Ruchy ciała sztywnego i przekształcenia jednorodne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ruchy ciała sztywnego i przekształcenia jednorodne"

Transkrypt

1 uh iała twnego i retałenia jednorodne

2 Definija: uład wółrędnh Zbiór n baowh wetorów ortonormalnh roinająh n Na rład ereentują unt muim odać uład wółrędnh Wględem o : Wględem o : ora ą niemiennimi obietami geometrnmi Ale ih rereentaja jet ależna od wboru uładu wółrędnh ereentowanie oji j i

3 Obrot D Obrot ereentowanie jednego uładu wółrędnh w ategoriah innego gdie wetor jednotowe definiuje ię natęująo: o in o in in o in o Jet to maier obrotu

4 Maiere obrotu jao rojeje utowanie oi o na oie uładu o Podejśie alternatwne o in in o o o o o

5 Włanośi maier obrotu Obrot odwrotne: Lub też inna interretaja użwa relaji artośi/nieartośi: T o in in o o o o o T o in in o o in in o

6 Włanośi maier obrotu Odwrotność maier obrotu: Wnani maier obrotu jet awe równ ± + jeżeli ograniam ię do uładów raworętnh T o in in o det o in in o o o o o

7 Podumowanie: Włanośi maier obrotu Kolumn (wiere) ą wajemnie ortogonalne Każda olumna (wier) jet wetorem jednotowm T det Zbiór wtih n n maier mająh te włanośi nawa ię gruą obrotów (ang. Seial Orthogonal grou) rędu n SOn

8 Obrot trójwmiarowe 3 SO Ogóln obrót 3D: Pradi ególne Podtawowe maiere obrotu o in in o o in in o o in in o

9 Ćwienie: Wna maier obrotu

10 Włanośi maier obrotu (.d.) SO(3) jet gruą e wględu na mnożenie. Zamniętość: SO3 SO3. Jedność: 3. Odwrotność: 4. Łąność: I SO T W ogólnośi element SO(3) nie ą remienne: Powala ładać obrot: a ab b

11 Obrot wględem adanej oi Blo na r. (b) owtał re obrót blou r. (a) o ąt π wględem oi.

12 Załóżm że jet danm untem obietu twnego utalonm uładem wółrędnh o Punt może bć redtawion w uładie o ( ) ore rojeję na oie uładu baowego Pretałenia atoowaniem obrotów w u w u w u w u w u w u w u w u

13 Obraanie wetora Jee jedna interretaja maier obrotu: Obraanie wetora doooła ewnej oi w utalonm uładie wółrędnh N.: obróć doooła o ąt / o in in o / /

14 Podumowanie maier obrotu Tr interretaje roli maier obrotu:. ereentuje retałenie wółrędnh untu w dwóh różnh uładah odnieienia.. Wnaa orientaję retałonego uładu wółrędnh w odnieieniu do utalonego uładu wółrędnh. 3. Jet oeratorem retałająm wetor re obrót w now wetor w tm amm uładie wółrędnh.

15 Pretałenia re odobieńtwo Wtie uład wółrędnh ą definiowane re biór wetorów baowh Te roinają n N. wetor jednotowe i j W algebre liniowej n n maier A tanowi odworowanie n do n = A gdie: obra ore retałenie A. Mśl o ja o liniowej ombinaji wetorów jednotowh (wetorów bawoh) n. wetorów jednotowh T e... T e n Wted olumn A ą obraami th wetorów baowh. Jeśli hem rereentować wetor wględem innej ba n. f f n retałenie A można redtawić w otai A T AT r m olumn T ą wetorami f f n.

16 Pretałenia re odobieńtwo A ora A mają identne wartośi włane. Wetor włan maier A odowiada wetorowi wł. T - maier A. Maier obrotu tanowi również mianę ba Jeśli A jet retałeniem liniowm w o ora B jet retałeniem liniowm w o wted ą one wiąane relają N. uład o ora o ą wiąane maierą obrotu Jeśli A jet też maierą obrotu (wględem o ) ten am obrót wrażon w o jet otai A B o in in o o in in o A B

17 Sładanie obrotów wględem bieżąego uładu wółrędnh N. roważm tr uład wółrędnh o o o To definiuje rawo ładania dla olejnh obrotów wględem bieżąego uładu wółrędnh: mnożenie rawotronne.

18 Sładanie obrotów N. nieh rereentuje obrót wględem bieżąej oi o ąt o tórm natęuje obrót o ąt wględem bieżąej oi. o in o in o o o in in in o in o in o in o in in o Co robić w radu odwróonej olejnośi obrotów?

19 Sładanie obrotów wględem utalonego uładu wółrędnh (o ) Nieh obrót omięd uładami o ora o będie definiowan re Nieh będie adanm obrotem wględem utalonego uładu wółrędnh o. Stoują definiję retałenia re odobieńtwo mam: Definiuje to rawo ładania dla obrotów wględem utalonego uładu wółrędnh: mnożenie lewotronne.

20 Sładanie obrotów N. hem wnać maier obrotu tóra jet łożeniem obrotu o ąt wględem ( ) a natęnie o ąt wględem ( ). Drugi obrót należ rowadić do baowego uładu wółrędnh Tera ombinają dwóh obrotów jet

21 Podumowanie: Sładanie obrotów Kolejne obrot wględem bieżąego uładu wółrędnh: Mnożenie rawotronne re olejne maiere obrotu wględem utalonego uładu wółrędnh (o ) Mnożenie lewotronne re olejne maiere obrotu Możem również mieć do nienia hbrdowm ładaniem obrotów wględem bieżąego i utalonego uładu wółrędnh toują te ame reguł.

22 Parametraja obrotów Ab definiować dowoln obrót iała twnego wtar użć treh arametrów. Oiem tr taie arametraje:. Kąt Euler. Kąt obrotu nahlenia i odhlenia 3. ereentaja oś ąt

23 Parametraja obrotów Kąt Euler Kolejno obrót o ąt woół oi otem o ąt b woół bieżąej oi i dalej o ąt woół bieżąej oi ZYZ

24 Parametraja obrotów Kąt obrotu nahlenia odhlenia Tr olejne obrot wględem utalonh oi głównh: Odhlenie Yaw ( ) nahlenie ith ( ) obrót roll ( ) XYZ

25 Parametraja obrotów ereentaja oś ąt Każdą maier gru SO(3) można redtawić w otai ojednego obrotu woół odowiedniej oi o odowiedni ąt N. ałóżm że mam wetor jednotow: Mają dan ąt hem naleźć : Kro ośredni: rutuj oś na : r m obrót jet definiowan re

26 Parametraja obrotów ereentaja oś ąt Jet dana re Problem odwrotn: Mają dane dowolne naleźć ora in o r r r r r r Tr

27 uh twne uh twn jet ombinają tego obrotu i tego reunięia Zdefiniowan re maier obrotu () ora wetor reunięia (d) SO 3 3 d Grua wtih ruhów twnh (d) nana jet jao grua eulideowa (ang. Seial Eulidean grou) SE(3) SE3 n SO3 oważm tr uład o o ora o raem odowiednimi maierami obrotu ora Nieh d będie wetorem od oątu o do o d od o do o Dla untu wiąanego o możem redtawić wetor ołożenia w uładah o and o : d d d d d d

28 Pretałenia jednorodne uh twne (obrot i reunięia) można redtawić a omoą mnożenia maierowego Zdefiniujm: Tera unt można redtawić w uładie o : gdie P ora P ą otai d H d H P H P H P P

29 Pretałenia jednorodne Mnożenie re maier H nawa ię retałeniem jednorodnm i onaa aiem H SE Pretałenie owrotne: 3 H T T d

30 Pretałenia jednorodne Podtawowe retałenia: Tr te reunięia tr te obrot b a b a Tran Tran Tran ot ot ot

Podstawowe pojęcia analizy wektorowej - przypomnienie

Podstawowe pojęcia analizy wektorowej - przypomnienie Dnamia Gaów em.i Wład Slajd Podtawowe ojęia anali wetorowej - romnienie Gradient F alar nabla j i F F F gradf F F F gradf,, j i F Dnamia Gaów em.i Wład Slajd Dwergenja - wetor di Rotaja rot i j i - wetor

