Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010
|
|
- Kornelia Rosińska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Instytut Informatyki Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/ Podstawienia Motywacja Podstawienie 2 Sk ladanie podstawień Motywacja Z lożenie podstawień W lasności sk ladania podstawień 3 Uzgadnianie Podstawienie uzgadniajace Uzupe lnienia Adam i orzeszki Adam lubi każde jedzenie. Jab lko jest jedzeniem. Kurczak jest jedzeniem. Wszystko co można zjeść i nie zatruć si e jest jedzeniem. Bogdan je orzeszki i nadal żyje. Zuzia je wszystko to, co Bogdan. Czy Adam lubi orzeszki? jedzenie(x 1 ) lubi(adam, x 1 ) je(x 1, x 2 ) żyje(x 1 ) jedzenie(x 2 ) je(bogdan, orzeszki) żyje(bogdan) je(bogdan, x 2 ) je(zuzia, x 2 )
2 Postać klauzulowa Problem jedzenie(x 1 ) lubi(adam, x 1 ) je(x 1, x 2 ) żyje(x 1 ) jedzenie(x 2 ) je(bogdan, orzeszki) żyje(bogdan) je(bogdan, x 2 ) je(zuzia, x 2 ) jedzenie(x 1 ) lubi(adam, x 1 ) (je(x 1, x 2 ) żyje(x 1 )) jedzenie(x 2 ) je(bogdan, orzeszki) żyje(bogdan) je(bogdan, x 2 ) je(zuzia, x 2 ) jedzenie(x 1 ) lubi(adam, x 1 ) je(x 1, x 2 ) żyje(x 1 ) jedzenie(x 2 ) je(bogdan, orzeszki) żyje(bogdan) je(bogdan, x 2 ) je(zuzia, x 2 ) Podstawienie termu za zmienna Instancja wyrażenia Podstawieniem (termów za zmienne) nazywamy zbiór {x 1 t 1,..., x n t n } gdzie x i sa różnymi zmiennymi, a t i sa termami różnymi od odpowiadajacych im zmiennych x i. Podstawienie puste jest to podstawienie zdefiniowane przez zbiór pusty. Podstawienia oznaczamy ma lymi literami alfabetu greckiego: λ, µ, δ, θ. Term Sta la, zmienna lub symbol funkcyjny z list a argumentów. Rozważamy wyrażenia w postaci klauzulowej. Niech E b edzie wyrażeniem, a θ = {x 1 t 1,..., x n t n } podstawieniem. Instancje Eθ wyrażenia E otrzymujemy przez jednoczesne zastapienie każdego wystapienia zmiennej x i termem t i. Postać klauzulowa Formu la zamknieta jest w postaci klauzulowej wtw, gdy jest w przedrostkowej koniunkcyjnej postaci normalnej i jej prefix zawiera wy l acznie kwantyfikatory uniwersalne. Postać koniunkcyjna normalna Formu la jest w koniunkcyjnej postaci normalnej wtw, gdy jest koniunkcja alternatyw litera lów. Wyrażenie E
3 Kilka podstawień Kilka podstawień i kilka wyrażeń E = p(u, v, x, y, z) θ = {x f (v), y f (a), z u} δ = {y g(a), u f (x), v f (f (a))} Eθ = p(u, v, f (v), f (a), u) (Eθ)δ = p(f (x), f (f (a)), f (f (f (a)), f (a), f (x))) Podstawienie należy wykonać równocześnie we wszystkich wystapieniach zmiennej. E 1 E 2... E n θ 1 (E 1 )θ 1 (E 2 )θ 1... (E n)θ 1 θ 2 ((E 1 )θ 1 )θ 2 ((E 2 )θ 1 )θ 2... ((E n)θ 1 )θ θ m ((((E 1 )θ 1 )θ 2 )...)θ m ((((E 2 )θ 1 )θ 2 )...)θ m... ((((E n)θ 1 )θ 2 )...)θ m Czy można t e operacj e usprawnić? Znajdujemy z lożenie podstawień θ = (θ 1... θ m) i podstawiamy we wszystkich wyrażeniach. E 1 E 2... E n θ (E 1 )θ (E 2 )θ... (E n)θ E = p(u, v, x, y, z) θ = {x f (v), y f (a), z u} δ = {y g(a), u f (x), v f (f (a))} Eθ = p(u, v, f (v), f (a), u) (Eθ)δ = p(f (x), f (f (a)), f (f (f (a))), f (a), f (x)) Eδ = p(f (x), f (f (a)), x, g(a), z) (Eδ)θ = p(f (f (v)), f (f (a)), f (v), g(a), u) Sk ladanie podstawień nie jest przemienne! Definicja Niech θ = {x 1 t 1,..., x n t n } i δ = {y 1 s 1,..., y n s n } bed a podstawieniami. Niech X i Y bed a zbiorami zmiennych zastepowanych odpowiednio w podstawieniach θ i δ. Z lożenie podstawień Podstawienie θδ (z lożenie podstawień θ i δ), definiujemy jako nastepuj ace podstawienie: θδ = {x i t i δ x i X, x i t i δ} {y j s i y i Y, y j / X } Podstawienie δ do termów t i z podstawienia θ. Ze zbioru δ dodajemy podstawienia dla tych zmiennych, którym θ nie nadaje wartości.
