowolną krzywą
26 Regresja prosta Kierując się stopniem trudności wyznaczania funkcji regresji, zajmiemy się wyłącznie funkcją liniową. Liniową funkcję regresji zmiennej zależnej Y, przy danych wartościach zmiennej niezależnej X, zapisujemy następująco: y i = a + bx i, i = 1,2,, y i - wartości teoretyczne zmiennej Y (punkty leżące na prostej), x i - wartości empiryczne zmiennej X, b a - współczynnik regresji (współczynnik kierunkowy), - wyraz wolny.
27 Regresja prosta Aby zapisać równanie regresji należy wyznaczyć (oszacować) parametry strukturalne funkcji, czyli a i b. ajprostszą i najpopularniejszą metodą szacowania parametrów jest klasyczna metoda najmniejszych kwadratów (MK). Polega ona na wyznaczeniu takich parametrów a i b, dla których suma kwadratów odchyleń (y i y i ) 2 = (y i a bx i ) 2 będzie najmniejsza, gdzie x i, y i - wartości empiryczne (rzeczywiste) zmiennych X i Y.
28 Regresja prosta Warunki te spełniają parametry a i b wyznaczone wg. następujących wzorów: b = cov(x, y) S 2 x = (x i x)(y i y) (x i x) 2, a = y bx.
29 Regresja prosta Bardzo duże znaczenie ma współczynnik regresji b. Wskazuje on bowiem, o ile przeciętnie zmieni się wartość zmiennej zależnej Y, jeśli wartość zmiennej niezależnej X wzrośnie o jednostkę. Ujemny współczynnik b wskazuje na to, że pod wpływem wzrostu zmiennej X o jednostkę, zmienna zależna Y zmaleje średnio o b jednostek. Dodatni współczynnik b wskazuje na to, że pod wpływem wzrostu zmiennej X o jednostkę, zmienna zależna Y wzrośnie średnio o b jednostek.
30 Regresja prosta Współczynnik regresji b równy zero świadczy o tym, że zmienna niezależna nie wywiera żadnego wpływu na zmienną zależną (wpływu liniowego). Z interpretacji tych wynika wyraźnie, ze dodatni współczynnik regresji wskazuje na dodatnią korelację między zmiennymi, a ujemny na ujemną zależność. Wynika z tego praktyczny wniosek: znak współczynnika regresji musi być taki sam jak znak współczynnika korelacji liniowej Pearsona.
31 Regresja prosta Wyraz wolny a rzadko posiada sensowną interpretację. Teoretycznie oznacza on poziom zmiennej zależnej Y przy zerowej wartości zmiennej niezależnej X. Często jednak wyraz wolny przybiera wartości ujemne, co rzadko daje się merytorycznie zinterpretować Koszty produkcji 3 Zużycie surowców
32 Współczynnik determinacji Znaczenie poznawcze funkcji regresji jest tym większe, im silniejsza jest korelacja między badanymi zmiennymi. Silny związek oznacza bowiem, że zmienna niezależna determinuje w znacznym stopniu zmiany w poziomie zmiennej zależnej, niewielki natomiast jest wpływ indywidualnych odchyleń. Wskazuje na to kwadrat współczynnika korelacji liniowej Pearsona, czyli tzw. współczynnik determinacji R 2 = (r xy ) 2.
33 Współczynnik determinacji Między współczynnikami regresji b, a współczynnikiem korelacji Pearsona r xy zachodzi cenny związek: b = cov(x, y) (S x ) 2 = cov(x, y) S x S y S y S x = r xy S y S x.
34 Przykład Opierając się na danych z poprzedniego przykładu wyznaczymy równanie funkcji regresji umer pracownika Staż pracy (w latach) Wydajność pracy (w szt./h)
35 Przykład umer pracownika Staż pracy (w latach) Wydajność pracy (w szt./h) x = 5, y = 15, (x i x) 2 = 60, (y i y) 2 = 102, (x i x)(y i y) = 78. b = (x i x)(y i y) = (x i x) = 1,3, a = y bx = 15 1,3 5 = 8,5.
