Semantyka rachunku predykatów

Save this PDF as:
Wielkość: px
Rozpocząć pokaz od strony:

Download "Semantyka rachunku predykatów"

Transkrypt

1 Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 4 Wartość formuły Wartość termu Wartość logiczna formuły Własności 5 Spełnialność formuły domkniętej Model formuły Zależności Twierdzenie Zbiór spełnialny 1 2 Spełnialność

2 znaczenie semantyka interpretacja rachunek predykatów = język po co nam języki? co to znaczy zrozumieć zdanie? komputer??? Znaczenie zdań w logice wartości formuł rachunku predykatów Formuła rachunku predykatów może przyjąć jedną z dwóch wartości: 1 mówimy, że formuła jest spełniona 0 mówimy, ze formuła nie jest spełniona

3 Predykat predykat = symbol predykatywny z listą argumentów (termów) w nawiasach na przykład p(a, x, f(y)) czy w matematyce istnieją obiekty o podobnej składni? relacje Pojęcie relacji Definicja Relacją n-argumentową na zbiorze S nazywamy dowolny podzbiór iloczynu kartezjańskiego S... S. }{{} n razy Notacja Element relacji R jest zatem ciągiem o długości n, którego elementy należą do S. Piszemy: R S... S (s 1,..., s n ) R s 1,..., s n S

4 Przykłady relacji Relacje jednoargumentowe Np(x) (N) jest zbiorem liczb nieparzystych {1, 3, 5, 7,...} Relacje dwuargumentowe Pc(x, y) (N) 2 jest zbiorem par (x, y) takich, że y = x 3 {(0, 0), (1, 1), (2, 8), (3, 27),...} Relacja jako funkcja o wartościach logicznych Relację R można reprezentować za pomocą funkcji R o wartościach logicznych R : D n {0, 1} odwzorowującej krotkę w wartość 1 wtedy i tylko wtedy, gdy należy ona do relacji, czyli R(d 1,..., d n ) = 1 wtw (d 1,..., d n ) R

5 Przykład c.d. Relacje jednoargumentowe Np(x) (N) jest zbiorem liczb nieparzystych {1, 3, 5, 7,...} Np(0) = 0 Np(1) = 1 Np(2) = 0 Np(3) = 1 Np(4) = 0 Np(5) = 1... Przykład c.d. Relacje dwuargumentowe Pc(x, y) (N) 2 jest zbiorem par (x, y) takich, że y = x 3 {(0, 0), (1, 1), (2, 8), (3, 27),...} Pc(0, 0) = 1 Pc(0, 1) = 0 Pc(0, 2) = 0 Pc(0, 3) = 0 Pc(0, 4) = 0 Pc(0, 5) = 0... Pc(1, 0) = 0 Pc(1, 1) = 1 Pc(1, 2) = 0 Pc(1, 3) = 0 Pc(1, 4) = 0 Pc(1, 5) = 0... Pc(2, 0) = 0 Pc(2, 1) = 0 Pc(2, 2) = 0 Pc(2, 3) = 0 Pc(2, 4) = 0 Pc(2, 5) = 0...

6 Stałe, zmienne, funkcje Jaka jest wartość formuły: A = p(a, x, f (y))? Jaka jest wartość formuły: 0 > x + y 2 ; x, y N? Dziedzina interpretacji jest to zbiór, do którego należą wartości: zmiennych, stałych, funkcji występujące w formule rachunku predykatów. Predykaty Predykaty reprezentują relacje określone na dziedzinie interpretacji. Predykat n-argumentowy oznacza relację R D n. Przykład Interpretacją predykatu p(x, y, z) może być relacja R określona na zbiorze kątów ostrych, taka, że kąty x, y, z są w relacji R, gdy są kątami tego samego trójkąta. (x, y, z) R wtw. x + y + z = 180.

7 Intepretacja w rachunku predykatów Aby określić wartość (logiczną) formuły rachunku predykatów należy podać: dziedzinę interpretacji (zbiór wartości jakie mogą przyjmować stałe, zmienne i funkcje), funkcje odpowiadające symbolom funkcyjnym, relacje odpowiadające symbolom predykatywnym. Funkcja interpretacji Niech U będzie zbiorem formuł, dla którego: {p 1,..., p k } - zbiór wszystkich symboli predykatywnych w U, {f 1,..., f l } - zbiór wszystkich symboli funkcyjnych w U, {a 1,..., a m } - zbiór wszystkich stałych w U. Interpretacja Interpretacją I nazywamy czwórkę: (D, {R 1,...R k }, {F 1,..., F l }, {d 1,..., d m }), gdzie: D - niepusta dziedzina, R i - relacja przyporządkowana symbolowi predykatywnemu p i, F i - funkcja przyporządkowana symbolowi funkcyjnemu f i, d i - element dziedziny D, przyporządkowany stałej a i.

8 Przykład Przykład p(a, f (x)) Interpretacja I 1 = (N, { }, {x 2 }, {5}) D N p f x 2 a 5 5 x 2 Interpretacja I 2 = (N, { }, {2x}, {0}) D N p f 2x a 0 0 2x Interpretacja I 3 = (Z, { }, {x 2 }, {5}) D Z p f x 2 a 5 5 x 2 Wartościowanie Definicja Niech I będzie interpretacją. Wartościowaniem σ I : V D nazywamy funkcję przyporządkowującą każdej zmiennej element dziedziny interpretacji I. Zapis σ I[xi d i ] będzie oznaczał, że w wartościowaniu σ I zmiennej x i została przyporzadkowana wartość d i.

9 Przykład Formuła p(a, f (x)) Interpretacja I 1 = {N, { }, {x 2 }, {5}} 5 x 2 Wartościowanie σ I[x 3] 5 9 Zakres wartości termu UWAGA! Wartość termu należy do dziedziny interpretacji D i nie musi być wartością logiczną. Wartość termu zależy zarówno od interpretacji, jak i wartościowania.

10 Definicja Wartość termu t w interpretacji I i wartościowaniu σ I oznaczamy przez v σi (t) i definiujemy przez indukcję: v σi (x i ) = σ I (x i ) v(a i ) = d i v σi (f i (t 1,..., t n )) = F i (v σi (t 1 ),..., v σi (t n )) gdzie: d i - element dziedziny przyporządkowany stałej a i w interpretacji I, F i - funkcja przyporządkowana w interpretacji I symbolowi funkcyjnemu f i Przykład Wartość termu: t = f (x) + g(f (a)) Interpretacja: I = (N, {}, {2x, y 2 }, {0}) Wartościowanie: σ I (x) = 1 Wartość termu: v σi (t) = v σi (f (x) + g(f (a))) = 2σ I (x) + (2v(a)) 2 = (2 0) 2 = 2

11 Wartość atomu Atom ma wartość logiczną (0 lub 1). A = p k (t 1,..., t n ) v σi (A) = 1 wtw (v σi (t 1 ),..., v σi (t n )) R k R k - relacja przyporządkowana w interpretacji I predykatowi p k A = p(a, x) Niech I = (N, { }, {}, {1}) i σ I (x) = 3 (x, y) R wtw x y (v(a), v σi (x)) = (1, 3) (1, 3) R (v σi (A)) = 0 Wartość formuły złożonej Wartość logiczną formuły A przy wartościowaniu σ I oznaczamy przez v σi (A) i definiujemy przez indukcję ze względu na budowę formuły: A - dowolna formuła v σi ( A) = 1 wtw v σi (A) = 0 v σi (A 1 A 2 ) = 1 wtw v σi (A 1 ) = 1 lub v σi (A 2 ) = 1 podobnie dla pozostałych operatorów logicznych v σi ( x A) = 1 wtw v σi [x d](a) = 1 dla każdego d D v σi ( x A) = 1 wtw v σi [x d](a) = 1 dla pewnego d D

