Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010"

Transkrypt

1 Instytut Informatyki Poznań, rok akademicki 2009/ Postać klauzulowa formu l 2 Regu la rezolucji Regu la rezolucji dla klauzul ustalonych Regu la rezolucji dla klauzul ustalonych a spe lnialność Ogólna regu la rezolucji 3 Ogólna metoda rezolucji Metoda Poprawność i pe lność rezolucji Formu ly ustalone Przedrostkowa koniunkcyjna postać normalna Term oraz atom nazywamy ustalonym wtw, gdy nie zawiera zmiennych. Formu la jest ustalona wtw, gdy nie zawiera ani kwantyfikatorów, ani zmiennych. Formu l e A nazywamy ustalona instancja formu ly A (która nie zawiera kwantyfikatorów), jeśli A można otrzymać z formu ly A przez podstawienie za zmienne formu ly A termów ustalonych. Klauzula C jest klauzula ustalona wtw, gdy jest ustalona instancja klauzuli C, czyli można ja otrzymać z C przez zastapnienie wszystkich zmiennych w C termami ustalonymi. Litera l ustalony jest ustalona instancja litera lu. p(a), f (5) p(a) q(b) A = p(x) q(y) A = p(a) q(b) C = r(x) s(y) C = r(a) s(b) p(a) Formu la jest w koniunkcyjnej postaci normalnej wtw, gdy jest koniunkcja alternatyw litera lów. Klauzula jest w przedrostkowej koniunkcyjnej postaci normalnej wtw, gdy jest postaci: Q 1 x 1 Q 2 x 2... Q n x n M gdzie Q i, i = 1,..., n sa kwantyfikatorami, a M jest formu l a w koniunkcyjnej postaci normalnej, niezawierajac a kwantyfikatorów. Ciag Q 1 x 1 Q 2 x 2... Q n x n jest nazywany przedrostkiem (prefiksem), a M matryca formu ly.

2 Postać klauzulowa formu l - sprowadzanie formu ly do postaci klauzulowej Formu la zamknieta jest w postaci klauzulowej wtw, gdy jest w przedrostkowej koniunkcyjnej postaci normalnej i jej prefix zawiera wy l acznie kwantyfikatory uniwersalne. x 1 x 2... x n M x y p(x, y) y x p(x, y) Krok 1 Przemianuj zmienne kwantyfikowane w ten sposób, aby żadna zmienna nie wyst epowa la w dwóch kwantyfikatorach. x y p(x, y) w z p(z, w) x y p(x, y) w z p(z, w) Krok 2 Usuń wszystkie binarne operatory logiczne oprócz oraz. x y p(x, y) w z p(z, w) x y p(x, y) w z p(z, w) Krok 3 Przesuń operatory negacji do środka, usuwajac podwójna negacje, tak, aby negacja wystepowa la tylko przy formu lach atomowych. Skorzystaj z równoważnosci: x A(x) x A(x) oraz x A(x) x A(x) x y p(x, y) w z p(z, w)

3 x y p(x, y) w z p(z, w) Krok 4 (żadna zmienna nie wyst epuje w dwóch kwantyfikatorach!) Wydobadź kwantyfikatory z matrycy stosujac równoważności: A op QxB(x) Qx(A op B(x)) oraz QxA(x) op B Qx(A(x) op B) gdzie op {, }. w( x y p(x, y) z p(z, w)) w z x y ( p(x, y) p(z, w)) w z x y ( p(x, y) p(z, w)) Krok 5 Korzystajac z praw rozdzielczości, przekszta lć matryce formu ly do koniunkcyjnej postaci normalnej. w z x y ( p(x, y) p(z, w)) Notacja w z x y ( p(x, y) p(z, w)) Krok 6 - funkcje Skolema x - kwantyfikator egzystencjalny wystepujacy w formule A, y 1,..., y n zmienne kwantyfikowane uniwersalnie przed x, f nowy symbol funkcyjny o arności n. Usuń x i zastap każde wystapienie zmiennej x termem f (y 1,..., y n ). Jeśli żaden kwantyfikator uniwersalny nie poprzedza x, to zastap x nowa sta l a a (funkcja 0-argumentowa). w x y ( p(x, y) p(g(w), w)) w x ( p(x, f (w, x)) p(g(w), w)) x w ( p(x, f (w, x)) p(g(w), w)) r(a) ( p(x, f (w, x)) p(g(w), w)) r(a) {{ p(x, f (w, x)), p(g(w), w)}, {r(a)}} Formu la jest zbiorem klauzul. Klauzula jest zbiorem litera lów.

4 Klauzula pusta i pusty zbiór klauzul... Adam i orzeszki Oznaczenia Klauzule pusta oznaczamy przez. Pusty zbiór klauzul oznaczamy. Lemat Klauzula pusta jest niespe lnialna. Formu la pusta jest formula prawdziwa. jedzenie(jab lko) lubi(adam, jab lko), jedzenie(jab lko) lubi(adam, jab lko) Regu la rezolucji dla klauzul ustalonych Terminologia Niech C 1 i C 2 bed a klauzulami ustalonymi, takimi, że l C 1 oraz l C 2. Klauzule C 1 i C 2 nazywamy kolidujacymi i mówimy, że koliduja wzgledem litera lów komplementarnych l i l. Rezolwenta klauzul C 1 i C 2 nazywamy klauzule C postaci C = Rez(C 1, C 2 ) = (C 1 \ {l}) (C 2 \ {l }). Klauzule C 1 i C 2 nazywamy klauzulami macierzystymi dla C. Przypomnienie Klauzula ustalona = klauzula bez kwantyfikatorów i zmiennych. Klauzula = alternatywa litera lów. Litera l = atom lub negacja atomu. Atom = p(lista termów). jedzenie(jab lko) lubi(adam, jab lko), jedzenie(jab lko) lubi(adam, jab lko) Klauzule macierzyste Litera ly kolidujace Rezolwenta

5 Spe lnialność rezolwenty klauzul spe lnialnych Spe lnialność klauzul macierzystych klauzuli spe lnialnej Twierdzenie Rezolwenta klauzul C 1 i C 2 jest spe lnialna wtedy i tylko wtedy, gdy klauzule C 1 i C 2 sa (równocześnie) spe lnialne. Twierdzenie Rezolwenta klauzul C 1 i C 2 jest spe lnialna wtedy i tylko wtedy, gdy klauzule C 1 i C 2 sa (równocześnie) spe lnialne. Niech I bedzie modelem klauzul C 1 i C 2. Niech l C 1 i l C 2 bed a litera lami kolidujacymi. Jeżeli l jest spe lniony w interpretacji I, to l nie jest spe lniony. Zatem w klauzuli C 2 istnieje inny litera l, który jest spe lniony i wyst epuje w klauzuli C, która jest w ten sposób spe lniona. C 1 = { p(a), r(a, f (a))} C 2 = {p(a), q(a), s(f (a))} C = {q(a), r(a, f (a)), s(f (a))} Niech I bedzie modelem klauzuli C. Niech m C C 1 bedzie litera lem spe lnionym w interpretacji I. Wtedy klauzula C 1 jest spe lniona. Z definicji rezolwenty istnieja klazule kolidujace: l C 1 i l C 2 Rozszerzmy interpretacje I tak, że litera l l nie jest spe lniony w I. Wtedy l jest spe lniony, a zatem również klauzula C 2 jest spe lniona. C 1 = { p(a), r(a, f (a))} C 2 = {p(a), q(a), s(f (a))} C = {q(a), r(a, f (a)), s(f (a))} Ogólna regu la rezolucji Znowu Adam i orzeszki jedzenie(x 1 ) lubi(adam, x 1 ) Niech C 1 i C 2 bed a klauzulami nie majacymi wspólnych zmiennych. Niech l 1 C 1 i l 2 C 2 bed a litera lami takimi, że l 1 i l2 można uzgodnić, a σ niech bedzie ich podstawieniem uzgadniajacym (mgu). Klauzule C 1 i C 2 nazywamy kolidujacymi i mówimy, że koliduja wzgledem litera lów l 1 i l 2. Rezolwenta klauzul C 1 i C 2 nazywamy klauzule postaci: Rez(C 1, C 2 ) = (C 1 σ \ {l 1 σ}) (C 2 σ \ {l 2 σ}) jedzenie(jab lko) jedzenie(kurczak) je(x 1, x 2 ) żyje(x 1 ) jedzenie(x 2 ) je(bogdan, orzeszki) żyje(bogdan) je(bogdan, x 2 ) je(zuzia, x 2 ) σ = {x 1 jab lko } jedzenie(jab lko) lubi(adam, jab lko), jedzenie(jab lko) lubi(adam, jab lko)

