Grzegorz Mazur. Zak lad Metod Obliczeniowych Chemii UJ. 14 marca 2007
|
|
- Kinga Czerwińska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Zak lad Metod Obliczeniowych Chemii UJ 14 marca 2007
2 Rzad 1 Zamiast wst epu 2 Rzad Notacja dużego O Notacja Ω Notacja Θ 3
3 S lowniczek Rzad Algorytm W matematyce oraz informatyce to skończony, uporzadkowany zbiór jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. S lowo algorytm pochodzi od nazwiska Muhammed ibn Musa Alchwarizmi, matematyka perskiego z IX wieku. (Wikipedia) Struktura danych Sposób reprezentacji informacji w komputerze. Na strukturach danych operuja algorytmy. (Wikipedia)
4 Co to jest? Rzad Notacja dużego O Notacja Ω Notacja Θ Poj ecie rz edu określa asymptotyczne tempo wzrostu wartości wraz ze wzrostem jej argumentu.
5 Co to jest? Rzad Notacja dużego O Notacja Ω Notacja Θ Poj ecie rz edu określa asymptotyczne tempo wzrostu wartości wraz ze wzrostem jej argumentu. Istnieja różne sposoby określania rzedu. Najpopularniejsza z nich jest notacja dużego O. Niezbyt czesto można spotkać sie z notacja Ω i notacja Θ. Pozosta le praktycznie nie sa spotykane.
6 Definicja Rzad Notacja dużego O Notacja Ω Notacja Θ Mówimy, że f jest co najwyżej rz edu g (czyli f (x) O(g(x))) wtedy i tylko wtedy gdy x 0, M > 0 x > x 0 : f (x) M g(x) (1) Równoważnie (przy za lożeniu że x 0 x > x 0 : g(x) 0) f (x) O(g(x)) lim sup f (x) x g(x) < (2)
7 Rzad Podstawowe w laściwości Notacja dużego O Notacja Ω Notacja Θ Idempotencja Iloczyn Suma O(f (x)) O(f (x)) (3) O(f (x))o(g(x)) O(f (x)g(x)) (4) O(f (x)) + O(g(x)) O(max(f (x), g(x))) (5) Mnożenie przez sta l a O(cf (x)) O(f (x)) (6)
8 Rzad Notacja dużego O Notacja Ω Notacja Θ n O(n 2 ) (7) 3n 2 + log(n) + 2 O(n 2 ) (8) log(n 3 ) O(log(n)) (9)
9 Definicja Rzad Notacja dużego O Notacja Ω Notacja Θ Mówimy, że f jest co najmniej rz edu g (czyli f (x) Ω(g(x))) wtedy i tylko wtedy gdy x 0, M > 0 x > x 0 : f (x) M g(x) (10) Równoważnie (przy za lożeniu że x 0 x > x 0 : g(x) 0) f (x) O(g(x)) lim inf f (x) x g(x) > 0 (11)
10 Definicja Rzad Notacja dużego O Notacja Ω Notacja Θ Mówimy, że f jest dok ladnie rz edu g (czyli f (x) Θ(g(x))) wtedy i tylko wtedy gdy f (x) O(g(x)) f (x) Ω(g(x)) (12) Równoważnie (przy za lożeniu że x 0 x > x 0 : g(x) 0) f (x) O(g(x)) 0 < lim inf f (x) x g(x) lim sup f (x) x g(x) < (13)
11 Co to jest? I Rzad Definicja algorytmu mówi jaka ilość zasobów potrzebna jest do jego wykonania w zależności od rozmiaru danych wejściowych. Zasoby Najcześciej rozważa sie zużyty czas procesora (z lożoność czasowa) i zajmowana pamieć (z lożoność pamieciowa).
