vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).
|
|
- Sebastian Stefaniak
- 7 lat temu
- Przeglądów:
Transkrypt
1 6. Wykład 6: Rachunek predykatów. Język pierwszego rzędu składa się z: symboli relacyjnych P i, i I, gdzie (P i ) oznaczać będzie ilość argumentów symbolu P i, symboli funkcyjnych f j, j J, gdzie (f j ) oznaczać będzie ilość argumentów f j, stałych c k, k K. Formalnie język będziemy definiowali jako zbiór L = {(P i ) i I, (f j ) j J, (c k ) k K }. P i,f j,c k nazywamy symbolami pozalogicznymi. Symbole logiczne, niezależne od L, są następujące:, ; zbiór zmiennych indywiduowych V = {v 0,v 1,v 2,...}; kwantyfikator ; binarny symbol relacyjny odpowiadający identyczności; nawiasy. Moc L języka L definiujemy jako większą z liczb ℵ 0 lub moc zbioru symboli. Sygnaturą (lub typem) języka L nazywamy ciąg τ =(τ 1,τ 2,τ 3 ), gdzie τ 1 (i) = (P i ), τ 2 (j) = (f j ), τ 3 (k) =0, dla k K. L jest wzbogaceniem języka L, gdy L = L X, gdzie X jest zbiorem pewnych symboli. Wtedy L nazywamy reduktem języka L. Zbiór termów T języka L definiujemy następująco: V T, c k T dla każdego k K, jeżeli f jest symbolem funkcyjnym n argumentowym i t 1,..., t n są termami, to ft 1... t n jest termem. Zbiór formuł atomowych języka L składa się z wyrażeń postaci: t 1 t 2, dla t 1,t 2 T ; Pt 1... t n, gdzie P jest n argumentowym symbolem relacyjnym i t 1,..., t n T. Zbiór formuł języka L jest najmniejszym zbiorem spełniającym warunki: zawiera on zbiór wszystkich formuł atomowych; jeżeli A, B są formułami i x jest zmienną indywiduową, to A, A B, x(a) są formułami. Podformułę definiujemy w analogiczny sposób. Zauważmy, że moc zbioru wszystkich formuł języka L jest równa L. Definiujemy również: x(a) = x A; A B = A B; A B = (A B); A B =(A B) (B A). Zbiór zmiennych wolnych termu, vf(t), definiujemy następująco: vf(x) ={x}, vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ). 33
2 34 Z kolei zbiór zmiennych związanych termu vb(f) jest zawsze zbiorem pustym. Zbiór zmiennych wolnych formuły A, vf(a), definiujemy następująco: vf(t 1 t 2 )=vf(t 1 ) vf(t 2 ); vf(pt 1... t n )=vf(t 1 )... vf(t n ); vf( A) =vf(a); vf(a B) =vf(a) vf(b); vf( xa) =vf(a) \{x}. Zbiór zmiennych związanych formuły A, vb(a), definiujemy następująco: vb(a) = dla każdej formuły atomowej A; vb( A) =vb(a); vb(a B) =vb(a) vb(b); vb( xa) =vb(a) {x}. Formułę nazywamy zdaniem, gdy vf(a) =. Piszemy A(x 1,..., x n ), gdy vf(a) {x 1,..., x n }. Przykład: (1) Niech A = v 0 P 0 v 0 v 1 v 2 v 1 P 1 v 1. Wówczas vf(a) ={v 1,v 2 } oraz vb(a) ={v 0,v 1 }. Operację podstawiania termu t za zmienną x, (x/t), definiujemy następująco: { t, gdy x = y y(x/t) =, y, gdy x y c(x/t) =c, ft 1... t n (x/t) =ft 1 (x/t)... t n (x/t), Pt 1... t n (x/t) =Pt 1 (x/t)... t n (x/t), ( A)(x/t) = (A(x/t)), (A B)(x/t) { =A(x/t) B(x/t), ya, gdy x = y lub y vf(t), ( ya)(x/t) = y(a(x/t)), w przeciwnym wypadku. Przykład: (2) Niech A = x(py Px) (Py xp x). Wówczas A(y/x) = x(py Px) (Px xp x). Ponadto A(y/x)(y/c) = x(p c P x) (P x xp x). Zinterpretujmy P x jako x =0 oraz niech c =1. Wówczas formuła x(y =0 x = 0) (y =0 xx = 0) jest prawdziwa, natomiast formuła x(1 = 0 x = 0) (x =0 xx = 0) jest fałszywa. Widzimy więc, że przez podstawianie możemy z formuły prawdziwej otrzymać fałszywą. Zbiór zmiennych wolnych dla termu t w formule A, Ff(t, A), definiujemy następująco: x Ff(t, A) wtedy i tylko wtedy, gdy: x/ vf(a), x vf(a) oraz A jest formułą atomową, A = B i x Ff(t, B), A = B C i x Ff(t, B) Ff(t, C), A = yb i y/ vf(t) i x Ff(t, B). Niech M. Interpretacją języka L w zbiorze M nazywamy odwzorowanie I takie, że I(P i ) M (P i), I(f j ):M (f j) M,
3 I(c k ) M. Modelem (albo strukturą) dla L nazywamy parę M =(M, I). Dla wygody zamiast I(P i ), I(f j ), I(c k ) piszemy Pi M, fj M i c M k oraz, gdy L zawiera skończenie wiele symboli pozalogicznych: M =(M, P M 1,..., P M i,f M 1,..., f M j,c M 1,..., c M k ). Moc modelu określamy jako moc zbioru M. Rozważmy język L i jego rozszerzenie L o pewien zbiór nowych symboli X. Niech M =(M, I) będzie modelem dla L i niech I będzie interpretacją symboli należacych do X w M. Wówczas M =(M, I I ) nazywamy rozszerzeniem modelu M, am reduktem modelu M. Redukt modelu M =(M, I) do modelu M =(M, I ) takiego, że I jest interpretacją L zwężoną jedynie do symboli funkcyjnych i stałych, jest algebrą. Model N =(N,{Pi N }, {fj N }, {c N M k }) nazywamy podmodelem modelu M =(M,{Pi }, {fj M }, {c M k }) gdy: N M, fj N = fj M N, c N = c M, dla dowolnych a 1,..., a n N: Pi N (a 1,..., a n ) wtedy i tylko wtedy, gdy Pi M (a 1,..., a n ). Odwzorowanie φ : M N jest izomorfizmem modeli M i N gdy φ jest izomorfizmem odpowiednich algebr, dla dowolnych a 1,..., a n M: Pi M (a 1,..., a n ) wtedy i tylko wtedy, gdy Pi N (φ(a 1 ),..., φ(a n )). Rozważmy model M języka L i oznaczmy przez V zbiór wszystkich zmiennych indywiduowych. Odwzorowanie α : V M nazywamy wartościowaniem w M. Wartość termu t M [α] M definiujemy następująco: (v i ) M [α] =α(v i ), (c k ) M [α] =c M k, (f j t 1... t n ) M [α] =f M j (t M 1 [α],..., t M n [α]). Niech A będzie formułą języka L, M modelem dla języka L, aα wartościowaniem w M. Definiujemy spełnialność formuły A w modelu M z wartościowaniem α, M = A[α]: M = (t s)[α] wtedy i tylko wtedy, gdy t M [α] =s M [α], M = Pt 1... t n [α] wtedy i tylko wtedy, gdy P M (t M 1 [α],..., t M n [α]), M = A[α] wtedy i tylko wtedy, gdy nieprawda, że M = A[α], M = (A B)[α] wtedy i tylko wtedy, gdy M = A[α] lub M = B[α], M = (A B)[α] wtedy i tylko wtedy, gdy M = A[α] i M = B[α], M = (A B)[α] wtedy i tylko wtedy, gdy nieprawda, że M = A[α] lub M = B[α], M = xa[α] wtedy i tylko wtedy, gdy M = A[α x ] dla każdego a M, a M = xa[α] wtedy i tylko wtedy, gdy M = A[α x ] dla pewnego a M, a przy czym { α x a (y) = α(y) dla y x, a dla y = x. Formuła A jest prawdziwa w M, M = A, gdy M = A[α] dla każdego wartościowania α : V M. Formuła A jest tautologią (lub jest ogólnie prawdziwa), = A, gdy M = A dla każdego modelu M. 35
4 36 Lemat 15. Rozważmy model M dla języka L i formułę A tego języka. Wówczas dla dowolnych wartościowań α, β, jeżeli α(a) =β(x) dla wszystkich x vf(a), to M = A[α] wtedy i tylko wtedy, gdy M = A[β]. Prosty dowód indukcyjny pozostawiamy jako ćwiczenie. Ponieważ spełnialność formuły zależy wyłącznie od wartościowania jej zmiennych, dla formuły A(x 1,..., x n ) i wartościowania α takiego, że α(x i )=a i, dla 1 i n, będziemy pisać M = A(x 1,..., x n )[a 1,..., a n ]. Lemat 16. Niech A = A(y 1,..., y n ). Rozważmy termy t 1 (x 1,..., x m ),..., t n (x 1,..., x m ) takie, że y i Ff(t i,a) dla 1 i n. Niech α będzie dowolnym wartościowaniem i przyjmijmy, że α(x i )=a i dla 1 i m. Wtedy M = A(y 1 /t 1 (x 1,..., x m ),..., y n /t n (x 1,..., x m ))[a 1,..., a m ] M = A(y 1,..., y n )[t M 1 [a 1,..., a m ],..., t M n [a 1,..., a m ]]. Prosty dowód indukcyjny pozostawiamy jako ćwiczenie. Ustalmy język L. Aksjomatami rachunku predykatów (lub klasycznego rachunku kwantyfikatorów lub KRK)są domknięcia względem wszystkich układów zmiennych formuł danych za pomocą następujących schematów: (Q0): domknięcia schematów aksjomatów KRZ w języku {, }, np. A (B A) itd. (Q1): xa A(t/x) dla x Ff(t, A), (Q2): x(a B) ( xa xb), (Q3): A xa, gdzie x/ vf(a), (Q4): aksjomaty identyczności: dla dowolnych termów t 1,t 2,t 3,t 1,t 2,t 3 i dowolnych symboli funkcyjnych f i relacyjnych P : t 1 t 1, t 1 t 2 t 2 t 1, t 1 t 2 t 2 t 3 t 1 t 3, (t 1 t 1... t 1 t n) (ft 1... t n ft 1... t n), (t 1 t 1... t 1 t n) (Pt 1... t n Pt 1... t n), Ponadto definiujemy regułę odrywania: A, A B B W szczególności każda teza KRZ jest tautologią KRK. Twierdzenie 17. Niech Γ będzie zbiorem formuł języka L takim, że zmienna x nie występuje jako zmienna wolna w żadnej formule tego zbioru. Wówczas, dla dowolnej formuły A(x, y ) mamy: Γ A(x, y ) Γ xa(x, y ) Dowód. Dowód prowadzimy przez indukcję względem długości formuły A. Jeżeli A jest aksjomatem, to xa jest aksjomatem. Jeżeli A Γ, to x/ vf(a), zatem aksjomatem jest formuła A xa. Czyli Γ xa. Załóżmy, że A otrzymujemy w wyniku zastosowania reguły odrywania względem formuł B i B A. Z założenia indukcyjnego Γ xb oraz Γ x(b A).
5 Ponadto, na mocy (Q2), Γ xb xa. Stąd otrzymujemy Γ xa. Lemat 17. Załóżmy, że x/ vf(a). Wówczas tezą naszego systemu jest: x(a B) (A xb). Dowód. (1) x(a B) ( xa xb), (Q2) (2) xa ( x(a B) xb), ponieważ (E (F G)) (F (E G)) (3) A xa, (Q3), x/ vf(a), (4) A ( x(a B) xb), z prawa sylogizmu, (5) x(a B) (A xb), jak w (2). Twierdzenie 18. Niech A i B będą dowolnymi formułami oraz niech C będzie taką formułą, że x / vf(c). Niech ponadto Γ będzie takim zbiorem formuł, że x nie występuje jako zmienna wolna w żadnej formule tego zbioru. Wówczas: (1) Γ C B Γ C xb, ( C B ), C xb (2) Γ A C Γ xa C, ( A C ), xa C (3) Γ A xb Γ A B, ( A xb ), A B (4) Γ xa B Γ A B, ( xa B A B ). Dowód. Rozważmy dowody na gruncie Γ: (1) Załóżmy, że Γ C B. Wówczas Γ x(c B). Stąd, ponieważ x / vf(c), na mocy poprzedniego Lematu Γ C xb. (2) Kontrapozycja (1). (3) Załóżmy, że Γ A xb. Na mocy (Q1) mamy xb(x, y ) B(x, y ), ponieważ x Ff(x, B). Zatem, na mocy praw KRZ, Γ A B. (4) Kontrapozycja (3). Lemat 18. Następujące formuły są tezami KRK: (1) xa xa (prawo egzemplifikacji), (2) xa A, xa A, gdy A jest zdaniem, (3) xa(x, y ) za(z, y ), xa(x, y ) za(z, y ). Proste dowody indukcyjne zostawiamy jako ćwiczenie. Twierdzenie 19 (o dedukcji). Niech Γ będzie zbiorem formuł języka L. Wtedy dla dowolnych formuł A i B: Γ A B wtedy i tylko wtedy, gdy Γ,A B Prosty dowód indukcyjny zostawiamy jako ćwiczenie. Twierdzenie 20 (o ekstensjonalności). Niech Γ będzie zbiorem zdań oraz niech A będzie dowolną formułą języka L. Niech A powstaje z A przez zastąpienie pewnych wystąpień jej podformuły D formułą D. Wówczas jeżeli Γ D D, to Γ A A. Dowód poprzedzimy lematem: 37
6 38 Lemat 19. Załóżmy, że Γ jest zbiorem zdań. Wówczas, dla dowolnych A i B, jeżeli Γ A B, to Γ xa xb. Dowód. Załóżmy, że Γ A B. Wówczas: Γ x(a B). Stąd Γ xa xb. Analogicznie dowodzimy, że Γ B A pociąga Γ xb xa. Przechodzimy do dowodu twierdzenia o ekstensjonalności. Dowód. Dowód prowadzimy przez indukcję względem budowy formuły, ograniczymy się przy tym do jednego przypadku, pozostałe zostawiając jako ćwiczenie. Załóżmy, że A = xb. Wobec założenia indukcyjnego: D D B B. Stąd, na mocy lematu: D D xb xb czyli D D A A. Mówimy, że zbiór formuł Γ jest spełnialny, gdy istnieje model M i wartościowanie α : V M takie, że M = A[α] dla każdej formuły A Γ. Mówimy, że zbiór zdań Γ jest spełnialny, gdy dla pewnego modelu M zachodzi M = A dla A Γ. Twierdzenie 21 (o istnieniu modelu). Każdy niesprzeczny zbiór formuł jest spełnialny. W szczególności, każdy niesprzeczny zbiór zdań ma model. Dowód tego twierdzenia pomijamy. Wniosek 8 (twierdzenie o pełności). Dla dowolnego zbioru zdań Σ i dowolnego zdania A: Σ A Σ = A.
Definicja: zmiennych zdaniowych spójnikach zdaniowych:
Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których
Definicja: zmiennych zdaniowych spójnikach zdaniowych:
Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których
Struktury formalne, czyli elementy Teorii Modeli
Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j
Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie
3. Wykłady 5 i 6: Semantyka klasycznego rachunku zdań. Dotychczas rozwinęliśmy klasyczny rachunek na gruncie czysto syntaktycznym, a więc badaliśmy metodę sprawdzania, czy dana formuła B jest dowodliwa
Definicja: alfabetem. słowem długością słowa
Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.
3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy
Adam Meissner.
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu
A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy
3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja
Elementy logiki Klasyczny rachunek predykatów
Elementy logiki. Klasyczny rachunek predykatów. 1 Elementy logiki Klasyczny rachunek predykatów Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza
Semantyka rachunku predykatów
Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie
Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:
Klasyczny rachunek predykatów
Kultura logiczna Klasyczny rachunek predykatów Bartosz Gostkowski bgostkowski@gmail.com Alfabet klasycznego rachunku zdań reguły konsytutywne języka Alfabet klasycznego rachunku predykatów (KRP Do alfabetu
Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń
Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest
Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut
Predykat Weźmy pod uwagę następujące wypowiedzi: (1) Afryka jest kontynentem. (2) 7 jest liczbą naturalną. (3) Europa jest mniejsza niż Afryka. (4) 153 jest podzielne przez 3. Są to zdania jednostkowe,
Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0
ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru
Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.
Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP 1 Pojęcie dowodu w KRP Pojęcia: formuły zdaniowej języka Klasycznego Rachunku
Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty
Rachunek predykatów Wykład 4 Plan wykładu Relacje i predykaty Formuły rachunku predykatów Interpretacje Logiczna równoważność Metoda tabel Modele skończone i nieskończone Rozstrzygalność Relacje i predykaty
Drobinka semantyki KRP
Drobinka semantyki KRP Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Drobinka semantyki KRP Uniwersytet Opolski 1 / 48 Wstęp
LOGIKA Klasyczny Rachunek Zdań
LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć
Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu
Elementy logiki Klasyczny rachunek predykatów
Elementy logiki. Klasyczny rachunek predykatów. 1 Elementy logiki Klasyczny rachunek predykatów Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza
Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Istnieje wiele systemów aksjomatycznych
Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany
Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Załóżmy, że wiemy co to są liczby naturalne... Język (I-go rzędu): V, { F n : n IN
Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior
Rachunek predykatów Wykład 5 Plan wykładu Funkcje i termy Postać klauzulowa formuł Modele Herbranda Twierdzenie Herbranda Rezolucja dla klauzul ustalonych Podstawienia Uzgadnianie Rezolucja Funkcje i termy
1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14
Wstęp do matematyki Matematyka, I rok. Tomasz Połacik Spis treści 1 Logika................................. 1 2 Zbiory................................. 7 3 Pewnik wyboru............................ 10
System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10
System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki
Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność 1 Modele Jak zwykle zakładam, że pojęcia wprowadzone
Logika dla informatyków
Logika dla informatyków Notatki do wykładów 21 kwietnia 2002 Niniejszy dokument zawiera listę najważniejszych definicji i twierdzeń omawianych na wykładzie z Logiki dla Informatyków i określa zakres materiału,
Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów
Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan na pytanie o odniesienie przedmiotowe zdań odpowiedź
Metalogika (12) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM
Metalogika (12) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (12) Uniwersytet Opolski 1 / 204 Plan wykładu Plan
RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.
Semantyczne twierdzenie o podstawianiu Jeżeli dana formuła rachunku zdań jest tautologią i wszystkie wystąpienia pewnej zmiennej zdaniowej w tej tautologii zastąpimy pewną ustaloną formułą, to otrzymana
Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1 Na poprzednim wykładzie udowodniliśmy m.in.:
1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.
Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze
Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań System aksjomatyczny logiki Budując logikę
Metoda Tablic Semantycznych
Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,
Kultura logicznego myślenia
Kultura logicznego myślenia rok akademicki 2015/2016 semestr zimowy Temat 6: Rachunek predykatów jako logika pierwszego rzędu logika elementarna = logika pierwszego rzędu KRZ logika zerowego rzędu Język
Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I
Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera wykładu z Metod dowodzenia...
O pewnych związkach teorii modeli z teorią reprezentacji
O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej
Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:
Logika pragmatyczna Logika pragmatyczna Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + literatura + informacje na stronie www. Zaliczenie: Kolokwium pisemne na
Paradygmaty dowodzenia
Paradygmaty dowodzenia Sprawdzenie, czy dana formuła rachunku zdań jest tautologią polega zwykle na obliczeniu jej wartości dla 2 n różnych wartościowań, gdzie n jest liczbą zmiennych zdaniowych tej formuły.
Logiczne podstawy informatyki 1. Wojciech Buszkowski. Zakład Teorii Obliczeń Wydział Matematyki i Informatyki UAM
Logiczne podstawy informatyki 1 LOGICZNE PODSTAWY INFORMATYKI Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki UAM Logiczne podstawy informatyki 2 1. Rezolucja zdaniowa Formuły
Logika Matematyczna (2,3)
Logika Matematyczna (2,3) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 11, 18 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (2,3) 11, 18 X 2007 1 / 34 Język KRZ
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Zasady krytycznego myślenia (1)
Zasady krytycznego myślenia (1) Andrzej Kisielewicz Wydział Matematyki i Informatyki 2017 Przedmiot wykładu krytyczne myślenie vs logika praktyczna (vs logika formalna) myślenie jasne, bezstronne, oparte
Podstawy matematyki dla informatyków. Logika formalna. Skªadnia rachunku zda« Skróty i priorytety. Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011
Podstawy matematyki dla informatyków Logika formalna Wykªad 10 (Klasyczny rachunek zda«) 15 grudnia 2011 Skªadnia rachunku zda«symbole (zmienne) zdaniowe (p, q, r,...), oraz znaki i s formuªami zdaniowymi.
Logika Matematyczna (1)
Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Logika Matematyczna (1) Wprowadzenie 1 / 20 Plan konwersatorium
Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 15. Trójwartościowa logika zdań Łukasiewicza 1 Wprowadzenie W logice trójwartościowej, obok tradycyjnych wartości logicznych,
Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z...
Język rachunku predykatów 1 Zmienne x, y, z... 2 Predykaty n-argumentowe P(x, y,...), Q(x, y...),... 3 Funktory zdaniowe,,,, 4 Kwantyfikatory: istnieje, dla każdego Język rachunku predykatów Ustalenie
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony
Matematyka ETId Elementy logiki
Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,
Logika Matematyczna (10)
Logika Matematyczna (10) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Rezolucja w KRZ Jerzy Pogonowski (MEG) Logika Matematyczna (10) Rezolucja w KRZ 1 / 39 Plan
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Wnioskowanie logiczne i systemy eksperckie Systemy posługujące się logiką predykatów: część 3/3 Dzisiaj Uogólnienie Poprawność i pełność wnioskowania
Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)
Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych
WYKŁAD 3: METODA AKSJOMATYCZNA
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 3: METODA AKSJOMATYCZNA III rok kognitywistyki UAM, 2016 2017 Plan na dziś: 1. Przypomnimy, na czym polega aksjomatyczna metoda dowodzenia twierdzeń.
Logika Matematyczna (I JiIN UAM)
Logika Matematyczna (I JiIN UAM) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 31V-1VI 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (I JiIN UAM) 31V-1VI 2007 1
Logika pragmatyczna dla inżynierów
Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest
Podstawowe Pojęcia. Semantyczne KRZ
Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga
Kultura logiczna Klasyczny rachunek zdań 2/2
Kultura logiczna Klasyczny rachunek zdań 2/2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 29 III 2 Plan wykładu: Wartościowanie w KRZ Tautologie KRZ Wartościowanie v, to funkcja, która posyła zbiór
Schematy Piramid Logicznych
Schematy Piramid Logicznych geometryczna interpretacja niektórych formuł Paweł Jasionowski Politechnika Śląska w Gliwicach Wydział Matematyczno-Fizyczny Streszczenie Referat zajmuje się następującym zagadnieniem:
Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.
Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność
Logika Matematyczna (1)
Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:
Internet Semantyczny i Logika I
Internet Semantyczny i Logika I Warstwy Internetu Semantycznego Dowód Zaufanie Logika OWL, Ontologie Podpis cyfrowy RDF, schematy RDF XML, schematy XML przestrzenie nazw URI Po co nam logika? Potrzebujemy
III rok kognitywistyki UAM,
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 6A: REZOLUCJA III rok kognitywistyki UAM, 2016 2017 1 Rezolucja w KRZ Dowody rezolucyjne w KRZ są równie proste, jak dowody tablicowe Metoda
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach
Logika Radosna 5. Jerzy Pogonowski. KRP: tablice analityczne. Zakład Logiki Stosowanej UAM
Logika Radosna 5 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl KRP: tablice analityczne Jerzy Pogonowski (MEG) Logika Radosna 5 KRP: tablice analityczne 1 / 111 Wprowadzenie
Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37
Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 15 stycznia 2011 Michał Lipnicki () Logika 15 stycznia 2011 1 / 37 Wstęp Materiały na dzisiejsze zajęcia zostały opracowane na podstawie pomocy naukowych
Wstęp do logiki. Klasyczny Rachunek Predykatów I
Wstęp do logiki Klasyczny Rachunek Predykatów I KRZ jest teorią stanowiącą wstępną część logiki formalnej, część zakładaną przez inne teorie. Przypomnijmy, jest on teorią związków logicznych między zdaniami
Wstęp do logiki. Klasyczny Rachunek Zdań II
Wstęp do logiki Klasyczny Rachunek Zdań II DEF. 1 (Słownik). Następujące znaki tworzą słownik języka KRZ: p 1, p 2, p 3, (zmienne zdaniowe) ~,,,, (spójniki) ), ( (nawiasy). DEF. 2 (Wyrażenie). Wyrażeniem
ĆWICZENIE 4 KRZ: A B A B A B A A METODA TABLIC ANALITYCZNYCH
ĆWICZENIE 4 Klasyczny Rachunek Zdań (KRZ): metoda tablic analitycznych, system aksjomatyczny S (aksjomaty, reguła dowodzenia), dowód w systemie S z dodatkowym zbiorem założeń, tezy systemu S, wtórne reguły
III rok kognitywistyki UAM,
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 14: POWTÓRKA III rok kognitywistyki UAM, 2016 2017 Dzisiejszy wykład w całości poświęcony będzie omówieniu przykładowych zadań, podobnych do
Zagadnienia podstawowe dotyczące metod formalnych w informatyce
Zagadnienia podstawowe dotyczące metod formalnych w informatyce! Logika Analiza języka i czynności badawczych (np. rozumowanie, definiowanie, klasyfikowanie) w celu poznania takich reguł posługiwania się
Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018
Logika Stosowana Wykład 2 - Logika modalna Część 3 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2017/2018 Marcin Szczuka (MIMUW) Logika Stosowana 2018 1 / 36 Plan wykładu
Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań 1 Struktury modelowe Przedstawimy teraz pewien
0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.
Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek
VI. Równania różniczkowe liniowe wyższych rzędów
VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych
Elementy logiki i teorii mnogości
Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy
Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu
Witold Marciszewski: Wykład Logiki, 17 luty 2005, Collegium Civitas, Warszawa Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu 1. Poniższe wyjaśnienie (akapit
Modele Herbranda. Logika obliczeniowa. Joanna Józefowska. Szukamy modelu. Przykład Problemy. Model Herbranda
Plan wykładu Szukamy modelu Model Herbranda Twierdzenia Logika obliczeniowa Instytut Informatyki Plan wykładu Szukamy modelu 1 Szukamy modelu Problemy 2 Model Herbranda Uniwersum Herbranda Interpretacja
Składnia rachunku predykatów pierwszego rzędu
Początek Gramatyka Kwantyfikatory Poprawność Logika obliczeniowa Instytut Informatyki Początek Gramatyka Kwantyfikatory Poprawność Plan wykładu 1 Na (dobry) początek Zrozumieć słowa Oswoić znaki 2 Gramatyka
Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM
Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie
Logika matematyczna wersja 0.94 (1 września 2005)
Witold Bołt Taduesz Andrzej Kadłubowski Logika matematyczna wersja 0.94 (1 września 2005) Spis treści Wstęp 2 1 Systemy relacyjne 2 2 Język, termy i formuły 3 2.1 Język........................................
Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?
Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące
Wykład ze Wstępu do Logiki i Teorii Mnogości
Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje
Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.
Elementy logiki. Klasyczny rachunek zdań. 1 Elementy logiki Klasyczny rachunek zdań Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza Elementy
Twierdzenie Łosia o ultraprodukcie
Twierdzenie Łosia o ultraprodukcie Stanisław Dercz 2010.03.22 Streszczenie Prezentujemy ciekawe twierdzenie teorii modeli, umożliwiające budowanie modeli teorii pierwszego rzędu. Wprowadzamy jedynie konieczny
Rachunki relacji. Rachunki relacji. RRK Relacyjny Rachunek Krotek
Rachunki relacji Rachunki relacji 1. RRK Relacyjny Rachunek Krotek 2. RRD Relacyjny Rachunek Dziedzin 3. Datalog Database Prolog Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski T. Pankowski, Rachunki
1 Podstawowe oznaczenia
Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.
II Matematyka 2 stopnia( 3W). Logika i podstawy matematyki. Janusz Czelakowski. Wykład 8. Arytmetyka
II Matematyka 2 stopnia( 3W). Logika i podstawy matematyki Janusz Czelakowski Wykład 8. Arytmetyka Jak dobrze wiadomo, jednym z kluczowych praw zachodzących w dziedzinie liczb naturalnych jest Zasada Indukcji.
Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Rachunek logiczny. 1. Język rachunku logicznego.
Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były
1.2.3 Funkcjonalna pełność
1.2.3 Funkcjonalna pełność Przedstawione przykłady sprawdzania tautologiczności formuł zamknietych metodą niewprost dobrze ilustrują, Ŝe załoŝenie niewrost o przypisaniu formule wartości fałszu, a następnie
JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI
JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca 2012 Imię i Nazwisko:........................................................... FIGLARNE POZNANIANKI Wybierz
Andrzej Wiśniewski Logika II. Wykłady 9 i 10a. Wybrane modalne rachunki zdań. Ujęcie aksjomatyczne
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki rok akademicki 2007/2008 Wykłady 9 i 10a. Wybrane modalne rachunki zdań. Ujęcie aksjomatyczne 1 Język aletycznych modalnych
JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca Imię i Nazwisko:... I
JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca 2013 Imię i Nazwisko:.................................................................................. I Wybierz
1. Składnia. Logika obliczeniowa - zadania 1 SKŁADNIA Teoria
Logika obliczeniowa - zadania 1 SKŁADNIA 1. Składnia 1.1. Teoria 1. Składnia oznacza reguły tworzenia... z.... 2. Rachunek predykatów pierwszego rzędu (w skrócie: rachunek predykatów) wyróżnia cztery zbiory
= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i
15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.
LOGIKA WSPÓŁCZESNA: PRZEGLAD ZAGADNIEŃ
5 wykładów dla Studium Doktoranckiego Wydziału Neofilologii UAM LOGIKA WSPÓŁCZESNA: PRZEGLAD ZAGADNIEŃ JERZY POGONOWSKI Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 1 Wstęp Niniejszy