4 L aczność Sk ladanie podstawień jest l aczne, tj. λ(θδ) = (λθ)δ. λ = {x g(z)}, θ = {y f (z)}, δ = {z b} θδ = {y f (b), z b} λ(θδ) = {x g(b), y f (b), z b} λθ = {x g(z), y f (z)} (λθ)δ = {x g(b), y f (b), z b} Sk ladanie podstawień jest l aczne! Przemienność E = p(u, v, x, y, z) θ = {x f (v), y f (a), z u} δ = {y g(a), u f (x), v f (f (a))} θδ = {x f (f (f (a))), y f (a), z f (x)} {u f (x), v f (f (a))} E(θδ) = p(f (x), f (f (a)), f (f (f (a))), f (a), f (x)) δθ = {y g(a), u f (f (v)), v f (f (a))} {x f (v), z u} E(δθ) = p(f (f (v)), f (f (a)), f (v), g(a), u) Sk ladanie podstawień nie jest przemienne! Podstawienie uzgadniajace Podstawienie uzgadniajace - przyk lady Dla dowolnego zbioru atomów podstawieniem uzgadniajacym tego zbioru nazywamy podstawienie spe lniajace warunek: instancja wszystkich elementów tego zbioru uzyskana przez zastosowanie tego podstawienia jest ten sam atom. Podstawienie uzgadniajace µ nazywamy najbardziej ogólnym podstawieniem uzgadniajacym danego zbioru atomów, jeśli każde podstawienie uzgadniajace θ można uzyskać z µ przez zastosowanie dodatkowego podstawienia, czyli θ = µλ. Nastepuj ace pary formu l można uzgodnić: formu la 1 formu la 2 p(x, b, z) p(a, y, c) p(a, x, f (g(y))) p(y, f (z), f (z)) Nastepuj acyh par formu l nie można uzgodnić: formu la 1 formu la 2 p(x) q(x) p(x, y) p(z) p(f (x)) p(g(x)) p(x) p(f (x)) podstawienie uzgadniajace {x a, y b, z c} {x f (g(a)), y a, z g(a)} wynik p(a, b, c) p(a, f (g(a)), f (g(a)))
5 Zbiór termów do uzgodnienia bedziemy zapisywać w postaci zbioru równań na termach. Zbiór równań na termach jest w postaci rozwiazywalnej, jeśli spe lnione sa nastepuj ace warunki: wszystkie równania sa postaci x i = t i, gdzie x i jest zmienna, i = 1,..., n,; jeżeli zmienna x i, wystepuje po lewej stronie równania, to nie wystepuje w żadnym innym miejscu. Zbiór równań w postaci rozwiazywalnej definiuje podstawienie {x 1 t 1,..., x n t n }. 1 Przekszta lć równanie t = x, gdzie t nie jest zmienna, do x = t. 2 Usuń równanie postaci x = x. 3 Niech t = t bedzie równaniem takim, że t, t nie sa zmiennymi. Jeśli glówne symbole funkcyjne termów t i t sa różne, to zakończ algorytm i udziel odpowiedzi: zbiór termów nie jest uzgadnialny. W przeciwnym razie zastap równanie f (t 1,..., t n) = f (t 1,..., t n), n równaniami postaci t 1 = t 1,..., t n = t n. p(a, x, f (g(y))) = p(y, f (z), f (z)) a = y x = f (z) f (g(y)) = f (z) y = a g(y) = z z = g(y) - w lasności 4 Niech x = t bedzie równaniem takim, że zmienna x wystepuje w zbiorze równań nie tylko po lewej stronie tego równania. Jeśli zmienna x wystepuje w t, to zakończ algorytm i udziel odpowiedzi: zbiór termów nie jest uzgadnialny. W przeciwnym razie zastap wszystkie wystapienia zmiennej x w innych równaniach termem t. µ = {x f (g(a)), y a, z g(a)} p(a, x, f (g(y))) = p(y, f (z), f (z)) x = f (z) y = a z = g(y) z = g(a) zawsze si e zatrzymuje. Jeśli algorytm zakończy sie udzieleniem odpowiedzi, że zbiór termów nie jest uzgadnialny, to dla danego zbioru równań nie istnieje podstawienie uzgadniajace. Jeśli algorytm zakończy sie sukcesem, to otrzymany zbiór równań jest w postaci rozwiazywalnej i definiuje najbardziej ogólne podstawienie uzgadniajace podany zbiór równań: µ = {x 1 t 1,..., x n t n }.
6 Sprawdzanie wyst epowania zmiennej A = p(a, x, f (g(y))) A = p(y, f (z), f (z)) Podstawienie uzgadniajace θ = {x f (g(a)), y a, z g(a)} µ = {x f (z), y a, z g(a)} θ = µλ λ = {z g(a)} µλ = {x f (g(a)), y a, z g(a)} = θ Konieczność sprawdzania, czy term podstawiany za zmienna nie zawiera tej zmiennej, powoduje, że algorytm uzgadniania ma wyk ladnicza z lożoność obliczeniowa (wzgledem wielkości uzgadnianych termów). Algorytmy stosowane w praktyce zwykle nie stosuja tego sprawdzenia (ryzyko b l edu!). Algorytm Robinsona Algorytm Robinsona c.d. Niech A i A bed a atomami utworzonymi z tego samego symbolu predykatywnego. Traktujemy te atomy jako ciagi symboli (listy). Niech k bedzie indeksem pierwszej pozycji od lewej strony, na której w tych ciagach wystepuj a różne symbole. Pare termów t, t rozpoczynajacych sie od pozycji k w atomie A oraz A nazywamy zbiorem niezgodności atomów A i A. A = p(a, x, f (g(y))) A = p(y, f (z), f (z)) k = 2 t = a t = y Algorytm inicjujemy z A 0 = A i A 0 = A. Niech {t, t } bedzie zbiorem niezgodności atomów A i A. Jeśli jednym z termów należacych do tego zbioru jest zmienna x i+1, a drugi term t i+1, w którym zmienna x i+1 nie wystepuje, to niech σ i+1 = {x i+1 t i+1 } oraz A i+1 = A i σ i+1, A i+1 = A i σ i+1. A 0 = p(a, x, f (g(y))) A 0 = p(y, f (z), f (z)) {t, t } = {a, y} x 1 = y t 1 = a σ 1 = {y a} A 1 = p(a, x, f (g(a))) A 1 = p(a, f (z), f (z))
7 Algorytm Robinsona c.d. Adam i orzeszki jeszcze raz Jeśli nie można wykonać kolejnego kroku algorytmu, to atomów nie można uzgodnić. Jeśli po wykonaniu kolejnego kroku algorytmu otrzymamy A n = A n, to atomy A i A sa uzgadnialne i najbardziej ogólnym podstawieniem uzgadniajacym jest podstawienie µ = σ 1... σ n. µ = {y a, x f (g(a)), z g(a)} A 1 = p(a, x, f (g(a))) A 1 = p(a, f (z), f (z)) σ 2 = {x f (z)} A 2 = p(a, f (z), f (g(a))) A 2 = p(a, f (z), f (z)) σ 3 = {z g(a)} A 3 = p(a, f (g(a)), f (g(a))) A 3 = p(a, f (g(a)), f (g(a))) jedzenie(x 1 ) lubi(adam, x 1 ) je(x 1, x 2 ) żyje(x 1 ) jedzenie(x 2 ) je(bogdan, orzeszki żyje(bogdan) je(bogdan, x 2 ) je(zuzia, x 2 ) x 1 jab lko lubi(adam, jab lko), lubi(adam, jab lko) Pytania 1 Uzgodnij (jeżeli to możliwe) nastepuj ac a pare formu l rachunku predykatów. 2 Dane sa dwa podstawienia λ i σ. Wykonaj podstawienie λσ do podanej formu ly.
Problem. Uzgadnianie wyrażeń rachunku predykatów. Instancja wyrażenia. Podstawienie termu za zmienną. Joanna Józefowska
Problem Instytut Informatyki jedzenie(x 1 ) lubi(adam, x 1 ) jedzenie(jabłko) jedzenie(kurczak) je(x 1, x 2 ) żyje(x 1 ) jedzenie(x 2 ) je(bogdan, orzeszki) żyje(bogdan) je(bogdan, x 2 ) je(zuzia, x 2
Uzgadnianie formuł rachunku predykatów
Składanie podstawień Plan wykładu Uzgadnianie Logika obliczeniowa Instytut Informatyki Plan wykładu Składanie podstawień 1 Składanie podstawień Podstawienie Motywacja Złożenie podstawień 2 Uzgadnianie
Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010
Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Postać klauzulowa formu l 2 Regu la rezolucji Regu la rezolucji dla klauzul ustalonych Regu la rezolucji dla klauzul ustalonych a spe lnialność Ogólna
Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior
Rachunek predykatów Wykład 5 Plan wykładu Funkcje i termy Postać klauzulowa formuł Modele Herbranda Twierdzenie Herbranda Rezolucja dla klauzul ustalonych Podstawienia Uzgadnianie Rezolucja Funkcje i termy
1. Składnia. Logika obliczeniowa - zadania 1 SKŁADNIA Teoria
Logika obliczeniowa - zadania 1 SKŁADNIA 1. Składnia 1.1. Teoria 1. Składnia oznacza reguły tworzenia... z.... 2. Rachunek predykatów pierwszego rzędu (w skrócie: rachunek predykatów) wyróżnia cztery zbiory
Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010
Logika obliczeniowa Instytut Informatyki Poznań, rok akademicki 2009/2010 1 formu l rachunku zdań Wartościowanie i sta le logiczne Logiczna równoważność 2 Model formu ly Formu la spe lniona Formu la spe
Modele Herbranda. Logika obliczeniowa. Joanna Józefowska. Szukamy modelu. Przykład Problemy. Model Herbranda
Plan wykładu Szukamy modelu Model Herbranda Twierdzenia Logika obliczeniowa Instytut Informatyki Plan wykładu Szukamy modelu 1 Szukamy modelu Problemy 2 Model Herbranda Uniwersum Herbranda Interpretacja
Semantyka rachunku predykatów
Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie
Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.
Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna
Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika
Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n
Wyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
LOGIKA ALGORYTMICZNA
LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
Ekonomia matematyczna i dynamiczna optymalizacja
Ekonomia matematyczna i dynamiczna optymalizacja Ramy wyk ladu i podstawowe narz edzia matematyczne SGH Semestr letni 2012-13 Uk lady dynamiczne Rozwiazanie modelu dynamicznego bardzo czesto można zapisać
Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =
Procesy Stochastyczne - Zestaw 1
Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie
Algebra i jej zastosowania konspekt wyk ladu, czȩść druga
Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,
Składnia rachunku predykatów pierwszego rzędu
Początek Gramatyka Kwantyfikatory Poprawność Logika obliczeniowa Instytut Informatyki Początek Gramatyka Kwantyfikatory Poprawność Plan wykładu 1 Na (dobry) początek Zrozumieć słowa Oswoić znaki 2 Gramatyka
P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF
29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Klasyczny rachunek predykatów
Kultura logiczna Klasyczny rachunek predykatów Bartosz Gostkowski bgostkowski@gmail.com Alfabet klasycznego rachunku zdań reguły konsytutywne języka Alfabet klasycznego rachunku predykatów (KRP Do alfabetu
Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń
Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest
Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty
Rachunek predykatów Wykład 4 Plan wykładu Relacje i predykaty Formuły rachunku predykatów Interpretacje Logiczna równoważność Metoda tabel Modele skończone i nieskończone Rozstrzygalność Relacje i predykaty
Wyk lad 6 Podprzestrzenie przestrzeni liniowych
Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)
Wyk lad 3 Wyznaczniki
1 Określenie wyznacznika Wyk lad 3 Wyznaczniki Niech A bedzie macierza kwadratowa stopnia n > 1 i niech i, j bed a liczbami naturalnymi n Symbolem A ij oznaczać bedziemy macierz kwadratowa stopnia n 1
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:
Wyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
Statystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Statystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Wyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań
Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Micha l Ziembowski m.ziembowski@mini.pw.edu.pl www.mini.pw.edu.pl/ ziembowskim/ October 2, 2016 M. Ziembowski (WUoT) Elementy logiki i teorii
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
Kultura logicznego myślenia
Kultura logicznego myślenia rok akademicki 2015/2016 semestr zimowy Temat 6: Rachunek predykatów jako logika pierwszego rzędu logika elementarna = logika pierwszego rzędu KRZ logika zerowego rzędu Język
Wyk lad 1 Podstawowe struktury algebraiczne
Wyk lad 1 Podstawowe struktury algebraiczne 1 Dzia lanie w zbiorze Majac dane dowolne dwa przedmioty a b możemy z nich utworzyć pare uporzadkowan a (a b) o poprzedniku a i nastepniku b. Warunek na równość
Statystyka w analizie i planowaniu eksperymentu
21 marca 2011 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka
Adam Meissner.
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego
Grupy i cia la, liczby zespolone
Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n
w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak
Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 1 Przypomnienie Jesteśmy już w stanie wyznaczyć tp x = l x+t l x, gdzie l x, l x+t, to liczebności kohorty odpowiednio
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie
Statystyka w analizie i planowaniu eksperymentu
10 marca 2014 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Wyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
Metoda Tablic Semantycznych
Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,
celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n
123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki
Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej
Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej
Statystyka w analizie i planowaniu eksperymentu
22 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0
ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru
Grzegorz Mazur. Zak lad Metod Obliczeniowych Chemii UJ. 14 marca 2007
Zak lad Metod Obliczeniowych Chemii UJ 14 marca 2007 Rzad 1 Zamiast wst epu 2 Rzad Notacja dużego O Notacja Ω Notacja Θ 3 S lowniczek Rzad Algorytm W matematyce oraz informatyce to skończony, uporzadkowany
Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych
Elementy logiki: Algebra Boole a i układy logiczne 1 Elementy logiki dla informatyków Wykład III Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych Elementy logiki: Algebra Boole a
Wyk lad 4 Warstwy, dzielniki normalne
Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b
1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.
Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze
STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA
1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.
vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).
6. Wykład 6: Rachunek predykatów. Język pierwszego rzędu składa się z: symboli relacyjnych P i, i I, gdzie (P i ) oznaczać będzie ilość argumentów symbolu P i, symboli funkcyjnych f j, j J, gdzie (f j
Rozdzia l 2. Najważniejsze typy algebr stosowane w logice
Rozdzia l 2. Najważniejsze typy algebr stosowane w logice 1. Algebry Boole a Definicja. Kratȩ dystrybutywn a z zerem i jedynk a, w której dla każdego elementu istnieje jego uzupe lnienie nazywamy algebr
Funkcje wielu zmiennych
Funkcje wielu zmiennych Zbiory na p laszczyźnie Przestrzeni a dwuwymiarow a (p laszczyzn a) nazywamy zbiór wszystkich par uporz adkowanych (x, y), gdzie x, y R. Przestrzeń tȩ oznaczamy symbolem R 2 : R
Architektura systemów komputerowych
Architektura systemów komputerowych Grzegorz Mazur Zak lad Metod Obliczeniowych Chemii Uniwersytet Jagielloński 12 kwietnia 2011 Grzegorz Mazur (ZMOCh UJ) Architektura systemów komputerowych 12 kwietnia
Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
Uproszczony dowod twierdzenia Fredricksona-Maiorany
Uproszczony dowod twierdzenia Fredricksona-Maiorany W. Rytter Dla uproszczenia rozważamy tylko teksty binarne. S lowa Lyndona sa zwartymi reprezentacjami liniowymi s lów cyklicznych. Dla s lowa x niech
W poszukiwaniu kszta ltów kulistych
W poszukiwaniu kszta ltów kulistych Piotr Mankiewicz April 4, 2005 Konwersatorium dla doktorantów Notacje 1 Cia lo wypuk le - wypuk ly, domkniȩty podzbiór ograniczony w R n. Odleg lość geometryczna dwóch
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
2 Podobieństwo dwóch sekwencji
Wst ep do obliczeniowej biologii molekularnej (J. Tiuryn, wykĺad nr.3-4, 8 listopada 2005) Spis treści 2 Podobieństwo dwóch sekwencji 15 2.1 Globalne uliniowienie....................... 16 2.1.1 Metoda
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka
Niesimpleksowe metody rozwia zywania zadań PL Seminarium Szkoleniowe Metoda Simplex: wady i zalety Algorytm SIMPLEX jest szeroko znany i stosowany do rozwi azywania zadań programowania liniowego w praktyce.
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy
Wstęp do logiki. Klasyczny Rachunek Predykatów I
Wstęp do logiki Klasyczny Rachunek Predykatów I KRZ jest teorią stanowiącą wstępną część logiki formalnej, część zakładaną przez inne teorie. Przypomnijmy, jest on teorią związków logicznych między zdaniami
Paradygmaty programowania
Paradygmaty programowania Programowanie generyczne w C++ Dr inż. Andrzej Grosser Cz estochowa, 2016 2 Spis treści 1. Zadanie 3 5 1.1. Wprowadzenie.................................. 5 1.2. Obiekty funkcyjne................................
Elementy logiki Klasyczny rachunek predykatów
Elementy logiki. Klasyczny rachunek predykatów. 1 Elementy logiki Klasyczny rachunek predykatów Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza
ROZDZIAŁ 1. Rachunek funkcyjny
ROZDZIAŁ 1 Rachunek funkcyjny Niech X 1,..., X n będą dowolnymi zbiorami. Wyrażenie (formułę) ϕ(x 1,..., x n ), w którym występuje n zmiennych x 1,..., x n i które zamienia się w zdanie logiczne, gdy zamiast
Analiza matematyczna i algebra liniowa Elementy równań różniczkowych
Analiza matematyczna i algebra liniowa Elementy równań różniczkowych Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1
1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy
Dyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
Sterowalność liniowych uk ladów sterowania
Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,
Definicja: zmiennych zdaniowych spójnikach zdaniowych:
Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których
Dyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
warunek (tzn. macierz M musi być stochastyczna): dla każdego k Q mamy
Wst ep do obliczeniowej biologii molekularnej (J. Tiuryn, wykĺad nr.11, 18 stycznia 2006) Spis treści 7 Ukryte modele arkowa 75 7.1 Algorytm Viterbiego....................... 77 7.2 Prawdopodobieństwo
Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010
R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne
Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia
Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Matematyka dyskretna Oznaczenia
Matematyka dyskretna Oznaczenia Andrzej Szepietowski W tym rozdziale przedstawimy podstawowe oznacznia. oznacza kwantyfikator ogólny dla każdego. oznacza kwantyfikator szczegó lowy istnieje. 1 Sumy i iloczyny
Rekurencyjna przeliczalność
Rekurencyjna przeliczalność Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Rekurencyjna przeliczalność Funkcje rekurencyjne
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest
Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014
Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.
PODSTAWY SZTUCZNEJ INTELIGENCJI
Katedra Informatyki Stosowanej Politechnika Łódzka PODSTAWY SZTUCZNEJ INTELIGENCJI Laboratorium PROGRAMOWANIE SYSTEMÓW EKSPERTOWYCH Opracowanie: Dr hab. inŝ. Jacek Kucharski Dr inŝ. Piotr Urbanek Cel ćwiczenia
stosunek przyrostu funkcji y do odpowiadajacego dy dx = lim y wielkości fizycznej x, y = f(x), to pochodna dy v = ds edkości wzgl edem czasu, a = dv
Matematyka Pochodna Pochodna funkcji y = f(x) w punkcie x nazywamy granice, do której daży stosunek przyrostu funkcji y do odpowiadajacego mu przyrostu zmiennej niezaleźnej x, g przyrost zmiennej daży
Wyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
Wyk lad 5. Natalia Nehrebecka Stanis law Cichocki. 7 listopada 2015
Wyk lad 5 Natalia Nehrebecka Stanis law Cichocki 7 listopada 2015 N. Nehrebecka Plan zaj eć 1 Sprowadzenie modelu nieliniowego do liniowego 2 w modelu liniowym Elastyczność w modelu logliniowym Semielastyczność