36 Przykład b = (x i x)(y i y) = (x i x) = 1,3, a = y bx = 15 1,3 5 = 8,5. Zatem funkcję regresji możemy zapisać następująco: lub ogólniej y i = 8,5 + 1,3 x i y = 8,5 + 1,3 x.
37 Przykład y = 8,5 + 1,3 x. Współczynnik b = 1,3 oznacza, że w badanej firmie z każdym kolejnym rokiem pracy pracownik zwiększa swoją wydajność średnio o 1,3 sztuk/h. Jeśli zatem staż pracy pewnego pracownika wzrośnie o rok, to wyprodukuje on przeciętnie w ciągu godziny 1,3 sztuki wyrobu więcej. Wyraz a = 8,5 oznacza, że świeżo przyjęty pracownik (tzn. o zerowym stażu pracy) produkuje przeciętnie 8,5 sztuki wyrobu na godzinę.
38 Przykład Wydajność pracy y = 1,3x + 8,5 R² = 0, Staż pracy
39 Uwagi Analiza współzależności cech jest jedną z metod, które stwarzają możliwość potwierdzenia istnienia związków przyczynowo skutkowych między cechami. Uważa się bowiem, że im silniejsza korelacja między cechami, tym mocniejsze są podstawy do twierdzenia o istnieniu więzi przyczynowoskutkowej. Czy jednak wyraźna korelacja między badanymi cechami daje pewność istnienia więzi przyczynowo-skutkowej? Otóż nie, możemy jedynie potwierdzić ścisłe współwystępowanie np. Wyższych wartości pierwszej cechy z wyższymi wartościami drugiej cechy.
40 Uwagi Ilościowa analiza związku korelacyjnego powinna być zatem poprzedzona analizą jakościową pozwalającą, na ile to możliwe, wyeliminować tzw. związki pozorne, których istnienie potwierdzają wyłącznie miary statystyczne. Istnienie takich pozornych (iluzorycznych) zależności wynika z wpływu czynników trzecich (ukrytych) na obraz badanego związku. Jednakże, nie zawsze ustalenie wpływu innych czynników jest możliwe, szczególnie jeśli nie prowadzi on do powstania paradoksalnej zależności. Wśród zjawisk społeczno-ekonomicznych wyeliminowanie wszystkich czynników zakłócających badaną zależność jest niemożliwe, a czasem jest niepotrzebne. W praktyce eliminujemy tylko te czynniki, które zakłócają obraz badanej zależności najsilniej.
41 Uwagi Liczba zgonów y = 0,2912x + 18, Liczba lekarzy na 10 tys. mieszkańców Przykład związku pozornego: zależność między liczbą lekarzy w mieście i liczbą zgonów. Uznanie wyników analizy wskazującej na związek dodatni (im więcej lekarzy tym więcej zgonów) prowadzi do absurdalnego wniosku: najlepszym sposobem ograniczenia zgonów jest zmniejszenie liczby lekarzy!
Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka
Analiza współzależności zjawisk dr Marta Kuc-Czarnecka Wprowadzenie Prawidłowości statystyczne mają swoje przyczyny, w związku z tym dla poznania całokształtu badanego zjawiska potrzebna jest analiza z
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Analiza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
4.2. Statystyczne opracowanie zebranego materiału
4.2. Statystyczne opracowanie zebranego materiału Zebrany i pogrupowany materiał badawczy należy poddać analizie statystycznej w celu dokonania pełnej i szczegółowej charakterystyki interesujących badacza
Statystyka. Wykład 8. Magdalena Alama-Bućko. 23 kwietnia Magdalena Alama-Bućko Statystyka 23 kwietnia / 38
Statystyka Wykład 8 Magdalena Alama-Bućko 23 kwietnia 2017 Magdalena Alama-Bućko Statystyka 23 kwietnia 2017 1 / 38 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 12 listopada 2017 1 Analiza współzależności dwóch cech 2 Jednostka zbiorowości - para (X,Y ). Przy badaniu korelacji nie ma znaczenia, która
Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym.
REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. Zadanie 1 W celu ustalenia zależności między liczbą braków a wielkością produkcji części
Regresja i Korelacja
Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane
PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34
Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9
Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli
Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb
Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35
Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Statystyka. Wykład 7. Magdalena Alama-Bućko. 3 kwietnia Magdalena Alama-Bućko Statystyka 3 kwietnia / 36
Statystyka Wykład 7 Magdalena Alama-Bućko 3 kwietnia 2017 Magdalena Alama-Bućko Statystyka 3 kwietnia 2017 1 / 36 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Statystyka. Wykład 9. Magdalena Alama-Bućko. 7 maja Magdalena Alama-Bućko Statystyka 7 maja / 40
Statystyka Wykład 9 Magdalena Alama-Bućko 7 maja 2018 Magdalena Alama-Bućko Statystyka 7 maja 2018 1 / 40 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
Analiza Współzależności
Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych
Korelacja krzywoliniowa i współzależność cech niemierzalnych
Korelacja krzywoliniowa i współzależność cech niemierzalnych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Dopasowanie prostej do wyników pomiarów.
Dopasowanie prostej do wyników pomiarów. Graficzna analiza zależności liniowej Założenie: każdy z pomiarów obarczony jest taką samą niepewnością pomiarową (takiej samej wielkości prostokąty niepewności).
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy
Metodologia badań psychologicznych. Wykład 12. Korelacje
Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów
Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),
Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Analiza współzależności dwóch cech II
Analiza współzależności dwóch cech II Dopasowanie funkcji regresji do danych empirycznych Po znalezieniu równania funkcji regresji należy zbadać, na ile nasze oszacowanie pokrywa się z rzeczywistością.
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Pojęcie korelacji. Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi.
Pojęcie korelacji Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Charakteryzując korelację dwóch cech podajemy dwa czynniki: kierunek oraz siłę. Korelacyjne wykresy
R-PEARSONA Zależność liniowa
R-PEARSONA Zależność liniowa Interpretacja wyników: wraz ze wzrostem wartości jednej zmiennej (np. zarobków) liniowo rosną wartości drugiej zmiennej (np. kwoty przeznaczanej na wakacje) czyli np. im wyższe
parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego
Metody Analiz Przestrzennych Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego mgr Marcin Semczuk Zakład Przedsiębiorczości i Gospodarki Przestrzennej Instytut
Wykład 7. Opis współzaleŝności zjawisk. 1. Wprowadzenie.
Wykład 7. Opis współzaleŝności zjawisk 1. Wprowadzenie. 2. Prezentacja materiału statystycznego. Rodzaje współzaleŝności zjawisk 1. WspółzaleŜność funkcyjna określonym wartościom jednej zmiennej jest ściśle
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15
X WYKŁAD STATYSTYKA 14/05/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 10 ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Kowariancja 3. Współczynnik korelacji liniowej definicja 4. Estymacja współczynnika
Funkcja liniowa - podsumowanie
Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna
Statystyka. Wykład 10. Magdalena Alama-Bućko. 14 maja Magdalena Alama-Bućko Statystyka 14 maja / 31
Statystyka Wykład 10 Magdalena Alama-Bućko 14 maja 2018 Magdalena Alama-Bućko Statystyka 14 maja 2018 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
MODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Współczynniki korelacji czastkowej i wielorakiej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 18 listopada 2017 1 Regresja krzywoliniowa 2 Model potęgowy Model potęgowy y = αx β e można sprowadzić poprzez zlogarytmowanie obu stron równania
Analiza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
Analiza korelacji
Analiza korelacji Zakres szkolenia Wstęp Podstawowe pojęcia korelacji Współczynnik korelacji liniowej Pearsona Współczynnik korelacji rang Spearmana Test istotności Zadania 2 Wstęp Do czego służy korelacja:
ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x
ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych
Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi.
ANALIZA KORELACJI Większość zjawisk w otaczającym nas świecie występuje nie samotnie a w różnorodnych związkach. Odnosi się to również do zjawisk biologiczno-medycznych. O powiązaniach między nimi mówią
Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6
Zad. 1. Zbadano wydajność odmiany pomidorów na 100 poletkach doświadczalnych. W wyniku przeliczeń otrzymano przeciętną wydajność na w tonach na hektar x=30 i s 2 x =7. Przyjmując, że rozkład plonów pomidora
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)
ANALIZA REGRESJI SPSS
NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek
1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:
Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
Statystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33
Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,
(x j x)(y j ȳ) r xy =
KORELACJA. WSPÓŁCZYNNIKI KORELACJI Gdy w badaniu mamy kilka cech, często interesujemy się stopniem powiązania tych cech między sobą. Pod słowem korelacja rozumiemy współzależność. Mówimy np. o korelacji
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.
Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej
ANALIZA WIELOPOZIOMOWA JAKO NARZĘDZIE WSPARCIA POLITYK PUBLICZNYCH
ANALIZA WIELOPOZIOMOWA JAKO NARZĘDZIE WSPARCIA POLITYK PUBLICZNYCH - Adrian Gorgosz - Paulina Tupalska ANALIZA WIELOPOZIOMOWA (AW) Multilevel Analysis Obecna od lat 80. Popularna i coraz częściej stosowana
W statystyce stopień zależności między cechami można wyrazić wg następującej skali: n 1
Temat: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00 0,20) Słaba
REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
Wprowadzenie do technik analitycznych Metoda najmniejszych kwadratów
Wprowadzenie do technik analitycznych Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wykład 2 Korelacja i regresja Przykład: Temperatura latem średnia liczba napojów sprzedawanych
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Statystyka SYLABUS A. Informacje ogólne
Statystyka SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Dziedzina
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
Wskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii
Miary asymetrii Miary asymetrii (skośności) określają kierunek rozkładu cech zmiennych w zbiorowości (rozkład może być symetryczny lub asymetryczny lewostronnie lub prawostronnie) oraz stopień odchylenia
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Stanisza r xy = 0 zmienne nie są skorelowane 0 < r xy 0,1
Analiza struktury i przeciętnego poziomu cechy
Analiza struktury i przeciętnego poziomu cechy Analiza struktury Pod pojęciem analizy struktury rozumiemy badanie budowy (składu) określonej zbiorowości, lub próby, tj. ustalenie, z jakich składa się elementów
WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS
WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS Nazwa przedmiotu: Statystyka opisowa Profil 1 : ogólnoakademicki Cel przedmiotu: Zapoznanie studentów
Statystyka. Opisowa analiza zjawisk masowych
Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im
Wykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)
FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw
Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF
Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
Statystyka opisowa SYLABUS A. Informacje ogólne
Statystyka opisowa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Podstawowe pojęcia statystyczne
Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Niepewności pomiarów
Niepewności pomiarów Międzynarodowa Organizacja Normalizacyjna (ISO) w roku 1995 opublikowała normy dotyczące terminologii i sposobu określania niepewności pomiarów [1]. W roku 1999 normy zostały opublikowane
ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI
ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Statystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne),
Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach badania zjawisk masowych, zmienna losowa będąca funkcją próby. Podstawowe pojęcia: populacja (zbiorowość
W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
Temat: Badanie niezależności dwóch cech jakościowych test chi-kwadrat
Temat: Badanie niezależności dwóch cech jakościowych test chi-kwadrat Anna Rajfura 1 Przykład W celu porównania skuteczności wybranych herbicydów: A, B, C sprawdzano, czy masa chwastów na poletku zależy
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
STATYSTYKA MATEMATYCZNA, LISTA 3
STATYSTYKA MATEMATYCZNA, LISTA 3 1. Aby zweryfikować hipotezę o symetryczności monety; H: p = 0.5 przeciwko K: p 0.5 wykonano nią n = 100 rzutów. Wyznaczyć obszar krytyczny i zweryfikować hipotezę H gdy