6 Ogólna metoda rezolucji Czy ktoś jeszcze lubi orzeszki? Niech S 0 = S. Za lóżmy, że utworzyliśmy zbiór S i. Wybierz klauzule kolidujace C 1, C 2 S i i niech C = Rez(C 1, C 2 ). Jeśli C jest klauzula pusta, to zakończ: zbiór S jest niespe lnialny. W przeciwnym razie utwórz S i+1 = S i {C}. Jeśli S i+1 = S i dla wszystkich par litera lów kolidujacych, to zakończ wykonywanie: zbiór S jest spe lnialny. jedzenie(x 1 ) lubi(adam, x 1 ) jedzenie(jab lko) jedzenie(kurczak) je(x 2, x 3 ) żyje(x 2 ) jedzenie(x 3 ) je(bogdan, orzeszki) żyje(bogdan) je(bogdan, x 4 ) je(zuzia, x 4 ) lubi(adam, orzeszki) żyje(bogdan) jedzenie(orzeszki) jedzenie(orzeszki) lubi(adam, orzeszki) Adam lubi orzeszki! σ 1 = {x 2 bogdan, x 3 orzeszki} σ 2 = {x 1 orzeszki } Rezolucja - przyk lad Lemat o podnoszeniu p(x 1 ) q(x 1 ) r(x 1, f(x 1 )) p(x 2 ) q(x 2 ) s(f(x 2 )) t(a) p(a) r(a, x 3 ) t(x 3 ) t(x 4 ) q(x 4 ) t(x 5 ) s(x 5 ) q(a) q(a) s(f(a)) s(f(a)) q(a) r(a, f(a)) r(a, f(a)) t(f(a)) s(f(a)) σ 1 = {x 4 a} σ 2 = {x 2 a} σ 3 = {x 1 a} σ 4 = {x 3 f(a)} σ 5 = {x 5 f(a)} σ = {x 1 a, x 2 a, x 3 a, x 4 f(a), x 5 f(a)} Lemat Niech C 1 i C 2 bed a instancjami ustalonymi klauzul C 1 oraz C 2. Niech C bedzie rezolwenta ustalona klauzul C 1 i C 2. Wówczas istnieje rezolwenta C klauzul C 1 oraz C 2 taka, że C jest instancja ustalona C. Rezolucja C 1, C 2 C 1, C 2 C Rezolucja dla klauzul ustalonych C

7 Przyk lad Poprawność i pe lność rezolucji C 1, C 2 C 1, C 2 Rezolucja C Rezolucja dla klauzul ustalonych C C 1 = p(x) q(x) C 2 = p(f (u)) r(w) σ 1 = {x f (a), u a, w b} C 1 = p(f (a)) q(f (a)) C 2 = p(f (a)) r(b) C = q(f (a)) r(b) σ 2 = {x f (u)} C = q(f (u)) r(w) σ 3 = {u a, w b} Poprawność Jeżeli na podstawie ogólnej metody rezolucji można wyprowadzić klauzule pusta, to zbiór klauzul jest niespe lnialny. Pe lność Jeśli zbiór klauzul jest niespe lnialny, to stosujac ogólna metode rezolucji można wyprowadzić klauzule pusta. Przyk ladowe zadania 1 Wykazać spe lnialność formu ly rachunku predykatów metoda rezolucji. 2 Sprowadzić, podana formu l e rachunku predykatów do postaci klauzulowej.

Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Podstawienia Motywacja Podstawienie 2 Sk ladanie podstawień Motywacja Z lożenie podstawień

Bardziej szczegółowo

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior Rachunek predykatów Wykład 5 Plan wykładu Funkcje i termy Postać klauzulowa formuł Modele Herbranda Twierdzenie Herbranda Rezolucja dla klauzul ustalonych Podstawienia Uzgadnianie Rezolucja Funkcje i termy

Bardziej szczegółowo

1. Składnia. Logika obliczeniowa - zadania 1 SKŁADNIA Teoria

1. Składnia. Logika obliczeniowa - zadania 1 SKŁADNIA Teoria Logika obliczeniowa - zadania 1 SKŁADNIA 1. Składnia 1.1. Teoria 1. Składnia oznacza reguły tworzenia... z.... 2. Rachunek predykatów pierwszego rzędu (w skrócie: rachunek predykatów) wyróżnia cztery zbiory

Bardziej szczegółowo

Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Logika obliczeniowa Instytut Informatyki Poznań, rok akademicki 2009/2010 1 formu l rachunku zdań Wartościowanie i sta le logiczne Logiczna równoważność 2 Model formu ly Formu la spe lniona Formu la spe

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty Rachunek predykatów Wykład 4 Plan wykładu Relacje i predykaty Formuły rachunku predykatów Interpretacje Logiczna równoważność Metoda tabel Modele skończone i nieskończone Rozstrzygalność Relacje i predykaty

Bardziej szczegółowo

Semantyka rachunku predykatów

Semantyka rachunku predykatów Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie

Bardziej szczegółowo

Problem. Uzgadnianie wyrażeń rachunku predykatów. Instancja wyrażenia. Podstawienie termu za zmienną. Joanna Józefowska

Problem. Uzgadnianie wyrażeń rachunku predykatów. Instancja wyrażenia. Podstawienie termu za zmienną. Joanna Józefowska Problem Instytut Informatyki jedzenie(x 1 ) lubi(adam, x 1 ) jedzenie(jabłko) jedzenie(kurczak) je(x 1, x 2 ) żyje(x 1 ) jedzenie(x 2 ) je(bogdan, orzeszki) żyje(bogdan) je(bogdan, x 2 ) je(zuzia, x 2

Bardziej szczegółowo

Uzgadnianie formuł rachunku predykatów

Uzgadnianie formuł rachunku predykatów Składanie podstawień Plan wykładu Uzgadnianie Logika obliczeniowa Instytut Informatyki Plan wykładu Składanie podstawień 1 Składanie podstawień Podstawienie Motywacja Złożenie podstawień 2 Uzgadnianie

Bardziej szczegółowo

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa. Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna

Bardziej szczegółowo

Składnia rachunku predykatów pierwszego rzędu

Składnia rachunku predykatów pierwszego rzędu Początek Gramatyka Kwantyfikatory Poprawność Logika obliczeniowa Instytut Informatyki Początek Gramatyka Kwantyfikatory Poprawność Plan wykładu 1 Na (dobry) początek Zrozumieć słowa Oswoić znaki 2 Gramatyka

Bardziej szczegółowo

III rok kognitywistyki UAM,

III rok kognitywistyki UAM, METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 14: POWTÓRKA III rok kognitywistyki UAM, 2016 2017 Dzisiejszy wykład w całości poświęcony będzie omówieniu przykładowych zadań, podobnych do

Bardziej szczegółowo

Modele Herbranda. Logika obliczeniowa. Joanna Józefowska. Szukamy modelu. Przykład Problemy. Model Herbranda

Modele Herbranda. Logika obliczeniowa. Joanna Józefowska. Szukamy modelu. Przykład Problemy. Model Herbranda Plan wykładu Szukamy modelu Model Herbranda Twierdzenia Logika obliczeniowa Instytut Informatyki Plan wykładu Szukamy modelu 1 Szukamy modelu Problemy 2 Model Herbranda Uniwersum Herbranda Interpretacja

Bardziej szczegółowo

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ KONWERSATORIUM 6: REZOLUCJA V rok kognitywistyki UAM 1 Kilka uwag terminologicznych Słuchacze zapewne pamiętają z zajęć dotyczących PROLOGu poniższą

Bardziej szczegółowo

Metoda Tablic Semantycznych

Metoda Tablic Semantycznych Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest

Bardziej szczegółowo

ROZDZIAŁ 1. Rachunek funkcyjny

ROZDZIAŁ 1. Rachunek funkcyjny ROZDZIAŁ 1 Rachunek funkcyjny Niech X 1,..., X n będą dowolnymi zbiorami. Wyrażenie (formułę) ϕ(x 1,..., x n ), w którym występuje n zmiennych x 1,..., x n i które zamienia się w zdanie logiczne, gdy zamiast

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF 29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

Adam Meissner SZTUCZNA INTELIGENCJA

Adam Meissner SZTUCZNA INTELIGENCJA Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Elementy wnioskowania automatycznego

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

Klasyczny rachunek predykatów

Klasyczny rachunek predykatów Kultura logiczna Klasyczny rachunek predykatów Bartosz Gostkowski bgostkowski@gmail.com Alfabet klasycznego rachunku zdań reguły konsytutywne języka Alfabet klasycznego rachunku predykatów (KRP Do alfabetu

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

Adam Meissner STUCZNA INTELIGENCJA

Adam Meissner STUCZNA INTELIGENCJA Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis STUCZNA INTELIGENCJA Elementy programowania w logice Literatura

Bardziej szczegółowo

Automatyczne dowodzenie twierdzeń metodą rezolucji

Automatyczne dowodzenie twierdzeń metodą rezolucji Automatyczne dowodzenie twierdzeń metodą rezolucji 16 kwietnia 2010 Rezolucja zdaniowa Formuły rachunku zdań: zbudowane ze zmiennych zdaniowych za pomocą spójników logicznych,,,, i nawiasów Wartości logiczne:

Bardziej szczegółowo

Logiczne podstawy informatyki 1. Wojciech Buszkowski. Zakład Teorii Obliczeń Wydział Matematyki i Informatyki UAM

Logiczne podstawy informatyki 1. Wojciech Buszkowski. Zakład Teorii Obliczeń Wydział Matematyki i Informatyki UAM Logiczne podstawy informatyki 1 LOGICZNE PODSTAWY INFORMATYKI Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki UAM Logiczne podstawy informatyki 2 1. Rezolucja zdaniowa Formuły

Bardziej szczegółowo

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n

Bardziej szczegółowo

Logika Matematyczna (10)

Logika Matematyczna (10) Logika Matematyczna (10) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Rezolucja w KRZ Jerzy Pogonowski (MEG) Logika Matematyczna (10) Rezolucja w KRZ 1 / 39 Plan

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Wartości logiczne. Za zdanie b. Powiedzenie studenci miewaja

Wartości logiczne. Za zdanie b. Powiedzenie studenci miewaja Wartości logiczne Za zdanie b edziemy uważać dowolne stwierdzenie, o którym można powiedzieć, że jest albo prawdziwe, albo fa lszywe, i które nie może być jednocześnie i prawdziwe, i fa lszywe. Powiedzenie

Bardziej szczegółowo

Rachunek zdań. 2.1 Podstawowe pojęcia

Rachunek zdań. 2.1 Podstawowe pojęcia Rachunek zdań 2.1 Podstawowe pojęcia 2.1.1. Rachunek zdań to teoria zajmująca się formami wnioskowania zbudowanymi wyłącznie ze zmiennych zdaniowych oraz funktorów prawdziwościowych, będących pewnego rodzaju

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

III rok kognitywistyki UAM,

III rok kognitywistyki UAM, METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 6A: REZOLUCJA III rok kognitywistyki UAM, 2016 2017 1 Rezolucja w KRZ Dowody rezolucyjne w KRZ są równie proste, jak dowody tablicowe Metoda

Bardziej szczegółowo

Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z...

Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z... Język rachunku predykatów 1 Zmienne x, y, z... 2 Predykaty n-argumentowe P(x, y,...), Q(x, y...),... 3 Funktory zdaniowe,,,, 4 Kwantyfikatory: istnieje, dla każdego Język rachunku predykatów Ustalenie

Bardziej szczegółowo

Logika matematyczna i teoria mnogości (I) J. de Lucas

Logika matematyczna i teoria mnogości (I) J. de Lucas Logika matematyczna i teoria mnogości (I) J. de Lucas Ćwiczenie 1. (Zad. L. Newelskiego) Niech p oznacza zdanie Ala je, zaś q zdanie As wyje. Zapisz jako formu ly rachunku zdań nastȩpuj ace zdania: 1.1.

Bardziej szczegółowo

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na

Bardziej szczegółowo

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ). 6. Wykład 6: Rachunek predykatów. Język pierwszego rzędu składa się z: symboli relacyjnych P i, i I, gdzie (P i ) oznaczać będzie ilość argumentów symbolu P i, symboli funkcyjnych f j, j J, gdzie (f j

Bardziej szczegółowo

Definicja: zmiennych zdaniowych spójnikach zdaniowych:

Definicja: zmiennych zdaniowych spójnikach zdaniowych: Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których

Bardziej szczegółowo

Programowanie logiczne a negacja

Programowanie logiczne a negacja Programowanie logiczne a negacja Adrian Woźniak 12 stycznia 2006r. SPIS TREŚCI Programowanie logiczne a negacja Spis treści 1 Wstęp 2 2 Wnioskowanie negatywnych informacji 2 2.1 Reguła CWA (Closed World

Bardziej szczegółowo

Wprowadzenie do Sztucznej Inteligencji

Wprowadzenie do Sztucznej Inteligencji Wprowadzenie do Sztucznej Inteligencji Wykład 2 Informatyka Studia InŜynierskie Rachunek predykatów syntaktyka Do symboli (nazw) rachunku predykatów zaliczamy: 1. Predefiniowane symbole true i false. 2.

Bardziej szczegółowo

25 lutego 2013, godzina 23: 57 strona 1. P. Urzyczyn: Materia ly do wyk ladu z semantyki. Logika Hoare a

25 lutego 2013, godzina 23: 57 strona 1. P. Urzyczyn: Materia ly do wyk ladu z semantyki. Logika Hoare a 25 lutego 2013, godzina 23: 57 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Logika Hoare a Rozważamy najprostszy model imperatywnego jezyka programowania z jednym typem danych. Wartości tego

Bardziej szczegółowo

Matematyka ETId Elementy logiki

Matematyka ETId Elementy logiki Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,

Bardziej szczegółowo

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14 Wstęp do matematyki Matematyka, I rok. Tomasz Połacik Spis treści 1 Logika................................. 1 2 Zbiory................................. 7 3 Pewnik wyboru............................ 10

Bardziej szczegółowo

Rozdzia l 10. Najważniejsze normalne logiki modalne

Rozdzia l 10. Najważniejsze normalne logiki modalne Rozdzia l 10. Najważniejsze normalne logiki modalne 1. Logiki modalne normalne Definicja. Inwariantny zbiór formu l X jȩzyka modalnego L = (L,,,,, ) nazywamy logik a modaln a zbazowan a na logice klasycznej

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Logika formalna. Skªadnia rachunku zda« Skróty i priorytety. Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011

Podstawy matematyki dla informatyków. Logika formalna. Skªadnia rachunku zda« Skróty i priorytety. Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011 Podstawy matematyki dla informatyków Logika formalna Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011 Skªadnia rachunku zda«symbole (zmienne) zdaniowe (p, q, r,...), oraz znaki i s formuªami zdaniowymi.

Bardziej szczegółowo

Elementy logiki Klasyczny rachunek predykatów

Elementy logiki Klasyczny rachunek predykatów Elementy logiki. Klasyczny rachunek predykatów. 1 Elementy logiki Klasyczny rachunek predykatów Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza

Bardziej szczegółowo

Logika Radosna 5. Jerzy Pogonowski. KRP: tablice analityczne. Zakład Logiki Stosowanej UAM

Logika Radosna 5. Jerzy Pogonowski. KRP: tablice analityczne. Zakład Logiki Stosowanej UAM Logika Radosna 5 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl KRP: tablice analityczne Jerzy Pogonowski (MEG) Logika Radosna 5 KRP: tablice analityczne 1 / 111 Wprowadzenie

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

Jak logik przewozi kozę przez rzekę?

Jak logik przewozi kozę przez rzekę? Jak logik przewozi kozę przez rzekę? 1. Koza i kapusta 1.1. Problem Na lewym brzegu rzeki, na przystani promowej, znajdują się: chłop, koza i kapusta. Prom jest samoobsługowy (może obsługiwać go tylko

Bardziej szczegółowo

Wprowadzenie do Sztucznej Inteligencji

Wprowadzenie do Sztucznej Inteligencji Wprowadzenie do Sztucznej Inteligencji Wykład 2 Informatyka Studia Inżynierskie Automatyczne dowodzenie twierdzeń O teoriach formalnie na przykładzie rachunku zdań Zastosowanie dedukcji: system Logic Theorist

Bardziej szczegółowo

Drobinka semantyki KRP

Drobinka semantyki KRP Drobinka semantyki KRP Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Drobinka semantyki KRP Uniwersytet Opolski 1 / 48 Wstęp

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Wstęp do logiki. Klasyczny Rachunek Predykatów I

Wstęp do logiki. Klasyczny Rachunek Predykatów I Wstęp do logiki Klasyczny Rachunek Predykatów I KRZ jest teorią stanowiącą wstępną część logiki formalnej, część zakładaną przez inne teorie. Przypomnijmy, jest on teorią związków logicznych między zdaniami

Bardziej szczegółowo

Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań

Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Micha l Ziembowski m.ziembowski@mini.pw.edu.pl www.mini.pw.edu.pl/ ziembowskim/ October 2, 2016 M. Ziembowski (WUoT) Elementy logiki i teorii

Bardziej szczegółowo

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje

Bardziej szczegółowo

Ekonomia matematyczna i dynamiczna optymalizacja

Ekonomia matematyczna i dynamiczna optymalizacja Ekonomia matematyczna i dynamiczna optymalizacja Ramy wyk ladu i podstawowe narz edzia matematyczne SGH Semestr letni 2012-13 Uk lady dynamiczne Rozwiazanie modelu dynamicznego bardzo czesto można zapisać

Bardziej szczegółowo

Michał Lipnicki (UAM) Logika 11 stycznia / 20

Michał Lipnicki (UAM) Logika 11 stycznia / 20 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 11 stycznia 2013 Michał Lipnicki (UAM) Logika 11 stycznia 2013 1 / 20 KRP wstęp Wstęp Rozważmy wnioskowanie: Każdy człowiek jest śmiertelny. Sokrates

Bardziej szczegółowo

CAŁKI NIEOZNACZONE C R}.

CAŁKI NIEOZNACZONE C R}. CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos

Bardziej szczegółowo

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:

Bardziej szczegółowo

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan na pytanie o odniesienie przedmiotowe zdań odpowiedź

Bardziej szczegółowo

Wyk lad 3 Wyznaczniki

Wyk lad 3 Wyznaczniki 1 Określenie wyznacznika Wyk lad 3 Wyznaczniki Niech A bedzie macierza kwadratowa stopnia n > 1 i niech i, j bed a liczbami naturalnymi n Symbolem A ij oznaczać bedziemy macierz kwadratowa stopnia n 1

Bardziej szczegółowo

Kultura logicznego myślenia

Kultura logicznego myślenia Kultura logicznego myślenia rok akademicki 2015/2016 semestr zimowy Temat 6: Rachunek predykatów jako logika pierwszego rzędu logika elementarna = logika pierwszego rzędu KRZ logika zerowego rzędu Język

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,

Bardziej szczegółowo

PODSTAWY SZTUCZNEJ INTELIGENCJI

PODSTAWY SZTUCZNEJ INTELIGENCJI Katedra Informatyki Stosowanej Politechnika Łódzka PODSTAWY SZTUCZNEJ INTELIGENCJI Laboratorium PROGRAMOWANIE SYSTEMÓW EKSPERTOWYCH Opracowanie: Dr hab. inŝ. Jacek Kucharski Dr inŝ. Piotr Urbanek Cel ćwiczenia

Bardziej szczegółowo

DODATEK 1: Wtedy h(α) = 1 oraz h(β) = 0. Jak pamiętamy ze szkoły, obraz sumy zbiorów jest sumą obrazów tych zbiorów. Mamy zatem:

DODATEK 1: Wtedy h(α) = 1 oraz h(β) = 0. Jak pamiętamy ze szkoły, obraz sumy zbiorów jest sumą obrazów tych zbiorów. Mamy zatem: DODATEK 1: DOWODY NIEKTÓRYCH TWIERDZEŃ DOTYCZACYCH SEMANTYKI KLASYCZNEGO RACHUNKU ZDAŃ 2.2. TWIERDZENIE O DEDUKCJI WPROST (wersja semantyczna). Dla dowolnych X F KRZ, α F KRZ, β F KRZ zachodzą następujące

Bardziej szczegółowo

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

1. Klasyczny Rachunek Zdań

1. Klasyczny Rachunek Zdań Logiczne Podstawy Informatyki Elementy logiki 1 1. Klasyczny Rachunek Zdań Zdaniem w sensie logicznym nazywamy wyrażenie, które jest prawdziwe lub fałszywe. Prawdę i fałsz nazywamy wartościami logicznymi.

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =

Bardziej szczegółowo

Konsekwencja logiczna

Konsekwencja logiczna Konsekwencja logiczna Niech Φ 1, Φ 2,..., Φ n będa formułami logicznymi. Formuła Ψ wynika logicznie z Φ 1, Φ 2,..., Φ n jeżeli (Φ 1 Φ 2 Φ n ) Ψ jest tautologia. Formuły Φ 1, Φ 2,..., Φ n nazywamy założeniami

Bardziej szczegółowo

Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1

Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1 Elementy rachunku lambda λ 1 Notacja λ x 3x + 7 3x + 7 jest różniczkowalna 3x + 7 jest mniejsze od 2 (2,3) 5 f(2, 3) = 2 + 3 g(2) = 2 + 3 λx(3x + 7) 3x + 7 λx λy(x + y) = λxy(x + y) λx(x + 3) 2 Rachunek

Bardziej szczegółowo

Wyk lad 5. Natalia Nehrebecka Stanis law Cichocki. 7 listopada 2015

Wyk lad 5. Natalia Nehrebecka Stanis law Cichocki. 7 listopada 2015 Wyk lad 5 Natalia Nehrebecka Stanis law Cichocki 7 listopada 2015 N. Nehrebecka Plan zaj eć 1 Sprowadzenie modelu nieliniowego do liniowego 2 w modelu liniowym Elastyczność w modelu logliniowym Semielastyczność

Bardziej szczegółowo

Logika predykatów pierwszego rzędu PROLOG. Zarządzanie wiedzą. Wykład Reprezentacja wiedzy logika predykatów. Joanna Kołodziejczyk.

Logika predykatów pierwszego rzędu PROLOG. Zarządzanie wiedzą. Wykład Reprezentacja wiedzy logika predykatów. Joanna Kołodziejczyk. Wykład Reprezentacja wiedzy logika predykatów maj 2010 Logika predykatów pierwszego rzędu Plan wykładu Logika predykatów pierwszego rzędu Porównanie z rachunkiem zdań Rachunek zdań ograniczona ekspresja

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

Wyk lad 4 Warstwy, dzielniki normalne

Wyk lad 4 Warstwy, dzielniki normalne Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b

Bardziej szczegółowo

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach

Bardziej szczegółowo

Logika domniemań ang. Default logic (Reiter)

Logika domniemań ang. Default logic (Reiter) Logika domniemań ang. Default logic (Reiter) Domniemanie: Bird(x) : Flies(x) Flies(x) Teoria domniemań: Aksjomaty + domniemania 1 Definicja Domniemaniem nazywamy wyrażenie postaci A(x) : B 1 (x),..., B

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Wprowadzenie do Sztucznej Inteligencji

Wprowadzenie do Sztucznej Inteligencji Wprowadzenie do Sztucznej Inteligencji Wykład 2 Informatyka Studia InŜynierskie Rachunek predykatów syntaktyka Do symboli (nazw) rachunku predykatów zaliczamy: 1. Predefiniowane symbole true i false. 2.

Bardziej szczegółowo

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej

Bardziej szczegółowo

Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych

Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych Elementy logiki: Algebra Boole a i układy logiczne 1 Elementy logiki dla informatyków Wykład III Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych Elementy logiki: Algebra Boole a

Bardziej szczegółowo

W poszukiwaniu kszta ltów kulistych

W poszukiwaniu kszta ltów kulistych W poszukiwaniu kszta ltów kulistych Piotr Mankiewicz April 4, 2005 Konwersatorium dla doktorantów Notacje 1 Cia lo wypuk le - wypuk ly, domkniȩty podzbiór ograniczony w R n. Odleg lość geometryczna dwóch

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

2. Język klauzul: syntaktyka, semantyka, rezolucja. 2.1 Funkcje i termy

2. Język klauzul: syntaktyka, semantyka, rezolucja. 2.1 Funkcje i termy 2. Język klauzul: syntaktyka, semantyka, rezolucja 2.1 Funkcje i termy Zapoznanie się z systemami reprezentacji wiedzy logicznej ograniczyliśmy jak dotąd do rachunku kwantyfikatorów i nie były rozwaŝane

Bardziej szczegółowo

Wyk lad 13 Funkcjona ly dwuliniowe

Wyk lad 13 Funkcjona ly dwuliniowe 1 Izomorfizmy kanoniczne Wyk lad 13 Funkcjona ly dwuliniowe Definicja 13.1. Niech V i W bed przestrzeniami liniowymi. Funkcje ξ : V W R nazywamy funkcjona lem dwuliniowym, jeżeli i a,b R α,β V γ W ξa α

Bardziej szczegółowo

Wprowadzenie do Sztucznej

Wprowadzenie do Sztucznej Wprowadzenie do Sztucznej Inteligencji Wykład 2 Informatyka Studia InŜynierskie Konsekwencje logiczne Formuła A jest konsekwencją logiczną zbioru formuł U, co zapisujemy U A, jeŝeli kaŝda interpretacja,

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni

Bardziej szczegółowo

Reprezentacja wiedzy w j ezyku logiki

Reprezentacja wiedzy w j ezyku logiki Reprezentacja wiedzy w jezyku logiki Metody przeszukiwania w przestrzeni stanów sformu lowane by ly w postaci dość ogólnej, jednak wymaga ly reprezentacji zagadnienia we w laściwej formie, tzn. przestrzeni

Bardziej szczegółowo

HYBRYDOWE SYSTEMY I LOGIKI

HYBRYDOWE SYSTEMY I LOGIKI Katedra Logiki i Metodologii Nauk U L Lódź, semestr letni 2010/2011 GENTZENA RS Gentzena (1934) uwagi wstȩpne GENTZENA RS Gentzena (1934) uwagi wstȩpne W pracy poświȩconej DN wprowadza Gentzen pomocniczy

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0 ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru

Bardziej szczegółowo

WIELOMIANY. ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu.

WIELOMIANY. ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu. IMIE I NAZWISKO WIELOMIANY SUMA PUNKTÓW: 125 ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu. ZADANIE 2 (5 PKT)

Bardziej szczegółowo