12 Wartość formuły złożonej A v(a 1 ) v(a 2 ) v(a) A A 1 A wpp 0 A 1 A wpp 1 A 1 A wpp 1 A 1 A wpp 1 A 1 A wpp 0 A 1 A 2 v(a 1 ) = v(a 2 ) 1 wpp 0 A 1 A 2 v(a 1 ) = v(a 2 ) 0 wpp 1 wpp - w przeciwnym przypadku Przykład A = p(x, a), B = A I = (N, { }, {}, {2}) Formuła A w interpretacji I oznacza: x N i x 2 Wartość formuły A zależy od wartościowania σ I. σ I (x) = 3 v σi (A) = 0, a zatem v σi (B) = 1

13 Wartość formuły zamkniętej Niech A będzie formułą zamknietą. Wówczas v σi (A) nie zależy od wartościowania σ I. A = y x p(x, y) I = (N, { }, {}, {0}) y N x N x y v σi [y 1,x d](p(x, y)) = 1 dla każdego d N v σi ( y x p(x, y)) = 1 Wartość domknięcia uniwersalnego formuły Niech A = A(x 1,..., x n ) nie będzie formułą zamkniętą, a I niech będzie interpretacją. Wówczas: v σi (A ) = 1 dla wszystkich wartościowań σ I wtw, gdy v I ( x 1,..., x n A ) = 1. A = p(x, y) Domknięcie uniwersalne A: A = x y p(x, y) I = (N, { }, {}, {}) x N y N x y v σi [x 0,y 1](p(x, y)) = 0 v σi ( x y p(x, y)) = 0

14 Wartość domknięcia egzystencjalnego formuły Niech A = A(x 1,..., x n ) nie będzie formułą zamkniętą, a I niech będzie interpretacją. Wówczas: v σi (A ) = 1 dla pewnego wartościowania σ I wtw, gdy v I ( x 1,..., x n A ) = 1, A = p(x, y) Domknięcie egzystencjalne A: A = x y p(x, y) I = (N, { }, {}, {}) x N y N x y v σi [x 1,y 0](p(x, y)) = 1 v σi ( x y p(x, y)) = 1 Formuła spełniona Definicja Formuła zamknięta A jest spełniona w interpretacji I, czyli interpretacja I jest modelem A, jeśli v I (A) = 1, co oznaczamy I = A.

15 Przykład A = x p(a, x) I 1 = A I 2 = A I 3 = A Interpretacja I 1 = (N, { }, {x 2 }, {5}) D N p f x 2 a 5 Interpretacja I 2 = (N, { }, {2x}, {0}) D N p f 2x a 0 Interpretacja I 3 = (Z, { }, {2x}, {0}) D Z p f 2x a 0 5 x 2 0 2x 0 2x Formuła spełnialna Definicja Formuła zamknięta A jest spełnialna, jeśli dla pewnej interpretacji I mamy I = A. A = y x p(x, y) I = (N, { }, {}, {0}) y N x N x y v σi [y 1,x d](p(x, y)) = 1 dla każdego d N v σi ( y x p(x, y)) = 1 I = A

16 Formuła prawdziwa Definicja Formuła zamknięta A jest prawdziwa, jeśli dla wszystkich interpretacji I mamy I = A, co będziemy oznaczać = A. A = x (p(x) p(x)) = A Formuła niespełnialna i nieprawdziwa Definicja Formuła A jest niespełnialna, jeśli nie jest spełnialna, a jest nieprawdziwa, gdy nie jest prawdziwa. A = x (p(x) p(x)) Dla każdej interpretacji I v σi (A) = 0 zatem A jest niespełnialna. A = x p(x, a) Istnieje interpretacja I = (N, { }, {}, {2}) w której v σi (A) = 0 zatem A jest nieprawdziwa.