Bardziej szczegółowo

Rozważa się dwa typy odwzorowań: 1. Parametryzacja prosta

Rozważa się dwa typy odwzorowań: 1. Parametryzacja prosta WYKŁAD MODELOWANIE I WIZUALIZACJA TEKSTURY. Co to jest tekstra obiekt T(,, (,, t( =... tn(,,,, Plan wkład: Co to jest tekstra? Generowanie worów tekstr Wialiaja tekstr Filtrowanie tekstr Co może oiswać

Bardziej szczegółowo

Rozdział 9. Baza Jordana

Rozdział 9. Baza Jordana Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

Algebra liniowa. Zadania przygotowujące do egzaminu: .Wskazówka: Zastosować wzór de Moivre'a;

Algebra liniowa. Zadania przygotowujące do egzaminu: .Wskazówka: Zastosować wzór de Moivre'a; emer leni 5/6 lgebra liniowa Znaleźć i nakicować biór 8 C j ; a) ( ) b) { C j j } c) { C Im( ) } ; Zadania rgoowjące do egamin Wkaówka Zaoować wór de Moire'a; d) C Im Wnacć licb dla kórch macier je odwracalna

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + + + +, d) n

Bardziej szczegółowo

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA . CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

G:\WYKLAD IIIBC 2001\FIN2001\Ruch falowy2001.doc. Drgania i fale II rok Fizyki BC

G:\WYKLAD IIIBC 2001\FIN2001\Ruch falowy2001.doc. Drgania i fale II rok Fizyki BC 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC Ruh falow: Fala rohodąe się w presreni aburenie lub odsałenie (pole). - impuls lub drgania. Jeśli rohodi się prędośią o po asie : ( r)

Bardziej szczegółowo

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne

Bardziej szczegółowo

Zadania z AlgebryIIr

Zadania z AlgebryIIr Zadania AlgebrIIr Seria () Rowia ι ać uk lad równań: + + t = + = 7 + + t = ; + + = ; + 7 6t = + = 7 + + = 8 = 8 + + t = + 9 = 9 ; + 7t = + = 7 + + t = + 8 7 = () Podać bae ι prestreni rowia ι ań uk ladu:

Bardziej szczegółowo

Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki

Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki Kompresa fratalna obraów. Kopara welorotne reuuąca.. Zasaa ałana ana naprostse opar Koncepca opar welorotne reuuące Naprosts prła opar. Moel matematcn obrau opara cęś ęścowa. obra weścow opara obra wścow

Bardziej szczegółowo

Algebra z geometrią 2012/2013

Algebra z geometrią 2012/2013 Algebra geometrią 22/23 Seria XVI Javier de Lucas Zadanie. Wnacć rąd macier: A :, B : 2 4 3 4 3 2 3 3 5 7 3 3 6 3 Rowiąanie: Macier A: Sposób: Rąd macier to wmiar prestreni generowanej pre jej kolumn.

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

3. Kinematyka podstawowe pojęcia i wielkości

3. Kinematyka podstawowe pojęcia i wielkości 3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny

Bardziej szczegółowo

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot - podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.

Bardziej szczegółowo

Fale skrętne w pręcie

Fale skrętne w pręcie ae skrętne w ręcie + -(+) eement ręta r π ) ( 4 Lokane skręcenie o () moment skręcając moduł stwności r romień ręta r 4 ) ( π Pod włwem wadkowego momentu eement ręta uskuje rsiesenie kątowe i sełnion jest

Bardziej szczegółowo

o zasilaniu napięciowym Gałąź normalna o zasilaniu mieszanym

o zasilaniu napięciowym Gałąź normalna o zasilaniu mieszanym o silniu npięiowm Głąź normln o silniu miesnm w w Głąź normln o silniu prądowm w w iern Siei e źródłmi npięiowmi [ ] [ ] [ ][ ]... W prpdu siei owodmi sprężonmi ( ) ( ) ( ) ω ω ω ω ω ω ω ω ω... M j M j

Bardziej szczegółowo

Idea metody LINIE PIERWIASTKOWE EVANSA. Idea metody. Przykład. 1 s1,2 k

Idea metody LINIE PIERWIASTKOWE EVANSA. Idea metody. Przykład. 1 s1,2 k LINIE PIERWIASTKOWE EVANSA Idea metody Definicja linii pierwiatowych. Silni terowany napięciowo. PRz Idea metody Atualne zatoowanie metody linii pierwiatowych: amotrojenie w regulatorach przemyłowych (automatyczne

Bardziej szczegółowo

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste Katedra Robotki i Mechatroniki Akademia Górnico-Hutnica w Krakowie Mechanika Robotów Wojciech Lisowski Opis położenia i orientacji efektora Model geometrcn adanie proste Mechanika Robotów KRIM, AGH w Krakowie

Bardziej szczegółowo

Blok 2: Zależność funkcyjna wielkości fizycznych

Blok 2: Zależność funkcyjna wielkości fizycznych Blok : Zależność funkcjna wielkości fizcznch I. Odcztwanie informacji z wkreu co tak naprawdę na nim ię znajduje. Chcąc odcztać informacje z wkreu funkcji, muim dokładnie wiedzieć, jaka wielkość fizczna

Bardziej szczegółowo

SYSTEMY STEROWANIA. Serwomechanizm edukacyjny. Ćwiczenia laboratoryjne 1-7 WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI

SYSTEMY STEROWANIA. Serwomechanizm edukacyjny. Ćwiczenia laboratoryjne 1-7 WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI SYSTEMY STEROWANIA Ćwizenia laboratoryjne - 7 Serwomehanizm eduayjny Oraował: Dr inż. Andrzej Ruzewi BIAŁYSTOK, . Wtę Eduayjny

Bardziej szczegółowo

Ś Ś Ś ż Ł Ą Ą Ń Ś ż Ś ż Ą ż ż Ó Ź Ź ć ć ż ć Ą ć ć Ś ć ŚÓ ć ć ć ż ź Ł ż Ś Ł Ą Ó ż Ź ż ć Ś Ą Ó ż ć ż ź ż ć Ś ć Ź ż Ń Ł Ł ż ż Ą Ś ź ż ć ć Ł Ą Ą Ś Ś ż ć Ó Ó Ś Ź ź ź ż Ą ż ż ć Ść Ó ż ć Ś ź Ś Ś Ł Ś Ł Ł Ł Ł Ł

Bardziej szczegółowo

ń ń ś Ś Ó Ó ń ń ść ś ś ś ś ś ś ś ś ć ś ść ś ś ć ś Ż ć ś ś ś ść ć ś ń ć Ź Ż ń ń ś Ż Ą ć ń ń ś śó Ż ś ć Ź ś Ó ś Ż ś Ź ś ś ś Ż ś ś ś Ź ś ń ś Ę ć ś ś ń ś ś ś ń Ż Ż ś ś ś ń ć ć Ż ś ń Ż ś ń Ą ś ś ć ś ś Ż ś ś

Bardziej szczegółowo

Ó ź Ó ź Ź Ó Ź Ó Ó Ę Ź Ą Ć Ó Ó Ź Ś Ź ź Ę Ź ŚÓ Ś Ó ź Ó Ę Ź Ó Ó Ó ŚÓ Ź Ó ź ź Ź ź ź Ę Ś ź Ą Ś Ź ź Ę Ł Ś Ź Ś ź ź Ł Ś ź Ś Ś Ś Ę Ę Ł Ł Ą Ś Ę Ą Ę Ź Ę Ę Ó Ś Ę Ń Ś Ć Ś Ś Ó Ś Ę Ę Ł Ą Ę Ą Ś Ź Ć Ó Ł ź Ń Ź Ą ź Ę Ź Ź

Bardziej szczegółowo

Ń ŚÓ Ź Ś ź Ś Ś ć Ą ć Ź ć ć Ś ć Ś ź ć Ś ź Ś ć ź ć Ś ź Ę ć ć Ś Ś Ą ź Ś Ś Ś Ś ć Ś Ś Ś ź Ś Ś Ś Ś Ż ć Ś Ć ć ć ź ć Ś Ś Ś ŚĆ Ś ź Ś Ś ć ć ć Ś Ć ć ć Ć Ś Ś Ś ŚĆ Ś Ś Ś ć ć ź Ś Ż Ś Ś Ś Ś Ś Ś Ą Ż Ś Ś Ś Ś Ś ć ć Ó ź

Bardziej szczegółowo

ó ś ń Ś Ó Ó Ó Ó ś Ó ż Ó Ś Ę Ó ó Ó ó Ś Ó óó Ś ś Ó ć Ź Ó ś ś ż ó ó ś Ó Ó ń Ś ś Ó ń ż ś ś Ó Ę Ó Ó Ó ś ó ś Ó Ś Ó Ś ń ń Ó ó ń ż ś Ó Ó ż ń Ś ó ż ń Ó Ś ż ń Ś ść ż ó ń ż Ś ż Ś Ś Ś Ó ń ś Ś Ó ń Ó Ą Ó Ą ć ż Ą ś ń

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

Równanie Modowe Światłowodu Planarnego

Równanie Modowe Światłowodu Planarnego Rówaie Modowe Światłowodu Plaarego Prezetaja zawiera oie olii omawia a władzie. Niiejze oraowaie roioe jet rawem autorim. Worztaie ieomerje dozwoloe od waruiem odaia źródła. Sergiuz Patela 1998-4 β Rówaie

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom

Bardziej szczegółowo

Przykład 6.1. Przestrzenny stan naprężenia i odkształcenia

Przykład 6.1. Przestrzenny stan naprężenia i odkształcenia Prkład Pretrenn tan naprężenia i odktałcenia Stan naprężenia Stan naprężenia w punkcie jet określon a pomocą diewięciu kładowch, które onacam literą odpowiednimi indekami Pierw indek onaca normalną ewnętrną

Bardziej szczegółowo

Matematyka A, kolokwium trzecie, 1 czerwca 2010, rozwia. a b. y = = ( 2) 13 5 ( 5) = 1, wie c macierz

Matematyka A, kolokwium trzecie, 1 czerwca 2010, rozwia. a b. y = = ( 2) 13 5 ( 5) = 1, wie c macierz Matematyka A, kolokwium treie, erwa 00, rowia ania. 0 pt. Wykaać, że dla dowolnyh lib a lkowityh a, b istnieja takie liby a lkowite, y, że 5 5 3 y = a b 5 Znaleźć wartośi i wektory w lasne maiery A = 5

Bardziej szczegółowo

MODELOWANIE I WIZUALIZACJA TEKSTURY

MODELOWANIE I WIZUALIZACJA TEKSTURY WYKŁAD 9 MODELOWANIE I WIZUALIZACJA TEKSTURY Plan wkład: Co to jest tekstra? Generowanie worów w tekstr Wialiaja tekstr Filtrowanie tekstr. Co to jest tekstra obiekt T (,, ) (,,) t( = tn(,,...,, ) ) T(,,,

Bardziej szczegółowo

1 Przekształcenie Laplace a

1 Przekształcenie Laplace a Przekztałcenie Laplace a. Definicja i podtawowe właności przekztałcenia Laplace a Definicja Niech dana będzie funkcja f określona na przedziale [,. Przekztałcenie (tranformatę Laplace a funkcji f definiujemy

Bardziej szczegółowo

PRZESTRZEŃ WEKTOROWA (LINIOWA)

PRZESTRZEŃ WEKTOROWA (LINIOWA) PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura

Bardziej szczegółowo

Ćwiczenie - Fale ciśnieniowe w gazach

Ćwiczenie - Fale ciśnieniowe w gazach MIERNICTWO CIEPLNO - PRZE- PŁYWOWE - LABORATORIUM Ćwiczenie - Fale ciśnieniowe w gazach Cel ćwiczenia: Celem ćwiczenia jet zaoznanie ię ze zjawikami rzeływu nieutalonego w rzewodach, wyznaczenie rędkości

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka

Bardziej szczegółowo

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollb.pl Transformacje 3D Podobnie jak w prestreni -wymiarowej, dla prestreni 3-wymiarowej definijemy transformacje RST: presnięcie miana skali obrót

Bardziej szczegółowo

M A N I P U L A T O R Y Przestrzenne Analiza kinematyczna

M A N I P U L A T O R Y Przestrzenne Analiza kinematyczna N I P U L O Y Prstrnn nalia inmatcna Wsółrędn absolutn (artańsi) aniulator łasi r r r r r r acir rotaci Wrsor r r r r Prstałcni dnorodn q wtor wsółrędnch absolutnch KINEYK NIPULOÓW PZESZENNYCH 5 Wsółrędn

Bardziej szczegółowo

Reprezentacje grup symetrii. g s

Reprezentacje grup symetrii. g s erezentace ru ymetr Teora rerezentac dea: oeracom ymetr rzyać oeratory dzałaące w rzetrzen func zwązać z nm funce, tóre oeratory te rzerowadzaą w ebe odobne a zb. untów odcza oerac ymetr rozważmy rzeztałcene

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

F p. F o. Modelowanie złożonych systemów biocybernetycznych. Na poprzednim wykładzie uczyliśmy się, jak tworzyć modele prostych obiektów biologicznych

F p. F o. Modelowanie złożonych systemów biocybernetycznych. Na poprzednim wykładzie uczyliśmy się, jak tworzyć modele prostych obiektów biologicznych Modelowanie złożonych ytemów biocybernetycznych Wyład nr 6 z uru Biocybernetyi dla Inżynierii Biomedycznej prowadzonego przez Prof. Ryzarda Tadeuiewicza Na poprzednim wyładzie uczyliśmy ię, ja tworzyć

Bardziej szczegółowo

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII STEROWANIA INSTRUKCJA LABORATORYJNA

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII STEROWANIA INSTRUKCJA LABORATORYJNA Na prawach ręopi do żyt łżbowego INSYU ENERGOELEKRYKI POLIECHNIKI WROCŁAWSKIEJ Raport erii SPRAWOZDANIA Nr LABORAORIUM EORII SEROWANIA INSRUKCJA LABORAORYJNA ĆWICZENIE Nr 4 Minimalnoczaowe terowanie optymalne

Bardziej szczegółowo

GRUPY SYMETRII Symetria kryształu

GRUPY SYMETRII Symetria kryształu GRUPY SYMETRII Smetria krstału Zamknięte (punktowe) operacje smetrii (minimum jeden punkt prestreni nie porusa się wskutek astosowania amkniętej operacji smetrii): Obrot i obrot inwersjne; Inwersja (smetria

Bardziej szczegółowo

Sterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji.

Sterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji. emat ćwiczenia nr 7: Synteza parametryczna uładów regulacji. Sterowanie Ciągłe Celem ćwiczenia jest orecja zadanego uładu regulacji wyorzystując następujące metody: ryterium amplitudy rezonansowej i metodę

Bardziej szczegółowo

Wybrane modele ubezpieczeń wielostanowych na przykładzie PHI

Wybrane modele ubezpieczeń wielostanowych na przykładzie PHI Ogólnoola Konferencja Nauowa Zagadnienia Atuarialne eoria i rata Wbrane modele ubezieczeń wielotanowch na rzładzie PH Anna Woł Uniwertet Eonomiczn we Wrocławiu Warzawa, dn.9-.6.8 Plan rezentacji:. Wrowadzenie

Bardziej szczegółowo

Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze

Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze Wład 4 Zasada achowania enegii Sił achowawce i nieachowawce Wsstie istniejące sił możem podielić na sił achowawce i sił nie achowawce. Siła jest achowawca jeżeli paca tóą wonuję ta siła nad puntem mateialnm

Bardziej szczegółowo

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze... Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję

Bardziej szczegółowo

Złożone działanie sił wewnętrznych w prętach prostych

Złożone działanie sił wewnętrznych w prętach prostych Złożone diałanie sił wewnętrnch w rętach rostch Jeżeli sił wewnętrne nie redukują się włącnie do sił odłużnej N, orecnej T i momentu gnącego Mg c momentu skręcającego Ms, to radki takie nawa się łożonmi

Bardziej szczegółowo

Logika klasyczna i rozmyta. Rozmyte złożenie relacji (ang. fuzzy composition) Złożenie relacji (ang. composition)

Logika klasyczna i rozmyta. Rozmyte złożenie relacji (ang. fuzzy composition) Złożenie relacji (ang. composition) Złożenie relacji ang. compoition) Niech X Y, Y Z. Ptanie: X Z? Cz można znaleźć taą relację, tóra wiąże te ame element z X, tóre zawiera z tmi ammi elementami z Z, tóre zawiera? Czli cz zuam X Z. Przład

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje

Bardziej szczegółowo

Analiza progu rentowności

Analiza progu rentowności Analiza rogu rentownośi Analiza rogu rentownośi (ang. break-even oint BEP) obejmuje badania tzw. unktu równowagi (wyrównania, krytyznego), informująego na o tym, jakie rozmiary rzedaży rzy danyh enah i

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Zadanie 0 Obliczyć całki. Wyniki sprawdzić obliczając pochodne otrzymanych funkcji pierwotnych. x 4. x x. x x 1 , 11)

Zadanie 0 Obliczyć całki. Wyniki sprawdzić obliczając pochodne otrzymanych funkcji pierwotnych. x 4. x x. x x 1 , 11) PR DOMOW ŁK NIEOZNZON / Zadanie Oblicć całki Wniki prawdić oblicając pochodne ormanch funkcji pierwonch ) d ) d ) d ) d Zadanie Oblicć całki nieonacone całkując pre cęści ) ln d ) co d ) ln d ) d ) arcg

Bardziej szczegółowo

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu

Bardziej szczegółowo

ZASADY ZACHOWANIA ENERGII MECHANICZNEJ, PĘDU I MOMENTU PĘDU

ZASADY ZACHOWANIA ENERGII MECHANICZNEJ, PĘDU I MOMENTU PĘDU ZASADY ZACHOWANIA ENERGII MECHANICZNEJ PĘDU I MOMENTU PĘDU Praca W fiyce racą eleentarną dw nayway wielkość dw Fd Fdr (4) gdie F jet iłą diałającą na drode d d F Pracę eleentarną ożna także redtawić w

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b =

ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b = St Kowls Włd mtemt dl studentów erunu Mehn włd ILOZYNY WEKTORÓW 3 { : } trówmrow prestre tór mon nterpretow n tr sposo: Jo ór puntów W te nterpret element prestren 3 nw s puntm Nps on e punt m współrdne

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika

Bardziej szczegółowo

Z e s p ó ł d s. H A L i Z

Z e s p ó ł d s. H A L i Z C h o r ą g i e w D o l n o l ą s k a Z H P P L A N P R A C Y K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j I 2 0 1 5- V I 2 0 1 6 1. C h a r a k t e r y s t y k a C h o r ą g w i C h o r ą g

Bardziej szczegółowo

SELEKCJA: JAK JEDNA POPULACJA (STRATEGIA) WYPIERA INNĄ

SELEKCJA: JAK JEDNA POPULACJA (STRATEGIA) WYPIERA INNĄ W stronę bolog: dnama oulacj Martn. owa Evolutonar Dnamcs elna Press 6 SELEKCJ: JK JED POPULCJ (STRTEGI) WYPIER IĄ Model determnstczn ( a ) ( b ) : Dodając stronam mam a b czl średne dostosowane (ftness).

Bardziej szczegółowo

M O D E L R U C H U W Y R Z U T N I O K RĘTOWEJ O P I S A N Y P R Z E Z T R A N S F O R M A C J E U K Ł A D Ó W W S P Ó Ł R ZĘ D N Y C H

M O D E L R U C H U W Y R Z U T N I O K RĘTOWEJ O P I S A N Y P R Z E Z T R A N S F O R M A C J E U K Ł A D Ó W W S P Ó Ł R ZĘ D N Y C H ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LIV NR 3 (194) 213 DO I: 1.564/86889X/186925 Zbigniew Dioa Politechnika Świętokryska Wydiał Mechatroniki i Budowy Masyn, Katedra Technik Komuterowych i Ubrojenia

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

F - wypadkowa sił działających na cząstkę.

F - wypadkowa sił działających na cząstkę. PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych

Bardziej szczegółowo

Macierze normalne. D : Dowolną macierz kwadratową można zapisać w postaci A = B + ic gdzie ( ) B = A + A B = A + A = ( A + A)

Macierze normalne. D : Dowolną macierz kwadratową można zapisać w postaci A = B + ic gdzie ( ) B = A + A B = A + A = ( A + A) Macierze normalne Twierdzenie: Macierz można zdiagonalizować za pomocą unitarnej transformacji podobieństwa wted i tlko wted gd jest normalna (AA A A). ( ) D : Dowolną macierz kwadratową można zapisać

Bardziej szczegółowo

Algebra z geometrią 2012/2013

Algebra z geometrią 2012/2013 Algebra geometrą 22/2 Egamn psemn, 24 VI 2 r. Instrukcje: Każde adane jest a punktów. Praca nad rowąanam mus bć absolutne samodelna. Jakakolwek forma komunkacj kmkolwek poa plnującm egamn jest całkowce

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu miennch wkład MATEMATYKI Automatka i robotka studia niestacjonarne sem II, rok ak 2009/2010 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R ndef ={( 1, 2,, n ): 1 R 2

Bardziej szczegółowo

Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej.

Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej. Prkład.7. Naprężenia tcne pr ginaniu belki cienkościennej. Wnac rokład naprężenia tcnego w prekroju podporowm belki wpornikowej o prekroju cienkościennm obciążonej na wobodnm końcu pionową iłą P. Siła

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

Ciśnienie i nośność w płaskim łożysku ślizgowym przy niestacjonarnym laminarnym smarowaniu

Ciśnienie i nośność w płaskim łożysku ślizgowym przy niestacjonarnym laminarnym smarowaniu TRIBOOGIA ZAGADNIENIA EKSPOATACJI MASZYN Zesyt (5) 7 PAWEŁ KRASOWSKI Ciśnienie i nośność w łasim łożysu śligowym ry niestacjonarnym laminarnym smarowaniu Słowa lucowe Płasie łożyso śligowe, laminarne niestacjonarne

Bardziej szczegółowo

Ż Ę ć Ć ć ć Ą

Ż Ę ć Ć ć ć Ą Ś Ł Ż Ą Ż Ę ć Ć ć ć Ą ŚĘ Ż ź Ś Ż Ś Ś Ń Ę Ą Ś Ł Ś Ł Ż Ż ź ż Ą Ś Ż Ż Ś Ł Ą Ą Ó Ż Ż ż ć Ż ż ć ż Ó Ż ż ć ż ć ż Ą Ę ż Ó Ó ż ż Ó ć Ż ć Ż ć ć ź Ę Ę Ę ć Ż Ź Ż ż ć ż Ź Ę Ż ż ć Ś ć Ż Ę ż Ę ż ż ż Ż ż ż ż ż ĘŁ ż ż

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12

Bardziej szczegółowo

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna Metody omputerowe i obliczeniowe Metoda Elementów Soczonych Element jednowymiarowy i jednoparametrowy : spryna Jest to najprostszy element: współrzdne loalne i globalne jego wzłów s taie same nie potrzeba

Bardziej szczegółowo

KilkazadańzAMII Tekst poprawiony 14 sierpnia po skrytykowaniu poprzedniej wersji przez dwie rozsądne panie. Obytakichbyłowięcej... inietylkopań.

KilkazadańzAMII Tekst poprawiony 14 sierpnia po skrytykowaniu poprzedniej wersji przez dwie rozsądne panie. Obytakichbyłowięcej... inietylkopań. KilkazadańzAMII Tekst poprawiony 4 sierpnia po skrytykowaniu poprzedniej wersji przez dwie rozsądne panie. Obytakihbyłowięej... inietylkopań. Zadanie.Wykazać,żejednorodnakulaprzyiagapunktow amas e mztakasam

Bardziej szczegółowo