12 Co to jest? II Rzad Rodzaje z lożoności Poza tym mówimy też o z lożoności zamortyzowanej (to troche inna klasyfikacja)
13 Definicja Rzad Niech D n bedzie zbiorem wszystkich możliwych danych wejściowych o rozmiarze n, a t : D n N funkcja określajac a rozmiar użytych zasobów dla zestawu danych. Wtedy pesymistyczna z lożoność obliczeniowa definiujemy jako W (n) = sup{t(d) : d D n }. (14)
14 Definicja Rzad Niech D n bedzie zbiorem wszystkich możliwych danych wejściowych o rozmiarze n. Niech p n (k) oznacza prawdopodobieństwo, że dla danych o rozmiarze n algorytm użyje zasobów o rozmiarze k N. Wtedy oczekiwana z lożoność obliczeniowa definiujemy jako V (n) = k kp n (k) (15)
15 Rzad Szukanie elementu ciagu Problem Niech p bedzie permutacja ciagu n-elementowego. Zdefiniujmy funkcje f : {1, 2,..., n} {1, 2,..., n} która dla danego k zwraca pozycje elementu o wartości k w ciagu p.
16 Rzad Szukanie elementu ciagu Problem Niech p bedzie permutacja ciagu n-elementowego. Zdefiniujmy funkcje f : {1, 2,..., n} {1, 2,..., n} która dla danego k zwraca pozycje elementu o wartości k w ciagu p. Szkic algorytmu i n t f ( i n t * p, i n t k ) { f o r ( i n t * q = p ; *q!= k ; ++q ) ; return q p ; }
17 Rzad Szukanie elementu ciagu - z lożoność pesymistyczna Liczba operacji równa jest indeksowi poszukiwanego elementu w ciagu. Oczywiście liczba operacji bedzie najwieksza, jeżeli poszukiwany element jest ostatnim elementem ciagu. Czyli W (n) = n. (16)
18 Rzad Szukanie elementu ciagu - z lożoność oczekiwana Za lóżmy, że prawdopodobieństwo wystapienia szukanego elementu na określonej pozycji w ciagu nie zależy od pozycji. Wtedy p n (k) = 1. n Czyli V (n) = n k kp n (k) = n = n + 1 (17) 2 k k=1
19 Co to jest? Rzad Zdarza si e że dany algorytm wykonywany jest wielokrotnie. Zwykle interesujac a informacja jest wtedy ca lkowity koszt sekwencji wykonań tego algorytmu przeliczony na pojedyncze wywo lanie. S luży do tego z lożoność zamortyzowana. Na przyk lad jeżeli algorytm operuje na pewnej strukturze danych, jego z lożoność w ogólności zależeć może od stanu przechowywanego w tej strukturze. jest definiowana jedynie dla czasu wykonania.
20 Definicja Rzad Zdefinujmy ca lkowity czas wykonania algorytmu jako t = n t i (18) i gdzie t i jest maksymalnym czasem jednokrotnego wykonania algorytmu w danej sekwencji. Wtedy przez z lożoność zamortyzowana określać bedziemy U = max(t) n (19)
21 Stos Rzad s t r u c t Stack { s i z e t c a p a c i t y ; s i z e t s i z e ; i n t * data ; } ; void push ( s t r u c t Stack *, i n t ) ; i n t pop ( s t r u c t Stack * ) ;
22 Stos: pop Rzad i n t pop ( s t r u c t Stack * s ) { return s >data [ s >s i z e ]; }
23 Rzad Stos: push - naiwna implementacja void push ( s t r u c t Stack * s, i n t d ) { i f ( s >s i z e == s >c a p a c i t y ) { s >c a p a c i t y += 1 ; s >data = r e a l l o c ( s >data, s >c a p a c i t y ) ; } } s >data [ s >s i z e ++] = d ;
24 Rzad Stos: push - poprawiona implementacja void push ( s t r u c t Stack * s, i n t d ) { i f ( s >s i z e == s >c a p a c i t y ) { s >c a p a c i t y *= 2 ; s >data = r e a l l o c ( s >data, s >c a p a c i t y ) ; } } s >data [ s >s i z e ++] = d ;
Efektywność algorytmów
Efektywność algorytmów Algorytmika Algorytmika to dział informatyki zajmujący się poszukiwaniem, konstruowaniem i badaniem własności algorytmów, w kontekście ich przydatności do rozwiązywania problemów
Statystyka w analizie i planowaniu eksperymentu
5 marca 2011 Zasady 10 wyk ladów; egzamin pisemny; Literatura 1 A. Lomnicki Wprowadzenie do statystyki dla przyrodników PWN 1999. 2 W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski Rachunek
Złożoność Obliczeniowa Algorytmów
Algorytmów Pożądane cechy dobrego algorytmu Dobry algorytm mający rozwiązywać jakiś problem powinien mieć 2 naturalne cechy: 1 (poprawność) zwracać prawidłowy wynik (dokładniej: zgodność z warunkiem końcowym
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce
Technologie Informacyjne
POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 3: Wprowadzenie do algorytmów i ich
Architektura systemów komputerowych
Architektura systemów komputerowych Grzegorz Mazur Zak lad Metod Obliczeniowych Chemii Uniwersytet Jagielloński 12 kwietnia 2011 Grzegorz Mazur (ZMOCh UJ) Architektura systemów komputerowych 12 kwietnia
Ekonomia matematyczna i dynamiczna optymalizacja
Ekonomia matematyczna i dynamiczna optymalizacja Ramy wyk ladu i podstawowe narz edzia matematyczne SGH Semestr letni 2012-13 Uk lady dynamiczne Rozwiazanie modelu dynamicznego bardzo czesto można zapisać
1. Analiza algorytmów przypomnienie
1. Analiza algorytmów przypomnienie T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Wprowadzenie do algorytmów, rozdziały 1-4 Wydawnictwa naukowo-techniczne (2004) Jak mierzyć efektywność algorytmu?
Statystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010
Logika obliczeniowa Instytut Informatyki Poznań, rok akademicki 2009/2010 1 formu l rachunku zdań Wartościowanie i sta le logiczne Logiczna równoważność 2 Model formu ly Formu la spe lniona Formu la spe
Statystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
Statystyka w analizie i planowaniu eksperymentu
22 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Zasady analizy algorytmów
Zasady analizy algorytmów A więc dziś w programie: - Kilka ważnych definicji i opisów formalnych - Złożoność: czasowa i pamięciowa - Kategorie problemów - Jakieś przykłady Problem: Zadanie możliwe do rozwiązania
Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).
Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z
Algorytm. Algorytmy Marek Pudełko
Algorytm Algorytmy Marek Pudełko Definicja Algorytm to skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Algorytm ma przeprowadzić system z pewnego
ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:
ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy
Wyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 1 Przypomnienie Jesteśmy już w stanie wyznaczyć tp x = l x+t l x, gdzie l x, l x+t, to liczebności kohorty odpowiednio
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury
Wprowadzenie do złożoności obliczeniowej
problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów
Wyk lad 2 Podgrupa grupy
Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.
Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Podstawy Informatyki. Sprawność algorytmów
Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych
Drzewa AVL definicje
Drzewa AVL definicje Uporzadkowane drzewo binarne jest drzewem AVL 1, jeśli dla każdego wez la różnica wysokości dwóch jego poddrzew wynosi co najwyżej 1. M D S C H F K Z typowe drzewo AVL minimalne drzewa
Projektowanie i Analiza Algorytmów
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Projektowanie i Analiza Algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 3 2 Złożoność obliczeniowa algorytmów Notacja wielkie 0 Notacja Ω i Θ Algorytm Hornera Przykłady rzędów
Podstawy Programowania Algorytmy i programowanie
Podstawy Programowania Algorytmy i programowanie Katedra Analizy Nieliniowej, WMiI UŁ Łódź, 3 października 2013 r. Algorytm Algorytm w matematyce, informatyce, fizyce, itp. lub innej dziedzinie życia,
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I 1 Kodeks cywilny Tytu l XXVII, Umowa ubezpieczenia Dzia l I. Przepisy ogólne Dzia l II. Ubezpieczenia majatkowe
Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie
Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej
Podstawy programowania. Podstawy C# Przykłady algorytmów
Podstawy programowania Podstawy C# Przykłady algorytmów Proces tworzenia programu Sformułowanie problemu funkcje programu zakres i postać danych postać i dokładność wyników Wybór / opracowanie metody rozwiązania
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
Algorytmy i złożoność obliczeniowa. Wojciech Horzelski
Algorytmy i złożoność obliczeniowa Wojciech Horzelski 1 Tematyka wykładu Ø Ø Ø Ø Ø Wprowadzenie Poprawność algorytmów (elementy analizy algorytmów) Wyszukiwanie Sortowanie Elementarne i abstrakcyjne struktury
Programowanie generyczne w C++
Bardzo szablonowa prezentacja Zak lad Metod Obliczeniowych Chemii UJ 1 wrzesnia 2005 1 2 3 4 Co to jest? Przyk lad Zastosowania 5 S lowniczek Plan Programowanie generyczne Polega na mo_zliwosci deniowania
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 2/14 Funkcji podłogi z logarytmu można użyć do wyliczenia liczby cyfr liczby naturalnej k (k>0): w układzie dziesiętnym log 10 (k)
Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego
Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni
Wyk lad 1 Podstawowe struktury algebraiczne
Wyk lad 1 Podstawowe struktury algebraiczne 1 Dzia lanie w zbiorze Majac dane dowolne dwa przedmioty a b możemy z nich utworzyć pare uporzadkowan a (a b) o poprzedniku a i nastepniku b. Warunek na równość
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
ALGORYTMY I STRUKTURY DANYCH
ALGORYTMY I STRUKTURY DANYCH Temat 1: Algorytm podstawowe pojęcia Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/
Matematyka dyskretna Oznaczenia
Matematyka dyskretna Oznaczenia Andrzej Szepietowski W tym rozdziale przedstawimy podstawowe oznacznia. oznacza kwantyfikator ogólny dla każdego. oznacza kwantyfikator szczegó lowy istnieje. 1 Sumy i iloczyny
Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =
Jak matematyka pomaga w wyszukiwanie wzorca
Jak matematyka pomaga w wyszukiwanie wzorca Artur Jeż 28 września 2011 Artur Jeż Matematyka i wyszukiwanie wzorca 28 IX 2011 1 / 18 Wiek nauki Artur Jeż Matematyka i wyszukiwanie wzorca 28 IX 2011 2 /
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia 1 Cele (na dzisiaj): Zrozumieć w jaki sposób można wyznaczyć przysz ly czas życia osoby w wieku x. Zrozumieć parametry
INFORMATYKA W SZKOLE. Podyplomowe Studia Pedagogiczne. Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227
INFORMATYKA W SZKOLE Dr inż. Grażyna KRUPIŃSKA grazyna@fis.agh.edu.pl D-10 pokój 227 Podyplomowe Studia Pedagogiczne 2 Algorytmy Nazwa algorytm wywodzi się od nazwiska perskiego matematyka Muhamed ibn
Obliczenia rozproszone z wykorzystaniem MPI
Obliczenia rozproszone z wykorzystaniem Zarys wst u do podstaw :) Zak lad Metod Obliczeniowych Chemii UJ 8 sierpnia 2005 1 e konkretniej Jak szybko, i czemu tak wolno? 2 e szczegó lów 3 Dyspozytor Macierz
ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:
ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW MASZYNY O DOSTEPIE SWOBODNYM (RAM) Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 INSTRUKCJE MASZYNY RAM Instrukcja Argument Znaczenie READ
INFORMATYKA SORTOWANIE DANYCH.
INFORMATYKA SORTOWANIE DANYCH http://www.infoceram.agh.edu.pl SORTOWANIE Jest to proces ustawiania zbioru obiektów w określonym porządku. Sortowanie stosowane jest w celu ułatwienia późniejszego wyszukania
Wyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
Algorytmika. Algorytmy. prof. dr hab. inż. Joanna Józefowska. Poznań, rok akademicki 2008/2009. Plan wyk ladu Poj
Algorytmy Poznań, rok akademicki 2008/2009 Plan wyk ladu 1 Plan wyk ladu 2 Pojecie algorytmu Rozwiazywanie problemów Przyk lady algorytmów Cechy algorytmu 3 Zapisywanie algorytmów Sposoby zapisywania algorytmów
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Normy wektorów i macierzy
Rozdzia l 3 Normy wektorów i macierzy W tym rozdziale zak ladamy, że K C. 3.1 Ogólna definicja normy Niech ψ : K m,n [0, + ) b edzie przekszta lceniem spe lniaj acym warunki: (i) A K m,n ψ(a) = 0 A = 0,
Krzysztof Rykaczewski. Szeregi
Krzysztof Rykaczewski Spis treści 1 Definicja szeregu 2 Zbieżność szeregu 3 Kryteria zbieżności szeregów 4 Iloczyn Cauchy ego szeregów 5 Bibliografia 1 / 13 Definicja szeregu Niech dany będzie ciąg (a
Algorytm i złożoność obliczeniowa algorytmu
Algorytm i złożoność obliczeniowa algorytmu Algorytm - przepis postępowania, którego wykonanie prowadzi do rozwiązania określonego problemu określa czynności, jakie należy wykonać wyszczególnia wszystkie
c n (z z 0 ) n (2) Powiemy, że szereg Laurenta (2) jest zbieżny, jeśli każdy z szeregów zdefiniowanych w (1) jest f(z). Sume
Szeregi Laurenta, punkty osobliwe izolowane, klasyfikacja funkcji ze wzgl edu na osobliwości Dane s dwa szeregi postaci c n (z z 0 ) n i c n (z z 0 ) n. (1) n=1 1 Pierwszy z tych szeregów jest zbieżny
Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010
Instytut Informatyki Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Podstawienia Motywacja Podstawienie 2 Sk ladanie podstawień Motywacja Z lożenie podstawień
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 13. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy Wykład 13 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Złożoność algorytmów czy to istotne, skoro
Wyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy. Wykład 13. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy Wykład 13 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Złożoność algorytmów czy to istotne, skoro
STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA
1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.
Rachunek lambda CBN i CBV
P. Urzyczyn: Materia ly do wyk ladu z semantyki 1 Rachunek lambda CBN i CBV Rachunek lambda czesto uważamy za abstrakcyjny jezyk programowania funkcyjnego. Jednak ewaluacja wyrażenia w rzeczywistych jezykach
FUNKCJE LICZBOWE. x 1
FUNKCJE LICZBOWE Zbiory postaci {x R: x a}, {x R: x a}, {x R: x < a}, {x R: x > a} oznaczane sa symbolami (,a], [a, ), (,a) i (a, ). Nazywamy pó lprostymi domknie tymi lub otwartymi o końcu a. Symbol odczytujemy
Paradygmaty programowania. Paradygmaty programowania
Paradygmaty programowania Paradygmaty programowania Dr inż. Andrzej Grosser Cz estochowa, 2013 2 Spis treści 1. Zadanie 2 5 1.1. Wprowadzenie.................................. 5 1.2. Wskazówki do zadania..............................
Dzia lanie grupy na zbiorze. Twierdzenie Sylowa
Dzia lanie grupy na zbiorze. Twierdzenie Sylowa Niech G be dzie dowolna grupa, zaś X zbiorem. 1. Definicja. Dzia laniem grupy G na zbiorze X nazywamy funkcje µ: G X X, µ(g, x) = g x, spe lniaja ca dwa
g liczb rzeczywistych (a n ) spe lnia warunek
. Czy jest prawda, że a) R y R z R y + yz + = 0 ; b) R y R z R y + yz + 0 ; c) R y R z R y + yz + = 0 ; d) R y R z R y + yz + 0? 2. Czy jest prawdziwa nierówność a) ctg > ; b) tg < cos ; c) cos < sin ;
STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1
1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy
Paradygmaty programowania. Paradygmaty programowania
Paradygmaty programowania Paradygmaty programowania Dr inż. Andrzej Grosser Cz estochowa, 2013 2 Spis treści 1. Zadanie 1 5 1.1. Wprowadzenie.................................. 5 1.2. Wskazówki do zadania..............................
Algorytmy i Struktury Danych
Algorytmy i Struktury Danych Podstawowe informacje Prowadzący: Jan Tuziemski Email: jan.tuziemski@pg.edu.pl Konsultacje: pokój 412 GB (do ustalenia 412 GB) Podstawowe informacje literatura K. Goczyła Struktury
FUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
Wyk lad 4 Warstwy, dzielniki normalne
Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b
Wyk lad 5. Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu. 1. Granice niew laściwe
Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Granice niew laściwe Definicja 1 Ci ag (x n ) d aży do (jest rozbieżny do) + jeśli c R N n > N x n > c a do
Wyk lad 14 Cia la i ich w lasności
Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,
Organizacja zaj. Organizacja zaj. et i oprogramowanie. szeregowanie zadań, Interfejsy i komunikacja. Systemy wieloprocesorowe. sztuczna inteligencja,
Kontakt Dyżury dla studentów prof. dr hab. inż. Joanna Józefowska Instytut Informatyki Politechnika Poznańska wtorek godz. 14.00-15.00 p. 436WE ul. Piotrowo 3a tel. 0-61 6652369 jjozefowska@cs.put.poznan.pl
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na
Drzewa podstawowe poj
Drzewa podstawowe poj ecia drzewo graf reprezentujacy regularna strukture wskaźnikowa, gdzie każdy element zawiera dwa lub wiecej wskaźników (ponumerowanych) do takich samych elementów; wez ly (albo wierzcho
Wyk lad 6 Podprzestrzenie przestrzeni liniowych
Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)
Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika
Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Napisanie programu komputerowego: Zasada rozwiązania zadania Stworzenie sekwencji kroków algorytmu Przykłady algorytmów z życia codziennego (2/1 6)
Estymacja gęstości prawdopodobieństwa metodą selekcji modelu
Estymacja gęstości prawdopodobieństwa metodą selekcji modelu M. Wojtyś Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Wisła, 7 grudnia 2009 Wstęp Próba losowa z rozkładu prawdopodobieństwa
wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.)
egzamin podstawowy 7 lutego 2017 r. wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.) Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek imię, nazwisko i nr indeksu:..............................................................
Algorytm. a programowanie -
Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik
Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.
Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa
Uproszczony dowod twierdzenia Fredricksona-Maiorany
Uproszczony dowod twierdzenia Fredricksona-Maiorany W. Rytter Dla uproszczenia rozważamy tylko teksty binarne. S lowa Lyndona sa zwartymi reprezentacjami liniowymi s lów cyklicznych. Dla s lowa x niech
Ghost in the machine
Operacje na pami eci i odrobina I/O Zak lad Chemii Teoretycznej UJ 8 stycznia 2007 Funkcje operujace Wstep do operacji I/O na plikach 1 Operacje na pami eci 2 Funkcje operujace 3 Wst Funkcje operujace
Algorytm selekcji Hoare a. Łukasz Miemus
Algorytm selekcji Hoare a Łukasz Miemus 1 lutego 2006 Rozdział 1 O algorytmie 1.1 Problem Mamy tablicę A[N] różnych elementów i zmienną int K, takie że 1 K N. Oczekiwane rozwiązanie to określenie K-tego
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż.
Plan wyk ladu Systemy liczbowe Poznań, rok akademicki 2008/2009 1 Plan wyk ladu 2 Systemy liczbowe Systemy liczbowe Systemy pozycyjno-wagowe y 3 Przeliczanie liczb Algorytm Hornera Rozwini ecie liczby
Zdarzenia losowe i prawdopodobieństwo
Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne
Algorytmy i struktury danych Matematyka III sem.
Algorytmy i struktury danych Matematyka III sem. 30 godz. wykł. / 15 godz. ćw. / 15 godz. projekt dr inŝ. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info Literatura T.H. Cormen i inni, Wprowadzenie
Dynamiczne struktury danych
Dynamiczne struktury danych 391 Dynamiczne struktury danych Przez dynamiczne struktury danych rozumiemy proste i złożone struktury danych, którym pamięć jest przydzielana i zwalniana na żądanie w trakcie
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy
Procesy Stochastyczne - Zestaw 1
Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie
Statystyka w analizie i planowaniu eksperymentu
21 marca 2011 Zmienna losowa wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie z rejestracja jakiś sygna lów (danych). Moga to być na
Statystyka w analizie i planowaniu eksperymentu
10 marca 2014 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Liczby pierwsze - wstęp
Artykuł pobrano ze strony eioba.pl Liczby pierwsze - wstęp W latach 60 ubiegłego wieku w Afryce znaleziono kości z wyrytymi na nich karbami liczące ponad 5000 lat. Na jednej z nich (kość z Ishango) karby
PODSTAWOWE W LASNOŚCI W ZBIORZE LICZB RZECZYWISTYCH
PODSTAWOWE W LASNOŚCI DZIA LAŃ I NIERÓWNOŚCI W ZBIORZE LICZB RZECZYWISTYCH W dalszym cia gu be dziemy zajmować sie g lównie w lasnościami liczb rzeczywistych, funkcjami określonymi na zbiorach z lożonych
ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne.
Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne. 1 Przypomnienie Umowa ubezpieczenia zawiera informacje o: Przedmiocie ubezpieczenia Czasie