17 Prawdziwość a spełnialność Prawdziwość a spełnialność Każda formuła prawdziwa jest spełnialna. Niespełnialność i nieprawdziwość Każda formuła niespełnialna jest nieprawdziwa. Formuły spełnialne i niespełnialne Formuły spełnialne Istnieje co najmniej jedna interpretacja spełniająca formułę. Np. x p(x) Formuły niespełnialne Nie istnieje interpretacja spełniająca formułę. Np. x (p(x) p(x)) Formuły prawdziwe Formuła jest spełniona w każdej interpretacji. Np. x (p(x) p(x)) Formuły nieprawdziwe Istnieje interpretacja, w której formuła nie jest spełniona. Np. x p(x)

18 Spełnialność i prawdziwość formuł Formuły prawdziwe Formuła jest spełniona w każdej interpretacji. Np. x (p(x) p(x)) Pozostałe Formuły spełnialne, ale nieprawdziwe. Np. x p(x) Formuły niespełnialne Nie istnieje interpretacja spełniająca formułę. Np. x (p(x) p(x)) Prawdziwość i niespełnialność Załóżmy, że formuła A jest niespełnialna. Nie istnieje interpretacja, w której A jest spełniona. W każdej interpretacji v( A) = 0. W każdej interpretacji v(a) = 1. W każdej interpretacji A jest spełniona. A jest prawdziwa.

19 Relacje Interpretacja Wartość Spełnialność Praktyczne twierdzenie Twierdzenie Formuła A jest prawdziwa wtw, gdy A jest niespełnialna. A jest spełnialna wtw, gdy A jest nieprawdziwa. Relacje Interpretacja Wartość Zastosowanie twierdzenia Wykazać, że formuła A = x (p(x) q(x)) x PTAKI p = makolorszary q = makolorbiały jest nieprawdziwa. Znajdujemy formułę A i wykazujemy, że jest spełnialna. x( (p(x) q(x))) = x( p(x) q(x)) czyli wskazujemy kontrprzykład. Stosując np. metodę tabel semantycznych łatwiej wykazać niespełnialność. Spełnialność

20 Zbiór spełnialny Definicja Zbiór formuł U = {A 1,..., A n } jest (jednocześnie) spełnialny wtw, gdy istnieje interpretacja v taka, że v(a 1 ) =... = v(a n ) = 1. Interpretację o tej własności nazywamy modelem zbioru formuł U. Zbiór formuł U jest niespełnialny wtw, gdy dla każdej interpretacji v istnieje i takie, że v(a i ) = 0. Zbiór spełnialny Przykład Rozważmy następujący zbiór formuł: { x (p(x, a) q(x, a)), x (p(x, a) q(x, a))}. Czy istnieje model tego zbioru? (N, {, }{}{0})

21 Zbiór niespełnialny Przykład Rozważmy następujący zbiór formuł: { x (p(x, a) q(x, a)), x ( p(x, a) q(x, a))}. Czy istnieje model tego zbioru? A 1 = x p(x, a) A 1 = x p(x, a) A 2 = x q(x, a) A 2 = x q(x, a) v I1 (A 1 ) = 1 v I1 (A 2 ) = 1 v I1 (A 1 ) = 1 v I1 (A 2 ) = 0 v I1 (A 1 ) = 0 v I1 (A 2 ) = 1 v I1 (A 1 ) = 0 v I1 (A 2 ) = 0 Zbiór jest niespełnialny. Pytania 1 Podać interpretację (wraz z wartościowaniem) podanej formuły rachunku predykatów. 2 Czy w podanej interpretacji formuła rachunku predykatów jest spełnialna (prawdziwa)?

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa. Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna

Bardziej szczegółowo

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty Rachunek predykatów Wykład 4 Plan wykładu Relacje i predykaty Formuły rachunku predykatów Interpretacje Logiczna równoważność Metoda tabel Modele skończone i nieskończone Rozstrzygalność Relacje i predykaty

Bardziej szczegółowo

Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Logika obliczeniowa Instytut Informatyki Poznań, rok akademicki 2009/2010 1 formu l rachunku zdań Wartościowanie i sta le logiczne Logiczna równoważność 2 Model formu ly Formu la spe lniona Formu la spe

Bardziej szczegółowo

Modele Herbranda. Logika obliczeniowa. Joanna Józefowska. Szukamy modelu. Przykład Problemy. Model Herbranda

Modele Herbranda. Logika obliczeniowa. Joanna Józefowska. Szukamy modelu. Przykład Problemy. Model Herbranda Plan wykładu Szukamy modelu Model Herbranda Twierdzenia Logika obliczeniowa Instytut Informatyki Plan wykładu Szukamy modelu 1 Szukamy modelu Problemy 2 Model Herbranda Uniwersum Herbranda Interpretacja

Bardziej szczegółowo

1. Składnia. Logika obliczeniowa - zadania 1 SKŁADNIA Teoria

1. Składnia. Logika obliczeniowa - zadania 1 SKŁADNIA Teoria Logika obliczeniowa - zadania 1 SKŁADNIA 1. Składnia 1.1. Teoria 1. Składnia oznacza reguły tworzenia... z.... 2. Rachunek predykatów pierwszego rzędu (w skrócie: rachunek predykatów) wyróżnia cztery zbiory

Bardziej szczegółowo

Metoda Tablic Semantycznych

Metoda Tablic Semantycznych Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

Składnia rachunku predykatów pierwszego rzędu

Składnia rachunku predykatów pierwszego rzędu Początek Gramatyka Kwantyfikatory Poprawność Logika obliczeniowa Instytut Informatyki Początek Gramatyka Kwantyfikatory Poprawność Plan wykładu 1 Na (dobry) początek Zrozumieć słowa Oswoić znaki 2 Gramatyka

Bardziej szczegółowo

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior Rachunek predykatów Wykład 5 Plan wykładu Funkcje i termy Postać klauzulowa formuł Modele Herbranda Twierdzenie Herbranda Rezolucja dla klauzul ustalonych Podstawienia Uzgadnianie Rezolucja Funkcje i termy

Bardziej szczegółowo

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:

Bardziej szczegółowo

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ). 6. Wykład 6: Rachunek predykatów. Język pierwszego rzędu składa się z: symboli relacyjnych P i, i I, gdzie (P i ) oznaczać będzie ilość argumentów symbolu P i, symboli funkcyjnych f j, j J, gdzie (f j

Bardziej szczegółowo

LOGIKA Klasyczny Rachunek Zdań

LOGIKA Klasyczny Rachunek Zdań LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut Predykat Weźmy pod uwagę następujące wypowiedzi: (1) Afryka jest kontynentem. (2) 7 jest liczbą naturalną. (3) Europa jest mniejsza niż Afryka. (4) 153 jest podzielne przez 3. Są to zdania jednostkowe,

Bardziej szczegółowo

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan na pytanie o odniesienie przedmiotowe zdań odpowiedź

Bardziej szczegółowo

Klasyczny rachunek predykatów

Klasyczny rachunek predykatów Kultura logiczna Klasyczny rachunek predykatów Bartosz Gostkowski bgostkowski@gmail.com Alfabet klasycznego rachunku zdań reguły konsytutywne języka Alfabet klasycznego rachunku predykatów (KRP Do alfabetu

Bardziej szczegółowo

Definicja: zmiennych zdaniowych spójnikach zdaniowych:

Definicja: zmiennych zdaniowych spójnikach zdaniowych: Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których

Bardziej szczegółowo

Elementy logiki Klasyczny rachunek predykatów

Elementy logiki Klasyczny rachunek predykatów Elementy logiki. Klasyczny rachunek predykatów. 1 Elementy logiki Klasyczny rachunek predykatów Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza

Bardziej szczegółowo

Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z...

Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z... Język rachunku predykatów 1 Zmienne x, y, z... 2 Predykaty n-argumentowe P(x, y,...), Q(x, y...),... 3 Funktory zdaniowe,,,, 4 Kwantyfikatory: istnieje, dla każdego Język rachunku predykatów Ustalenie

Bardziej szczegółowo

Uzgadnianie formuł rachunku predykatów

Uzgadnianie formuł rachunku predykatów Składanie podstawień Plan wykładu Uzgadnianie Logika obliczeniowa Instytut Informatyki Plan wykładu Składanie podstawień 1 Składanie podstawień Podstawienie Motywacja Złożenie podstawień 2 Uzgadnianie

Bardziej szczegółowo

Definicja: zmiennych zdaniowych spójnikach zdaniowych:

Definicja: zmiennych zdaniowych spójnikach zdaniowych: Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1 Na poprzednim wykładzie udowodniliśmy m.in.:

Bardziej szczegółowo

Michał Lipnicki (UAM) Logika 11 stycznia / 20

Michał Lipnicki (UAM) Logika 11 stycznia / 20 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 11 stycznia 2013 Michał Lipnicki (UAM) Logika 11 stycznia 2013 1 / 20 KRP wstęp Wstęp Rozważmy wnioskowanie: Każdy człowiek jest śmiertelny. Sokrates

Bardziej szczegółowo

Problem. Uzgadnianie wyrażeń rachunku predykatów. Instancja wyrażenia. Podstawienie termu za zmienną. Joanna Józefowska

Problem. Uzgadnianie wyrażeń rachunku predykatów. Instancja wyrażenia. Podstawienie termu za zmienną. Joanna Józefowska Problem Instytut Informatyki jedzenie(x 1 ) lubi(adam, x 1 ) jedzenie(jabłko) jedzenie(kurczak) je(x 1, x 2 ) żyje(x 1 ) jedzenie(x 2 ) je(bogdan, orzeszki) żyje(bogdan) je(bogdan, x 2 ) je(zuzia, x 2

Bardziej szczegółowo

Internet Semantyczny i Logika I

Internet Semantyczny i Logika I Internet Semantyczny i Logika I Warstwy Internetu Semantycznego Dowód Zaufanie Logika OWL, Ontologie Podpis cyfrowy RDF, schematy RDF XML, schematy XML przestrzenie nazw URI Po co nam logika? Potrzebujemy

Bardziej szczegółowo

Drobinka semantyki KRP

Drobinka semantyki KRP Drobinka semantyki KRP Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Drobinka semantyki KRP Uniwersytet Opolski 1 / 48 Wstęp

Bardziej szczegółowo

Logika Matematyczna 16 17

Logika Matematyczna 16 17 Logika Matematyczna 16 17 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semantyka KRP (3) Jerzy Pogonowski (MEG) Logika Matematyczna 16 17 Semantyka KRP (3) 1 / 24

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera wykładu z Metod dowodzenia...

Bardziej szczegółowo

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Postać klauzulowa formu l 2 Regu la rezolucji Regu la rezolucji dla klauzul ustalonych Regu la rezolucji dla klauzul ustalonych a spe lnialność Ogólna

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

Programowanie deklaratywne i logika obliczeniowa

Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Wykład logika 12 godzin Dr hab. inż. Joanna Józefowska, prof. PP dyżur: poniedziałek 9.30-11.00 p. 10,

Bardziej szczegółowo

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie 3. Wykłady 5 i 6: Semantyka klasycznego rachunku zdań. Dotychczas rozwinęliśmy klasyczny rachunek na gruncie czysto syntaktycznym, a więc badaliśmy metodę sprawdzania, czy dana formuła B jest dowodliwa

Bardziej szczegółowo

Rachunki relacji. Rachunki relacji. RRK Relacyjny Rachunek Krotek

Rachunki relacji. Rachunki relacji. RRK Relacyjny Rachunek Krotek Rachunki relacji Rachunki relacji 1. RRK Relacyjny Rachunek Krotek 2. RRD Relacyjny Rachunek Dziedzin 3. Datalog Database Prolog Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski T. Pankowski, Rachunki

Bardziej szczegółowo

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika

Bardziej szczegółowo

Twierdzenie Łosia o ultraprodukcie

Twierdzenie Łosia o ultraprodukcie Twierdzenie Łosia o ultraprodukcie Stanisław Dercz 2010.03.22 Streszczenie Prezentujemy ciekawe twierdzenie teorii modeli, umożliwiające budowanie modeli teorii pierwszego rzędu. Wprowadzamy jedynie konieczny

Bardziej szczegółowo

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania Logika w zastosowaniach kognitywistycznych Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania (notatki do wykładów) Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl

Bardziej szczegółowo

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 4. Semantyka Klasycznego Rachunku Zdań 1 Skróty: Język Klasycznego Rachunku Zdań zamiast Klasyczny Rachunek Zdań piszę

Bardziej szczegółowo

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem. Zbiory Pojęcie zbioru jest w matematyce pojęciem pierwotnym, którego nie definiujemy. Gdy a jest elementem należacym do zbioru A to piszemy a A. Stosujemy również oznaczenie a / A jeżeli (a A). Będziemy

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Wnioskowanie logiczne i systemy eksperckie Systemy posługujące się logiką predykatów: część 3/3 Dzisiaj Uogólnienie Poprawność i pełność wnioskowania

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest

Bardziej szczegółowo

Podstawowe Pojęcia. Semantyczne KRZ

Podstawowe Pojęcia. Semantyczne KRZ Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga

Bardziej szczegółowo

Rekurencyjna przeliczalność

Rekurencyjna przeliczalność Rekurencyjna przeliczalność Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Rekurencyjna przeliczalność Funkcje rekurencyjne

Bardziej szczegółowo

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14 Wstęp do matematyki Matematyka, I rok. Tomasz Połacik Spis treści 1 Logika................................. 1 2 Zbiory................................. 7 3 Pewnik wyboru............................ 10

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Logika Matematyczna (1) Wprowadzenie 1 / 20 Plan konwersatorium

Bardziej szczegółowo

Funkcje elementarne. Matematyka 1

Funkcje elementarne. Matematyka 1 Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje

Bardziej szczegółowo

Automatyczne dowodzenie twierdzeń metodą rezolucji

Automatyczne dowodzenie twierdzeń metodą rezolucji Automatyczne dowodzenie twierdzeń metodą rezolucji 16 kwietnia 2010 Rezolucja zdaniowa Formuły rachunku zdań: zbudowane ze zmiennych zdaniowych za pomocą spójników logicznych,,,, i nawiasów Wartości logiczne:

Bardziej szczegółowo

Rachunek logiczny. 1. Język rachunku logicznego.

Rachunek logiczny. 1. Język rachunku logicznego. Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były

Bardziej szczegółowo

Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Podstawienia Motywacja Podstawienie 2 Sk ladanie podstawień Motywacja Z lożenie podstawień

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań 1 Struktury modelowe Przedstawimy teraz pewien

Bardziej szczegółowo

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1. 3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Załóżmy, że wiemy co to są liczby naturalne... Język (I-go rzędu): V, { F n : n IN

Bardziej szczegółowo

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów 1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów Logika matematyczna, dział matematyki zajmujący się badaniem własności wnioskowania (dowodzenia)

Bardziej szczegółowo

Matematyka ETId Elementy logiki

Matematyka ETId Elementy logiki Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,

Bardziej szczegółowo

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości

Bardziej szczegółowo

Elementy logiki Klasyczny rachunek predykatów

Elementy logiki Klasyczny rachunek predykatów Elementy logiki. Klasyczny rachunek predykatów. 1 Elementy logiki Klasyczny rachunek predykatów Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność

Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność 1 Modele Jak zwykle zakładam, że pojęcia wprowadzone

Bardziej szczegółowo

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0 ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru

Bardziej szczegółowo

Wyuczalność w teorii modeli

Wyuczalność w teorii modeli Wyuczalność w teorii modeli Nina Gierasimczuk Instytut Filozofii UW & Institute for Logic, Language, and Computation UvA Forum Kognitywistyczne 26 IV 2008 Nina Gierasimczuk (IF UW, ILLC UvA) Wyuczalność

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 15. Trójwartościowa logika zdań Łukasiewicza 1 Wprowadzenie W logice trójwartościowej, obok tradycyjnych wartości logicznych,

Bardziej szczegółowo

1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to:

1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to: 1 Rachunek zdań Formuły zdaniowe (lub krócej: zdania) w klasycznym rachunku zdań składają się ze zmiennych zdaniowych nazywanych też zdaniami składowymi (oznaczane są zazwyczaj p, q, r,...) oraz operatorów

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

FUNKCJE. (odwzorowania) Funkcje 1

FUNKCJE. (odwzorowania) Funkcje 1 FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

Struktury formalne, czyli elementy Teorii Modeli

Struktury formalne, czyli elementy Teorii Modeli Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j

Bardziej szczegółowo

Schematy Piramid Logicznych

Schematy Piramid Logicznych Schematy Piramid Logicznych geometryczna interpretacja niektórych formuł Paweł Jasionowski Politechnika Śląska w Gliwicach Wydział Matematyczno-Fizyczny Streszczenie Referat zajmuje się następującym zagadnieniem:

Bardziej szczegółowo

O pewnych związkach teorii modeli z teorią reprezentacji

O pewnych związkach teorii modeli z teorią reprezentacji O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej

Bardziej szczegółowo

Systemy algebraiczne. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak

Systemy algebraiczne. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Systemy algebraiczne Materiały pomocnicze do wykładu uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Struktury danych struktury algebraiczne Przykład Rozważmy następujący

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 1

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 1 Matematyka I BJiOR Semestr zimowy 2018/2019 Wykład 1 Zasady współpracy https://mat.ug.edu.pl/~matpz/ wykłady nie są obowiązkowe, ale nieobecności będą odnotowywane nieobecności nie należy usprawiedliwiać,

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

ROZDZIAŁ 1. Rachunek funkcyjny

ROZDZIAŁ 1. Rachunek funkcyjny ROZDZIAŁ 1 Rachunek funkcyjny Niech X 1,..., X n będą dowolnymi zbiorami. Wyrażenie (formułę) ϕ(x 1,..., x n ), w którym występuje n zmiennych x 1,..., x n i które zamienia się w zdanie logiczne, gdy zamiast

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące

Bardziej szczegółowo

Kultura logicznego myślenia

Kultura logicznego myślenia Kultura logicznego myślenia rok akademicki 2015/2016 semestr zimowy Temat 6: Rachunek predykatów jako logika pierwszego rzędu logika elementarna = logika pierwszego rzędu KRZ logika zerowego rzędu Język

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018

Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018 Logika Stosowana Wykład 2 - Logika modalna Część 3 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2017/2018 Marcin Szczuka (MIMUW) Logika Stosowana 2018 1 / 36 Plan wykładu

Bardziej szczegółowo

Wstęp do logiki. Klasyczny Rachunek Predykatów I

Wstęp do logiki. Klasyczny Rachunek Predykatów I Wstęp do logiki Klasyczny Rachunek Predykatów I KRZ jest teorią stanowiącą wstępną część logiki formalnej, część zakładaną przez inne teorie. Przypomnijmy, jest on teorią związków logicznych między zdaniami

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Elementy logiki

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Elementy logiki Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Elementy logiki 1. Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa.

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

Internet Semantyczny. Logika opisowa

Internet Semantyczny. Logika opisowa Internet Semantyczny Logika opisowa Ontologie Definicja Grubera: Ontologia to formalna specyfikacja konceptualizacji pewnego obszaru wiedzy czy opisu elementów rzeczywistości. W Internecie Semantycznym

Bardziej szczegółowo

Logiczne podstawy informatyki 1. Wojciech Buszkowski. Zakład Teorii Obliczeń Wydział Matematyki i Informatyki UAM

Logiczne podstawy informatyki 1. Wojciech Buszkowski. Zakład Teorii Obliczeń Wydział Matematyki i Informatyki UAM Logiczne podstawy informatyki 1 LOGICZNE PODSTAWY INFORMATYKI Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki UAM Logiczne podstawy informatyki 2 1. Rezolucja zdaniowa Formuły

Bardziej szczegółowo

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo