MODELOWANIE I WIZUALIZACJA TEKSTURY

Wielkość: px
Rozpocząć pokaz od strony:

Download "MODELOWANIE I WIZUALIZACJA TEKSTURY"

Transkrypt

1 WYKŁAD 9 MODELOWANIE I WIZUALIZACJA TEKSTURY Plan wkład: Co to jest tekstra? Generowanie worów w tekstr Wialiaja tekstr Filtrowanie tekstr. Co to jest tekstra obiekt T (,, ) (,,) t( = tn(,,...,, ) ) T(,,, ), (w og Tekstra jest fnkja T( (w ogólnośi wektorowa) określona dla nktów leżą żąh na owierhni obiekt. Co może e oiswać fnkja T( T(,,, )?

2 Prkład: Kolor nkt (,, ) na owierhni obiekt. Kolor nkt (,,) [ r(,, ) g(,, ) b(,, )] T T = r(.), g(.), b(.) - sk składowe, erwona, ielona i niebieska kolor nkt w model RGB. Fnkja T(,,, ) może e oiswać w tm radk dowoln obra naniesion na owierhnię obiekt. Wektor normaln do owierhni w nkie (,, ) 2. Wektor normaln do owierhni w nkie T N(,,) DN(,,) (,,) = N (,,) + D N (,,) - wektor normaln oblion danh o geometrii owierhni, - składnik losow 3. Wsółnniki materiałowe dla modeli oświetleniao (,,) [ k (,, ) k (,, ) k (,, ] T T = k a (,,) ( ) a d s ) - wsółnnik odbiia światła a rorosonego, k d,, ( ) - wsółnnik odbiia dfjnego, k s,, - wsółnnik odbiia wieriadlanego. 4. Różnego rodaj kombinaje orednio wmienionh modeli Jak wglądaj dają obra obiekt wględnieniem tekstr? 2

3 3

4 Odworowania arametrne w agadnieniah wialiaji tekstr: Określanie fnkji tekstr T(,,, ) w restreni, w której ostał oisan obiekt jest trdne i niewgodne. Zawaj stosje się odworowania arametrne. Parametrn ois owierhni obiekt (,) [(,), (,), (,)] Fnkja tekstr definiowana w restreni arametrów T(,) T((,), (,), (,)) Roważa a się dwa t odworowań:. Parametraja rosta T(,) (, ) (,, ) Dla danego nkt (, ) restreni arametrów, stosją równania arametrne oblia się odowiedni nkt (,, ) na owierhni obiekt. Rtje się nkt fnkją tekstr nkt (,, ), a iksel (, ) we tekstr T(,, ). wełnia godnie 4

5 2. Parametraja odwrotna T(,) (, ) (,, ) nkt (,, ) na Dla danego iksela (, ), oskje się nkt na owierhni widonego obiekt. Stosją odwrotne równania r arametrne oblia się odowiedni nkt w restreni odowiedni nkt (, ) w restreni tekstr T(,, ) arametrów. Piksel wełnia godnie fnkją tekstr dla wlionh wartośi. W agadnieni arametraji rostej wmagana jest najomość równań arametrnh owierhni, natomiast w adani arametraji odwrotnej odwrotnh równar wnań arametrnh. 2. Generowanie worów w tekstr Jak skać fnkję T( T(,,, )? Stosje się różne metod ais i algortm generaji fnkji tekstr.. Wkorstje się ostać analitną fnkji T(,, ). fnkję T(,, ) okre 2. Twor się tablię oisjąą fnkj określoną dokładno adnośią, n. tablię oisjąą kolorow obra skan metodą fotografii frowej. 3. Fnkję T(,) komonje się elementarnh worów. w. W literatre oisje się różne modele tworenia tekstr re owielanie worów. w. Cęsto stosje się modele wkorstjąe lib lb roes losowe. 5

6 Modele okresowe Pewien elementarn wore jest owielan wedłg stalonego orądk. Metodą tą można skać n. rsnki sahowni mr egł. Modele bombowe W restreni arametrów romiesa się losowo obiekt o stalonm kstałie (bomb). Romiesanie olega na losowani nkt miesenia środka bomb i jej orientaji. Bomba może e bć onadto w trakie romiesania skalowana. Prkład: Modele oarte na roesah Markowa Proes losowania wkorstje własno asność roesów Markowa, która olega na tm, że e stan roes w ewnm nkie ależ jednie od stanów w beośrednim jego otoeni. Modele fraktalne Wkorstje się różnorodne odworowania iterowane (wielokrotnie owtara się dość roste odworowania). Prkład: Fraktal lamow (lasma( fratal) Założenia: Prestreń arametrów (rostokąt t w kładie wsółr rędnh, ) należ okrć rostokątn tną siatk 2 n nktów., siatką 2 n 2 Każdem nktowi siatki należ w ewien sosób b risać stoień sarośi lb kolor adanej, dskretnej, liniowo orądkowanej skali. 6

7 Algortm generaji fraktala lamowego: Krok W narożnh nh nktah rostokąta ta siatki miesa się nkt o losowo wbranm (r omo adanego dskretnego rokład rawdoodobieństwa) kolore Krok 2 Wlia się kolor dla ięi nowh nktów siatki. Nowe nkt sąs generowane w środkah boków i w środk rostokąta. ta. = 2 2 W() Oblienie kolor nkt w środk bok (n. 2 ). Losje się kolor 2. Oblia się kolor 2 e wor 2 2 = ( 2W ( )) 2 + W ( ) + W ( ) 2 gdie fnkja W() ma rebieg okaan na rsnk owżej 7

8 Oblienie kolor nkt. Losje się kolor 2. Oblia się kolor e wor gdie fnkja W () = ( 4W ( )) + W ( ) () ma nastęj ją rebieg 4 i= i W () Krok 3. Otrmano ter nowe rostokąt. t. Dla każdego nih, owtara się krok 2 i wnik dieli się nów na mniejse rostokąt, t, aża do osiągni gnięia grani rodielośi i siatki. Uskan tąt metodą wore tekstr można rawie dowolnie kstałtowa tować,, mieniają rokład żwan r losowani kolorów, ora fnkje W() i W (). Prkład ad: Każde rhomienie algortm daje inn efekt. 8

9 Algortm generaji fraktala lamowego może e słżćs też do innh elów, n. do generaji reźb teren. Prkład: Fraktal lamow Obra sen 3-D, 3 na której oiom sarośi fraktala lamowego, ostał amienion w wsokość 3. Wialiaja tekstr (odworowania geometrne) Jak okaać na ekranie obra obiekt wględnieniem tekstr? Parametraja w restreni obiekt Założenie: Obiekt sen definiowane sąs we własnh kładah wsółr rędnh. Prkład: wielobok. Wielobok Zakłada ada się, że e restreń tekstr okrwa się łasn asną -. restreń tekstr 9

10 Równania dla arametraji rostej = = (, ) (,, ) A + B + D = C A, B, C, D - ws C 0 wsółnniki równania r łasn, na której leż wielobok. Równania dla arametraji odwrotnej (,, ) = = (, ) wielobok restreń tekstr 2. Sfera restreń tekstr sfera 0 Równania dla arametraji rostej (, ) (,, ) = Ros( 2 )sin( = R sin( 2 )sin( = Ros( / 2 ) / 2 ) / 2 ) 0

11 Parametraja w restreni ewnętrnej (kładie świata) Poskje się rekstałenia odworowjąego nkt (,) restreni tekstr w nkt (,, ) restreni ewn (kład świata). Prkład: restreni ewnętrnej. Parametraja liniowa rosta ( 2, 2, 2 ) ( 3, 3 ) ( 3, 3, 3 ) (, ) ( 2, 2 ) (,, ) restreń tekstr trójk jkąt Zastosowanie - okrwanie tekstrą wieloboków w łaskih. Ab oisać arametraję liniową rostą należ naleźć rekstałenie, [ ] = [ ] = [ ] P li wlić maier P. Wnaenie maier P dla trójk jkąta; Dane: - wierhołki trójk jkąta 2 3 (,, ), ( 2, 2,2 ), ( 3, 3,3 ) - tr nkt w restreni tekstr (, ), ( 2,2 ), ( 3,3 )

12 Element maier P oblia się rowiąj ją tr kład równań liniowh. Układ ierws: Z kład równar wnań wlia się 2, i 3 a oostałh dwóh kład adów restę elementów maier P , 2 2. Parametraja liniowa odwrotna Należ naleźć rekstałenie, o o [ ] = [ ] o o = [ ] O li wlić maier O. 2 3 o o = = = 2 3 W radk odworowwania wieloboków w o różnej r libie wierhołków, w, n. kwadrat restreni tekstr w trójk jkąt w restreni świata mogą wstąi ić roblem. Rowiąania ania mogą bć nastęj jąe: odiał wieloboków w na trójk jkąt, tak ab liba trójk jkątów bła równa i astosowanie arametraji liniowej dla ar trójk jkątów, arametraja nieliniowa. 2. Parametraja nieliniowa Parametraja dwliniowa [ ] = [ ] P 4 3 Określenie arametraji wmaga naleienia 2 elementów maier maier P. 2

13 Parametraja dwkwadratowa [ ] = [ ] P9 3 W ob radkah, arametraja odwrotna wmaga rowiąwania wania równar wnań nieliniowh. 4. Filtrowanie tekstr Założenie: Wore tekstr jest oisan tablią n. jest to djęie o określonej i niemożliwej do mian rodielośi i. Zastosowanie w tm radk dla rkład, arametraji liniowej rostej, rowadi wkle do staji, w której liba nktów restreni tekstr i odowiednia liba nktów do wświetlenia wietlenia na ekranie sąs różne. Mogą wstąi ić różne radki:. Odworowanie owięksaj ksająe 00 nktów wora 000 ikseli ekran 2. Odworowanie mniejsająe 000 nktów wora 00 ikseli ekran 3

14 Odworowanie owięksaj ksająe (roblem łatwiejs) W roesie wświetlania wietlania na ekranie należ dodać nkt, które nie maja odowiedników w we wor tekstr. Efekt niegodnośi gęstog stośi nktów siatki wora tekstr i nktów ekran redkje się stosją interolaję liniową. nkt ekran mają odowiednik w wor tekstr nkt ekran nie mają odowiednika w wor tekstr Tekstrę dla nktów nie mająh odowiedników w we wor wnaa się re liniową interolaję tekstr określonej w nktah, 2, 3, 4, ohodąej ej wora. Odworowanie mniejsająe (roblem trdniejs) W roesie wświetlania wietlania na ekranie należ snąć niektóre nkt, którh bt wiele wstęje we wor tekstr. Stosje się różne metod. Metoda : Nadróbkowanie (oersamling) Piksel ekran dieli się na mniejse ęś ęśi. Dla ęś ęśi odielonego iksela wnaa się odowiednie nkt w restreni tekstr. Uśrednia się wniki i średnią risje ikselowi ekran. Wadą metod jest trdność stalenia stonia nadróbkowania (lib ęś ęśi, na które dieli się iksel ekran). Stosję się nadróbkowanie e stałą gęstośią, nadróbkowanie adatajne, nadróbkowanie stohastne. 4

15 Metoda 2: Metoda slot beośredniego Algortm: Krok Krok 2 Piksel ekran jest rekstałan w obra w restreni tekstr. Obra w restreni tekstr jest średnian r omo filtr liniowego. obra iksela ekran t ij t = i j f ij i j f ij t ij = f ij rkładowa maska filtr (filtr Gassa) t t Krok 3 Wnik filtraji jest traktowan jako tekstra, odowiadająa ikselowi ekran. Problem filtraji: obra iksela nie msi bć kwadratem, iksele leżą żąe na krawędiah figr należ traktować odrębnie. 5

Rozważa się dwa typy odwzorowań: 1. Parametryzacja prosta

Rozważa się dwa typy odwzorowań: 1. Parametryzacja prosta WYKŁAD MODELOWANIE I WIZUALIZACJA TEKSTURY. Co to jest tekstra obiekt T(,, (,, t( =... tn(,,,, Plan wkład: Co to jest tekstra? Generowanie worów tekstr Wialiaja tekstr Filtrowanie tekstr Co może oiswać

Bardziej szczegółowo

WPROWADZENIE DO GRAFIKI KOMPUTEROWEJ

WPROWADZENIE DO GRAFIKI KOMPUTEROWEJ WPROWADZENIE DO GRAFIKI KOMPUTEROWEJ Dr inż.. Jacek Jarnicki Doc. PWr. Instytut Cybernetyki Technicznej p. 226 C-C 3, tel. 320-28-2323 jacek@ict.pwr.wroc.pl www.zsk.ict.pwr.wroc.pl 1. Układ przedmiotu

Bardziej szczegółowo

TRANSFORMACJE 2-D2 PROCEDURA WIZUALIZACJI 2-D2

TRANSFORMACJE 2-D2 PROCEDURA WIZUALIZACJI 2-D2 WYKŁAD TRANSFORMACJE -D PROCEDURA WIZUALIZACJI -D Plan wkładu: Transforaje eleentarne w przestrzeni -D Składanie transforaji Ogólna proedura wizualizaji w -D Obinanie w oknie prostokątn tn 1. Transforaje

Bardziej szczegółowo

Rozdział 9. Baza Jordana

Rozdział 9. Baza Jordana Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,

Bardziej szczegółowo

Zadania z AlgebryIIr

Zadania z AlgebryIIr Zadania AlgebrIIr Seria () Rowia ι ać uk lad równań: + + t = + = 7 + + t = ; + + = ; + 7 6t = + = 7 + + = 8 = 8 + + t = + 9 = 9 ; + 7t = + = 7 + + t = + 8 7 = () Podać bae ι prestreni rowia ι ań uk ladu:

Bardziej szczegółowo

Ruchy ciała sztywnego i przekształcenia jednorodne

Ruchy ciała sztywnego i przekształcenia jednorodne uh iała twnego i retałenia jednorodne Definija: uład wółrędnh Zbiór n baowh wetorów ortonormalnh roinająh n Na rład ereentują unt muim odać uład wółrędnh Wględem o : Wględem o : ora ą niemiennimi obietami

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA. Plan wykładu. 1. Początki grafiki komputerowej. 2. Grafika komputerowa a dziedziny pokrewne. 3. Omówienie programu przedmiotu

GRAFIKA KOMPUTEROWA. Plan wykładu. 1. Początki grafiki komputerowej. 2. Grafika komputerowa a dziedziny pokrewne. 3. Omówienie programu przedmiotu GRAFIKA KOMPUTEROWA 1. Układ przedmiotu semestr VI - 20000 semestr VII - 00200 Dr inż. Jacek Jarnicki Instytut Cybernetyki Technicznej p. 226 C-C 3, tel. 320-28-2323 jacek@ict.pwr.wroc.pl www.zsk.ict.pwr.wroc.pl

Bardziej szczegółowo

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać: ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ

Bardziej szczegółowo

J. Szantyr Wykład 11 Równanie Naviera-Stokesa

J. Szantyr Wykład 11 Równanie Naviera-Stokesa J. Sant Wkład Równanie Naviea-Stokesa Podstawienie ależności wnikającch model łn Newtona do ównania achowania ęd daje ównanie nane jako ównanie Naviea-Stokesa. Geoge Stokes 89 903 Clade Navie 785-836 Naviea-Stokesa.

Bardziej szczegółowo

Grafika komputerowa. Dr inż. Michał Kruk

Grafika komputerowa. Dr inż. Michał Kruk Grafika komputerowa Dr inż. Michał Kruk Teksturowanie Pokrywanie powierzchni brył wzorami. Dla realizacji takich zadań w grafice najczęściej korzysta się z koncepcji teksturowania powierzchni. Ogólnie

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech

Bardziej szczegółowo

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania

Bardziej szczegółowo

Graficzne modelowanie scen 3D. Wykład 4

Graficzne modelowanie scen 3D. Wykład 4 Wkład 4 Podstawowe pojęcia i definicje . Modelowanie. Definicja Model awiera wsstkie dane i obiekt ora wiąki pomięd nimi, które są niebędne do prawidłowego wświetlenia i realiowania interakcji aplikacją,

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

Fraktale. i Rachunek Prawdopodobieństwa

Fraktale. i Rachunek Prawdopodobieństwa Fraktale i Rachunek Prawdopodobieństwa Przyjrzyjmy się poniższemu rysunkowi, przedstawiającemu coś,, co kształtem tem przypomina drzewo o bardzo regularnej strukturze W jaki sposób b najłatwiej atwiej

Bardziej szczegółowo

Zakres zagadnienia. Pojęcia podstawowe. Pojęcia podstawowe. Do czego słuŝą modele deformowalne. Pojęcia podstawowe

Zakres zagadnienia. Pojęcia podstawowe. Pojęcia podstawowe. Do czego słuŝą modele deformowalne. Pojęcia podstawowe Zakres zagadnienia Wrowadzenie do wsółczesnej inŝynierii Modele Deformowalne Dr inŝ. Piotr M. zczyiński Wynikiem akwizycji obrazów naturalnych są cyfrowe obrazy rastrowe: dwuwymiarowe (n. fotografia) trójwymiarowe

Bardziej szczegółowo

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadania domowe Ćwiczenie 2 Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadanie 2.1 Fraktal plazmowy (Plasma fractal) Kwadrat należy pokryć prostokątną siatką 2 n

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA

PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA MAŁOPOLSKI KONKURS MATEMATYCZNY Rok skoln 08/09 ETAP REJONOWY 0 grudnia 08 roku PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA adanie odpowiedź punkt B 3 C 3 3 A 3 4 B 3 5 E 3 6 B 3 7 E 3 8 C 3 9 D 3 0 A 3 7 adania

Bardziej szczegółowo

Algebra liniowa. Zadania przygotowujące do egzaminu: .Wskazówka: Zastosować wzór de Moivre'a;

Algebra liniowa. Zadania przygotowujące do egzaminu: .Wskazówka: Zastosować wzór de Moivre'a; emer leni 5/6 lgebra liniowa Znaleźć i nakicować biór 8 C j ; a) ( ) b) { C j j } c) { C Im( ) } ; Zadania rgoowjące do egamin Wkaówka Zaoować wór de Moire'a; d) C Im Wnacć licb dla kórch macier je odwracalna

Bardziej szczegółowo

= [6; 2]. Wyznacz wierzchołki tego równoległoboku.

= [6; 2]. Wyznacz wierzchołki tego równoległoboku. ZADANIE 1 (5 PKT) Wyznacz współrzędne wierzchołków trójkata jeżeli środki jego boków maja współrzędne: P = (1, 3), Q = ( 5, 4), R = ( 6, 7). ZADANIE 2 (5 PKT) Dla jakich wartości parametru α odległość

Bardziej szczegółowo

Zadania domowe. Ćwiczenie 3. Budowa modeli obiektów 3-D

Zadania domowe. Ćwiczenie 3. Budowa modeli obiektów 3-D Zadania doowe Ćwiczenie 3 udowa odeli obiektów 3-D Zadanie 3.1 Model terenu na bazie fraktala plazowego Założenia: Należy wykorzystać opracowany w poprzedni ćwiczeniu algoryt i progra do generacji fraktala

Bardziej szczegółowo

Algebra z geometrią 2012/2013

Algebra z geometrią 2012/2013 Algebra geometrią 22/23 Seria XVI Javier de Lucas Zadanie. Wnacć rąd macier: A :, B : 2 4 3 4 3 2 3 3 5 7 3 3 6 3 Rowiąanie: Macier A: Sposób: Rąd macier to wmiar prestreni generowanej pre jej kolumn.

Bardziej szczegółowo

Entropia i druga zasada termodynamiki

Entropia i druga zasada termodynamiki Entroia-drga zasada- Entroia i drga zasada termodynamiki.9.6 :5: Entroia-drga zasada- Przemiana realizowana w kładzie rzedstawionym na rys. 3.7 jest równowagową rzemianą beztariową. Jest ona wię odwraalna.

Bardziej szczegółowo

ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH

ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH Andrej PAWLAK Krystof ZAREMBA ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH STRESZCZENIE W wielkoowierchniowych instalacjach oświetlenia ośredniego

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono

Bardziej szczegółowo

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami

Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami 8 Liczba 9 jest równa A. B. C. D. 9 5 C Przykładowe zadania z matematyki na oziomie odstawowym wraz z rozwiązaniami Zadanie. (0-) Liczba log jest równa A. log + log 0 B. log 6 + log C. log 6 log D. log

Bardziej szczegółowo

PRZESTRZEŃ WEKTOROWA (LINIOWA)

PRZESTRZEŃ WEKTOROWA (LINIOWA) PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi

Bardziej szczegółowo

FRAKTALE I SAMOPODOBIEŃSTWO

FRAKTALE I SAMOPODOBIEŃSTWO FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)

Bardziej szczegółowo

4.2.1. Środek ciężkości bryły jednorodnej

4.2.1. Środek ciężkości bryły jednorodnej 4..1. Środek ciężkości rł jednorodnej Brłą jednorodną nawam ciało materialne, w którm masa jest romiescona równomiernie w całej jego ojętości. Dla takic ciał arówno gęstość, jak i ciężar właściw są wielkościami

Bardziej szczegółowo

GRAKO: ŚWIATŁO I CIENIE. Modele barw. Trochę fizyki percepcji światła. OŚWIETLENIE: elementy istotne w projektowaniu

GRAKO: ŚWIATŁO I CIENIE. Modele barw. Trochę fizyki percepcji światła. OŚWIETLENIE: elementy istotne w projektowaniu GRAKO: ŚWIATŁO I CIENIE Metody oświetlania Metody cieniowania Przykłady OŚWIETLENIE: elementy istotne w projektowaniu Rozumienie fizyki światła w realnym świecie Rozumienie procesu percepcji światła Opracowanie

Bardziej szczegółowo

( n) Łańcuchy Markowa X 0, X 1,...

( n) Łańcuchy Markowa X 0, X 1,... Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l

Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l Nazwisko Data Nr na liśie Imię Wydział Ćwizenie 36 Dzień tyg Godzina Wyznazanie ogniskowej sozewek metodą Bessela i pomiar promieni krzywizny za pomoą serometr I Wyznazanie ogniskowej sozewki skpiająej

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne Technologie Informacyjne Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności April 11, 2016 Technologie Informacyjne Wprowadzenie : wizualizacja obrazów poprzez wykorzystywanie technik komputerowych.

Bardziej szczegółowo

Zadania kinematyki mechanizmów

Zadania kinematyki mechanizmów Zadania kinematyki mechanizmów struktura mechanizmu wymiary ogniw ruch ogniw napędowych związki kinematyczne położeń, prędkości, przyspieszeń ogniw zadanie proste kinematyki zadanie odwrotne kinematyki

Bardziej szczegółowo

Teselacja i uzupełnienia do grafiki

Teselacja i uzupełnienia do grafiki Teselacja i uzupełnienia do grafiki Marcin Orchel 1 Wstęp 1.1 Antyaliasing Techniki wygładzania krawędzi, usunięcie zjawiska schodków, postrzępionych krawędzi, aliasingu. Różne techniki. Wielopróbkowanie

Bardziej szczegółowo

MATURA probna listopad 2010

MATURA probna listopad 2010 MATURA probna listopad 00 ZADANIA ZAMKNIĘTE W zadaniach od. do 5. wybierz i zaznacz poprawną odpowiedź. Zadanie. ( pkt) - 4 $ 4 Liczba 0 jest równa 4-0, 5 A. B. C. D. 4 Zadanie. ( pkt) Liczba log 6 - log

Bardziej szczegółowo

Fotometria i kolorymetria

Fotometria i kolorymetria 12. (współrzędne i składowe trójchromatyczne promieniowania monochromatycznego; układ bodźców fizycznych RGB; krzywa barw widmowych; układ barw CIE 1931 (XYZ); alychne; układy CMY i CMYK). http://www.if.pwr.wroc.pl/~wozniak/

Bardziej szczegółowo

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Wstęp do rachunku prawdopodobieństwa i statystyki matematycnej MAP037 wykład dr hab. A. Jurlewic WPPT Fiyka, Fiyka Technicna, I rok, II semestr Prykłady - Lista nr : Prestreń probabilistycna. Prawdopodobieństwo

Bardziej szczegółowo

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA WYKŁAD 4 PROSTOPADŁA FALA UDERZENIOWA PROSTOPADŁA FALA UDERZENIOWA. ADIABATA HUGONIOTA. S 0 normal shock wave S Gazodynamika doszcza istnienie silnych nieciągłości w rzeływach gaz. Najrostszym rzyadkiem

Bardziej szczegółowo

Przejmowanie ciepła przy wymuszonym opływie wzdłuż płaskiej płyty

Przejmowanie ciepła przy wymuszonym opływie wzdłuż płaskiej płyty Laboratorim komterowe wbranh agadnień mehaniki łnów Prejmowanie ieła r wmsonm ołwie wdłż łaskiej łt Cel ćwienia Celem ćwienia jest nmerne modelowanie mehanim wmian ieła wdłż łaskiej łt omwanej strmieniem

Bardziej szczegółowo

Przykład 6.1. Przestrzenny stan naprężenia i odkształcenia

Przykład 6.1. Przestrzenny stan naprężenia i odkształcenia Prkład Pretrenn tan naprężenia i odktałcenia Stan naprężenia Stan naprężenia w punkcie jet określon a pomocą diewięciu kładowch, które onacam literą odpowiednimi indekami Pierw indek onaca normalną ewnętrną

Bardziej szczegółowo

Fraktale - wprowadzenie

Fraktale - wprowadzenie Fraktale - wprowadenie Próba definici fraktala Jak określamy biory naywane fraktalami? Prykłady procedur konstrukci fraktali W aki sposób b diała aą algorytmy generaci nabardie nanych fraktali? Jakie własnow

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 16 KWIETNIA 2016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wskaż rysunek, na

Bardziej szczegółowo

Systemy Lindenmayera (L-systemy)

Systemy Lindenmayera (L-systemy) Systemy Lindenmayera (L-systemy) L-systemy Zastosowania: Generowanie fraktali Modelowanie roślin L-systemy Fraktale (łac. fractus złamany, cząstkowy) cechy samopodobieństwa Krzywa Kocha (płatek śniegu)

Bardziej szczegółowo

M O D E L R U C H U W Y R Z U T N I O K RĘTOWEJ O P I S A N Y P R Z E Z T R A N S F O R M A C J E U K Ł A D Ó W W S P Ó Ł R ZĘ D N Y C H

M O D E L R U C H U W Y R Z U T N I O K RĘTOWEJ O P I S A N Y P R Z E Z T R A N S F O R M A C J E U K Ł A D Ó W W S P Ó Ł R ZĘ D N Y C H ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LIV NR 3 (194) 213 DO I: 1.564/86889X/186925 Zbigniew Dioa Politechnika Świętokryska Wydiał Mechatroniki i Budowy Masyn, Katedra Technik Komuterowych i Ubrojenia

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR MATEMATYKA - poziom podstawowy

LUBELSKA PRÓBA PRZED MATUR MATEMATYKA - poziom podstawowy 1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamie ć w miejscu na to przeznaczonym.

Bardziej szczegółowo

WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie

WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie WYKŁAD 6. owierchnie opisane paraetrcnie MODELE OIEKÓW -D cęść (,v (,v (,v f (,v f (,v f (,v v in in v v a a lan wkład: owierchnie opisane paraetrcnie v a v Krwe paraetrcne w -D D (krwa Herite a v in (,v

Bardziej szczegółowo

KURS GEOMETRIA ANALITYCZNA

KURS GEOMETRIA ANALITYCZNA KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie

Bardziej szczegółowo

MODELE OBIEKTÓW W 3-D3 część

MODELE OBIEKTÓW W 3-D3 część WYKŁAD 3 MODELE OBIEKTÓW W 3-D3 cęść Plan wkładu: Modele skeletowe Równane powerchn w postac uwkłanej. Modele skeletowe (wre rame) V, V, - werchołk (verte) E, E, - krawęde (edge) V E E E 4 P, P, - ścan

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 KWIETNIA 0 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczbę 5 7 zaokr aglam do liczb,6.

Bardziej szczegółowo

Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 2001 ROKU. Czas trwania egzaminu: 180 min.

Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 2001 ROKU. Czas trwania egzaminu: 180 min. Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 001 ROKU Czas trwania egzaminu: 180 min Liczba zadań: 30 Każde zadanie sk lada sie z trzech cześci Odpowiedź do

Bardziej szczegółowo

Z poprzedniego wykładu:

Z poprzedniego wykładu: Z orzedniego wykładu: Człon: Ciało stałe osiadające możliwość oruszania się względem innych członów Para kinematyczna: klasy I, II, III, IV i V (względem liczby stoni swobody) Niższe i wyższe ary kinematyczne

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Powierzchnia obiektu 3D jest renderowana jako czarna jeżeli nie jest oświetlana żadnym światłem (wyjątkiem są obiekty samoświecące) Oświetlenie

Bardziej szczegółowo

Paweł Gładki. Algebra. pgladki/

Paweł Gładki. Algebra.  pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch

Bardziej szczegółowo

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1 Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo

REDUKCJA PŁASKIEGO UKŁADU SIŁ

REDUKCJA PŁASKIEGO UKŁADU SIŁ olitechnika rocławska dział Budownictwa lądowego i odnego Katedra echaniki Budowli i Inżnierii iejskiej EDUKCJA ŁASKIEG UKŁADU SIŁ ZIĄZANIE ANALITYCZNE I GAFICZNE Zadanie nr. Dokonać redukcji układu sił

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 0 MARCA 010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Kwiatek z doniczka kosztował

Bardziej szczegółowo

1 Wiadomości wst ¾epne

1 Wiadomości wst ¾epne Wiadomości wst ¾ene. Narysować wykresy funkcji elementarnych sin cos tg ctg a ( a 6= ) log a ( a 6= ) arcsin arccos arctg arcctg Podać ich dziedziny i rzeciwdziedziny.. Roz o zyć na u amki roste wyra zenie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 8 MARCA 015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Przbliżenie dziesiętne

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem (Wpisuje zdaj cy przed rozpocz ciem pracy) KOD ZDAJ CEGO MMA-RG1P-01 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 10 minut ARKUSZ II MAJ ROK 00 Instrukcja dla

Bardziej szczegółowo

Grafika Komputerowa Wykład 6. Teksturowanie. mgr inż. Michał Chwesiuk 1/23

Grafika Komputerowa Wykład 6. Teksturowanie. mgr inż. Michał Chwesiuk 1/23 Wykład 6 mgr inż. 1/23 jest to technika w grafice komputerowej, której celem jest zwiększenie szczegółowości renderowanych powierzchni za pomocą tekstur. jest to pewna funkcja (najczęściej w formie bitmapy)

Bardziej szczegółowo

Ą Ą ć Ó Ó Ó Ś Ź Ź Ó ż Ź Ź Ś Ś ż Ę ĘŚ ń ń ć Ś Ą Ę ż ć Ś ć ć Ć Ó Ó ć ć Ó ć Ó ć ć ń ć Ą Ó Ó Ó Ą Ć ń ń Ź Ó ń ć Ó ć ć ć ń ż ć ć Ć Ć ć ż ć Ź Ó ć ć ć ć Ó ć ĘŚ ń ń ż ć Ś ć Ą Ó ń ć ć Ś ć Ę Ć Ę Ó Ó ń ż ź Ó Ó Ś ń

Bardziej szczegółowo

Ó ź ę ę ś Ą Ą Ę Ę Ł ę ę ź Ę ę ę ś ś Ł ę ś ś ę Ą ź ę ś ś ś ś ę ś ę ę ź ę ę ś ę ś ę ę ś Ś ś ę ę ś ś ę ę ę ś ę ę ę ę ś ę ź Ł Ą Ę Ł ę ś ź ść ś ę ę ę ę ę ę ś ś ś ę ę ś ę ę ś ę ź Ć ŚĆ ć ś ś ć ę ś ś ę ś ś ź ś

Bardziej szczegółowo

Ł Ą Ę Ń ć Ź ź ĘŚ ÓŁ Ę Ę ń ń ź Ę ń Ż ć ć ń ń ń Ę ń Ę ń ń Ę ń Ę ń ń ć ć ń Ę Ą Ś ń Ę Ą Ł ź ć Ś ć ć ć Ź Ł Ś ć ć ć ć ć Ł ć ć ź ń ń ń ń ń ń ń ź ź ć ń ć ć ć ź Ł ń Ę ÓŁ ń ź ź ź ń ć ć ć ń ń ń Ą ń ń ń ń ń Ś Ę

Bardziej szczegółowo

Wykorzystanie metody przekrojów i jej wizualizacja dla celów w ochrony przeciwpowodziowej dolin rzecznych prof. dr hab. inż.. Andrzej Stateczny Akadem

Wykorzystanie metody przekrojów i jej wizualizacja dla celów w ochrony przeciwpowodziowej dolin rzecznych prof. dr hab. inż.. Andrzej Stateczny Akadem Wykorzystanie metody przekrojów i jej wizualizacja dla celów w ochrony przeciwpowodziowej dolin rzecznych prof. dr hab. inż.. Andrzej Stateczny Akademia Morska Wydział Nawigacyjny Magdalena Kozak, Tomasz

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot - podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze... Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję

Bardziej szczegółowo

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania

Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania Modelowanie i oblicenia technicne Modelowanie matematycne Metody modelowania Modelowanie matematycne procesów w systemach technicnych Model może ostać tworony dla całego system lb dla poscególnych elementów

Bardziej szczegółowo

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6 achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne Grafika komputerowa Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności December 12, 2016 1 Wprowadzenie 2 Optyka 3 Geometria 4 Grafika rastrowa i wektorowa 5 Kompresja danych Wprowadzenie

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo