Wyk lad 5. Natalia Nehrebecka Stanis law Cichocki. 7 listopada 2015
|
|
- Łucja Małgorzata Milewska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wyk lad 5 Natalia Nehrebecka Stanis law Cichocki 7 listopada 2015 N. Nehrebecka
2 Plan zaj eć 1 Sprowadzenie modelu nieliniowego do liniowego 2 w modelu liniowym Elastyczność w modelu logliniowym Semielastyczność 3 Zastosowania modelu pot egowego 4 N. Nehrebecka
3 Etapy doboru formy funkcyjnej w praktyce Sprowadzenie modelu nieliniowego do liniowego 1 Dobór formy, tak aby możliwa by la odpowiedź na pytanie badawcze 2 Szacunek modelu i ocena jakości na podstawie testów diagnostycznych W praktyce wybiera sie te forme funkcyjna, która jest najs labiej odrzucana przez testy diagnostyczne. N. Nehrebecka
4 Sprowadzenie modelu nieliniowego do liniowego Niech y i = f (x i, θ, ɛ i ) (1) bedzie funkcja nieliniowa. Pod pewnymi warunkami istnieja takie funkcje, g, h i β, że model (1) można sprowadzić do modelu liniowego: g(y i ) = h(x i ) β(θ) + ɛ i (2) Oznaczajac g(y i ) = yi, h(x i) = x i oraz β(θ) = β mamy y i = x i β + ɛ i (3) N. Nehrebecka
5 Sprowadzenie modelu nieliniowego do liniowego Niech y i = f (x i, θ, ɛ i ) (1) bedzie funkcja nieliniowa. Pod pewnymi warunkami istnieja takie funkcje, g, h i β, że model (1) można sprowadzić do modelu liniowego: g(y i ) = h(x i ) β(θ) + ɛ i (2) Oznaczajac g(y i ) = yi, h(x i) = x i oraz β(θ) = β mamy y i = x i β + ɛ i (3) N. Nehrebecka
6 Sprowadzenie modelu nieliniowego do liniowego Niech y i = f (x i, θ, ɛ i ) (1) bedzie funkcja nieliniowa. Pod pewnymi warunkami istnieja takie funkcje, g, h i β, że model (1) można sprowadzić do modelu liniowego: g(y i ) = h(x i ) β(θ) + ɛ i (2) Oznaczajac g(y i ) = yi, h(x i) = x i oraz β(θ) = β mamy y i = x i β + ɛ i (3) N. Nehrebecka
7 w modelu liniowym Elastyczność w modelu logliniowym Semielastyczność Dobry model dobrze opisuje zjawisko i posiada parametry o intuicyjnie oczywistej interpretacji. Interpretacja wyników jest ważna, bo umożliwia porównanie wyników z teoria, zdrowym rozsadkiem, wynikami z innych źróde l itp. N. Nehrebecka
8 Efekt czastkowy ang. partial effect w modelu liniowym Elastyczność w modelu logliniowym Semielastyczność Efekt czastkowy zmiana oczekiwanego y i w reakcji na zmiane x ki ; wynosi E(y) x k przy za lożeniu ceteris paribus. W modelu liniowym E(y i ) = β 1 x 1i + β 2 x 2i +... β K x Ki o ile zmienne x 1i, x 2i,... x Ki oraz parametry β 1, β 2,..., β K sa nielosowe. Zatem efekt czastkowy dla x k = 1 równy jest β k. N. Nehrebecka
9 w modelu liniowym Elastyczność w modelu logliniowym Semielastyczność Wniosek Parametr β k w modelu liniowym opisuje zmiane oczekiwanej wartości y i na skutek jednostkowej zmiany x ki, przy za lożeniu, że wszystkie pozosta le zmienne nie ulegaja zmianie. N. Nehrebecka
10 w modelu liniowym Elastyczność w modelu logliniowym Semielastyczność Elastycznościa czastkow a nazywamy procentowa zmiane oczekiwanego y w reakcji na 1% zmiane x k : e y,xk = E(y) E(y) x k x k = E(y) x k x k E(y) E(y) x k x k E(y) ale ln(ϕ(x)) ϕ(x) = 1 ϕ(x), st ad lne(y) E(y) = 1 E(y) oraz x k x k = 1 ln(x k ), wiec: e y,xk = ln(e(y)) lnx k. N. Nehrebecka
11 w modelu liniowym Elastyczność w modelu logliniowym Semielastyczność W modelu logliniowym lne(y i ) = β 1 lnx 1i + β 2 lnx 2i + + β K lnx Ki wtedy lne(y i ) = β k lnx ki o ile zmienne x 1i, x 2i,... x Ki oraz parametry β 1, β 2,..., β K sa nielosowe. N. Nehrebecka
12 w modelu liniowym Elastyczność w modelu logliniowym Semielastyczność Wniosek Parametr β k w modelu logliniowym jest elastycznościa y wzgledem x k. N. Nehrebecka
13 w modelu liniowym Elastyczność w modelu logliniowym Semielastyczność Semielastycznościa czastkow a nazywamy procentowa zmiane oczekiwanego y w reakcji na jednostkowa zmiane x k : ë y,xk = E(y) E(y) x k E(y) 1 x k E(y) = lne(y) x k N. Nehrebecka
14 Zastosowania modelu pot egowego Stosujac model potegowy logarytmujemy zmienna zależna jak i zmienne niezależne. Zmienna zależna i zmienne niezależne powinny przyjmować wartości dodatnie, ponieważ w innym przypadku nie da si e ich zlogarytmować. ln(y i ) = β 1 lnx 1i + β 2 lnx 2i +... β K lnx Ki + ε i N. Nehrebecka
15 Zastosowania modelu pot egowego Wybór pomi edzy modelem liniowym a pot egowym W badaniach empirycznych czesto stwierdzamy, że zmienne w modelu maja rozk lad zbliżony do normalnego badź do lognormalnego. Jeśli ɛ ma rozk lad lognormalny, to ln(ɛ) ma rozk lad normalny. N. Nehrebecka
16 Rozk lad lognormalny Zastosowania modelu pot egowego N. Nehrebecka
17 Zastosowania modelu pot egowego Przyk lad: Wydatki mieszkaniowe gospodarstw domowych Density 0 5.0e Histogram: wydatki na mieszkanie U YTKOWANIE MIESZKANIA Density Histogram: ln(wydatki na mieszkanie) ln_wydatki_na_mieszkanie N. Nehrebecka
18 Dochody gospodarstw domowych Zastosowania modelu pot egowego Density 0 1.0e e e 04 Histogram: dochód DOCHÓD ROZPORZ DZALNY Density Histogram: ln(dochód) ln_dochod N. Nehrebecka
19 Wyniki regresji: poziomy Zastosowania modelu pot egowego N. Nehrebecka
20 Wyniki regresji: logarytmy Zastosowania modelu pot egowego N. Nehrebecka
21 Reszty z regresji Zastosowania modelu pot egowego Density 0 5.0e Histogram reszt Residuals Density Histogram reszt_ln Residuals N. Nehrebecka
22 1 Kiedy mówimy, że model można sprowadzić do modelu liniowego wzgl edem przekszta lconych zmiennych? 2 Wyjaśnić, co to jest efekt czastkowy? 3 Podaj definicje elastyczności czastkowej. 4 Podaj definicje semielastyczności czastkowej. N. Nehrebecka
Wybór formy funkcyjnej modelu (cz. II)
Wybór formy funkcyjnej modelu (cz. II) Wyk lad 6 Natalia Nehrebecka Stanis law Cichocki 19 listopada 2014 Plan zaj eć 1 w modelu liniowym w modelu logliniowym i semielastyczność - przyk lad 2 Zastosowania
Wyk lad 3. Natalia Nehrebecka Dariusz Szymański. 13 kwietnia, 2010
Wyk lad 3 Natalia Nehrebecka Dariusz Szymański 13 kwietnia, 2010 N. Nehrebecka, D.Szymański Plan zaj eć 1 Sprowadzenie modelu nieliniowego do liniowego 2 w modelu liniowym Elastyczność Semielastyczność
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Testowanie hipotez statystycznych
round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
Wyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =
Statystyka w analizie i planowaniu eksperymentu
23 kwietnia 2014 Korelacja - wspó lczynnik korelacji 1 Gdy badamy różnego rodzaju rodzaju zjawiska (np. przyrodnicze) możemy stwierdzić, że na każde z nich ma wp lyw dzia lanie innych czynników; Korelacja
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka - adres mailowy: nnehrebecka@wne.uw.edu.pl - strona internetowa: www.wne.uw.edu.pl/nnehrebecka - dyżur: wtorek 18.30-19.30 sala 302 lub 303 - 80% oceny: egzaminy -
Metoda najmniejszych kwadratów
Model ekonometryczny Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między poziomem wykształcenia a wysokością zarobków Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między
Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej. Modele nieliniowe Funkcja produkcji
Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 7 Modele nieliniowe i funkcja produkcji 1 / 19 Agenda Modele nieliniowe 1 Modele
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka - adres mailowy: scichocki@o2.pl - strona internetowa: www.wne.uw.edu.pl/scichocki - dyżur: po zajęciach lub po umówieniu mailowo - 80% oceny: egzaminy - 20% oceny:
Wyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego
Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni
Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 7 i funkcja produkcji 1 / 23 Agenda 1 2 3 Jakub Mućk Ekonometria Wykład 7 i funkcja
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Binarne zmienne zależne 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników 3. Probit a) Interpretacja współczynników b) Miary dopasowania 4.
Stanisław Cichocki Natalia Neherbecka
Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne
Stanisław Cichocki. Natalia Neherebecka. Zajęcia 15-17
Stanisław Cichocki Natalia Neherebecka Zajęcia 15-17 1 1. Binarne zmienne zależne 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników 3. Probit a) Interpretacja współczynników b) Miary
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Wyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Współczynniki korelacji czastkowej i wielorakiej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 18 listopada 2017 1 Regresja krzywoliniowa 2 Model potęgowy Model potęgowy y = αx β e można sprowadzić poprzez zlogarytmowanie obu stron równania
Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada
Stanisław Cichocki Natalia Nehrebecka Katarzyna Rosiak-Lada 1. Sprawy organizacyjne Zasady zaliczenia 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
Wyk lad 4 Warstwy, dzielniki normalne
Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Wyk lad 3 Wyznaczniki
1 Określenie wyznacznika Wyk lad 3 Wyznaczniki Niech A bedzie macierza kwadratowa stopnia n > 1 i niech i, j bed a liczbami naturalnymi n Symbolem A ij oznaczać bedziemy macierz kwadratowa stopnia n 1
Wyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak
Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane
Wyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
Procesy Stochastyczne - Zestaw 1
Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie
Stanisław Cihcocki. Natalia Nehrebecka
Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach
Wyk lad 11 Przekszta lcenia liniowe a macierze
Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β
Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej
Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13
Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Wyk lad 10 Przestrzeń przekszta lceń liniowych
Wyk lad 10 Przestrzeń przekszta lceń liniowych 1 Określenie przestrzeni przekszta lceń liniowych Niech V i W bed a przestrzeniami liniowymi Oznaczmy przez L(V ; W ) zbór wszystkich przekszta lceń liniowych
Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010
Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Postać klauzulowa formu l 2 Regu la rezolucji Regu la rezolucji dla klauzul ustalonych Regu la rezolucji dla klauzul ustalonych a spe lnialność Ogólna
Wyk lad 6 Podprzestrzenie przestrzeni liniowych
Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)
Stanisław Cichocki. Natalia Nehrebecka. Wykład 4
Stanisław Cichocki Natalia Nehrebecka Wykład 4 1 1. Własności hiperpłaszczyzny regresji 2. Dobroć dopasowania równania regresji. Współczynnik determinacji R 2 Dekompozycja wariancji zmiennej zależnej Współczynnik
Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8
Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Ekonometria. wiczenia 8 Modele zmiennej jako±ciowej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 8 Modele zmiennej jako±ciowej (8) Ekonometria 1 / 25 Plan wicze«1 Modele zmiennej jako±ciowej 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3 Predykcja
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Statystyka w analizie i planowaniu eksperymentu
19 kwietnia 2011 Testy dla dwóch grup 1 Analiza danych dla dwóch grup: test t-studenta dla dwóch grup sparowanych; test t-studenta dla dwóch grup niezależnych (jednakowe wariancje) test Z dla dwóch grup
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
Wykªad 6: Model logitowy
Wykªad 6: Model logitowy Ekonometria Stosowana SGH Model logitowy 1 / 18 Plan wicze«1 Modele zmiennej jako±ciowej idea 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3
Ekonometria - wykªad 1
Ekonometria - wykªad 1 0. Wprowadzenie Barbara Jasiulis-Goªdyn 28.02.2014 2013/2014 Ekonometria Literatura [1] B. Borkowski, H. Dudek, W. Szczesny, Ekonometria. Wybrane Zaganienia, PWN, Warszawa 2003.
Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),
Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer
WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno
WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:
Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010
Logika obliczeniowa Instytut Informatyki Poznań, rok akademicki 2009/2010 1 formu l rachunku zdań Wartościowanie i sta le logiczne Logiczna równoważność 2 Model formu ly Formu la spe lniona Formu la spe
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna
zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka MODELE
zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka Przebieg regresji liniowej: 1. Znaleźć funkcję y=f(x) (dopasowanie modelu) 2. Sprawdzić: a) Wsp. determinacji R 2 b) Test istotności
Monte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).
STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1
1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16
Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna
Rozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady
Rozdzia l 10 Formy dwuliniowe i kwadratowe 10.1 Formy dwuliniowe 10.1.1 Definicja i przyk lady Niech X K b edzie przestrzenia liniowa nad cia lem K, dim(x K ) = n. Definicja 10.1 Przekszta lcenie ϕ : X
STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA
1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.
Natalia Nehrebecka Stanisław Cichocki. Wykład 6
Natalia Nehrebecka Stanisław Cichocki Wykład 6 1 1. Zmienne dyskretne Zmienne zero-jedynkowe 2. Modele z interakcjami 2 Zmienne dyskretne Zmienne nominalne Zmienne uporządkowane 3 4 1 podstawowe i 0 podstawowe
Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010
Instytut Informatyki Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Podstawienia Motywacja Podstawienie 2 Sk ladanie podstawień Motywacja Z lożenie podstawień
1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.
Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.
Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki.
Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Zaj ecia 5 Natalia Nehrebeceka 04 maja, 2010 Plan zaj eć 1 Rachunek prawdopodobieństwa Wektor losowy Wartość oczekiwana Wariancja Odchylenie
granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N
14. Określenie ciągu i szeregu funkcyjnego, zbieżność punktowa i jednostajna. Własności zbieżności jednostajnej. Kryterium zbieżności jednostajnej szeregu funkcyjnego. 1 Definicja Ciąg funkcyjny Niech
Ekonometria. wiczenia 7 Modele nieliniowe. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 7 Modele nieliniowe (7) Ekonometria 1 / 19 Plan wicze«1 Nieliniowo± : co to zmienia? 2 Funkcja produkcji Cobba-Douglasa 3 Nieliniowa MNK (7) Ekonometria 2 / 19 Plan prezentacji 1 Nieliniowo±
celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n
123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac:
SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ Ewa Madalińska na podstawie prac: [1] Lukaszewicz,W. (1988) Considerations on Default Logic: An Alternative Approach. Computational Intelligence, 44[1],
Ekonometria - wykªad 8
Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana
Systemy Wspomagania Decyzji
Regresja Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności January 24, 2014 1 Wprowadzenie 2 Regresja liniowa 3 Regresja nieliniowa 4 Regresja logistyczna 5 Estymacja parametrów 6 Podsumowanie
Egzamin z ekonometrii wersja ogolna
Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.
Statystyka w analizie i planowaniu eksperymentu
22 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW
Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest
Natalia Neherbecka. 11 czerwca 2010
Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj
W4 Eksperyment niezawodnościowy
W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i
Natalia Nehrebecka Stanisław Cichocki. Wykład 13
Natalia Nehrebecka Stanisław Cichocki Wykład 13 1 1. Zmienne pominięte 2. Zmienne nieistotne 3. Obserwacje nietypowe i błędne 4. Współliniowość 2 1. Zmienne pominięte 2. Zmienne nieistotne 3. Obserwacje
Statystyka matematyczna dla kierunku Rolnictwo w SGGW. BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH. ANALIZA KORELACJI PROSTEJ.
BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH. ANALIZA KORELACJI PROSTEJ. IDEA OPISU WSPÓŁZALEśNOŚCI CECH X, Y cechy obserwowane w doświadczeniu, n liczba jednostek doświadczalnych, Wyniki doświadczenia: wartości
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Metoda najmniejszych kwadratów
Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K
Ekonomia matematyczna i dynamiczna optymalizacja
Ekonomia matematyczna i dynamiczna optymalizacja Ramy wyk ladu i podstawowe narz edzia matematyczne SGH Semestr letni 2012-13 Uk lady dynamiczne Rozwiazanie modelu dynamicznego bardzo czesto można zapisać
Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego
Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego Krzysztof Makarski 6 Popyt Wstep Przypomnijmy: Podstawy teoria konsumenta. Zastosowanie wszedzie. W szczególności poszukiwanie informacji zawartych
Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego
Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego Jacek Suda (slajdy: Krzysztof Makarski) 1 / 47 Popyt Wst ep Przypomnijmy: Podstawy teoria konsumenta. Zastosowanie wsz edzie. W szczególności
Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Modelowanie zmiennej jakościowej Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 8 Zmienna jakościowa 1 / 25 Zmienna jakościowa Zmienna ilościowa może zostać zmierzona
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy