ENERGIA I PRACA Praca
|
|
- Konrad Sikorski
- 9 lat temu
- Przeglądów:
Transkrypt
1 ENERGIA I PRACA Pojęce energ jest fundamentalne dla całej fzy Energa łączy ona ze sobą różne zjawsa rocesy - jest jaby wsólnym manownem ozwalającym orównywać ze sobą rzemany chemczne, celne eletryczne, romenwane, ruch dużych obetów, grawtację, rozady cząste elementarnych Problem energ rowadz do najważnejszej chyba zasada całej fzy - zasada zachowana energ Nałada ona grance na rzetwarzane energ jej wyorzystane W mechance zasada zachowana energ ozwala oblczać w bardzo rosty sosób ruch cał bez onecznośc orzystana z zasad dynam Newtona Praca Wzajemne oddzaływane mędzy całam owoduje zmanę stanu mechancznego ruchu cała, a węc jego energ Proces zmany energ cała sowodowany dzałanem sły nazywamy rocesem wyonana racy, a rzyrost energ cała w tym rocese nazywamy racą, tórą ta sła wyonała Każde dostateczne małe (elementarne) rzesunęce untu materalnego, albo cała będącego w ruchu ostęowym, możemy uważać za rostolnwe Dlatego raca elementarna dw wyonana rzez słę F dla małego rzesunęca d r jest równa: dw Fdr, lub dw Fx Fcos x Jeżel ąt θ<9 (gdze θ jest to ąt omędzy wetoram F d r ), słę F nazywamy słą naędową Jeżel ąt θ>9, to F jest słą ooru Sła tarca jest właśne taą słą ooru
2 Jednostą racy jest w uładze SI dżul (J), 1J= 1N 1m Często używa sę jednost eletronowolt 1eV=1, J Zagadnene jest bardzej złożone, gdy F ne jest stała, wówczas trzeba osługwać sę bardzej somlowaną matematyą (całowane) Tae sły to n sła grawtacj mędzy dwoma całam zależy od ch odległośc, sła wywerana rzez rozcągnętą srężynę zależy od stona rozcągnęca Jeżel sła F (x) jest funcją ołożena, a jej erune jest zgodny z osą x, to raca, jaą wyona ta sła rzy rzesuwanu cała od ołożena x 1 do ołożena x może być oblczona orzez rzyblżene Dzel sę całowte rzemeszczene na n jednaowych odcnów x Wewnątrz taego rzedzału sła jest stała można teraz olczyć racę na tym odcnu x: W Fx, gdze F jest wartoścą sły na tym odcnu Z geometrycznego untu wdzena raca jest równoważna sume owerzchn rostoątów o szeroośc x wysoośc F : lub n W F x, 1 W lm x n 1 1 Fx Fdx To jest defncja cał Lczbowo odowada to olu owerzchn od rzywą
3 Praca wyonana rzez słę F na sończonej drodze równa sę sume elementarnych rac na nesończene małych odcnach drog, suma ta rowadz do cał: W Fdx Energa netyczna W mechance rozróżnamy dwa rodzaje energ: netyczną otencjalną Energą netyczną nazywamy mechanczną energę ażdego oruszającego sę cała: mv E Jaą racę wyonuje nezrównoważona sła rzy rzemeszczenu cała na odległość x (erune sły F rzyseszena a orywa sę z erunem os x)? Dla stałego rzyseszena droga: x oraz rzyseszene co daje Wyonana raca jest równa v t v v t at a v v t x 3
4 v v W Fx max m t Twerdzene o racy energ: v v t mv mv Praca wyonana rzez wyadową słę F dzałającą na unt materalny jest równa zmane energ netycznej tego untu W E E Z twerdzena owyższego wyna, że jednost racy energ są tae same Ponadto: gdy ne ma zmany wartośc rędośc to ne ma zmany energ netycznej tzn ne jest wyonywana raca Dlaczego energa netyczna rośne bardzej ze wzrostem rędośc nż masy? Wyna to z fatu, że raca zwązana z rozędzanem cała o 1m/s jest węsza dla cał oruszających sę szybo, nż dla tych wolnych Czy owyższy wzór na energę netyczną jest ścsły? Pewne odchylena od omawanego wzoru mogą ojawć sę dla cał oruszających sę z ogromnym rędoścam (blsm rędośc śwatła) Efet ten (nazywany efetem relatywstycznym) zwązany jest z teorą względnośc Enstena Na szczęśce można rzyjąć, że dla tyowych, (a nawet w zwyłym ojęcu dużych) rędośc wzór jest bardzo doładny Sły zachowawcze Interretowano energę netyczną jao zdolność cała do wyonana racy osztem jego ruchu (osztem E ) Po rzebycu zamnętej drog (cylu) zdolność cała do wyonana racy ozostaje taa sama, jest zachowana Słam zachowawczym są n: sły owszechnego cążena, sły srężystośc, sły wzajemnego dzałana mędzy całam naeletryzowanym N sła srężysta wywerana rzez dealną srężynę jest zachowawcza, w rzyadu sły grawtacj cało rzucone do góry, rzy zanedbanu ooru owetrza, wróc z tą samą rędoścą energą netyczną 4
5 Jeżel jedna cało, na tóre dzała jedna lub węcej sł owraca do ołożena oczątowego ma nną energę netyczną nż na oczątu to oznacza, że o rzebycu drog zamnętej zdolność tego cała do wyonana racy ne została zachowana Oznacza to, że rzynajmnej jedną z dzałających sł oreśla sę jao nezachowawczą Tyowym rzyładem sł nezachowawczych są sły tarca; są one zawsze serowane rzecwne do erunu ruchu Słę F, dzałającą na unt materalny albo na cało oruszające sę ruchem ostęowym, nazywamy zachowawczą albo otencjalną, jeżel raca wyonana rzez słę rzy rzesunęcu untu (cała) z jednego dowolnego ołożena (1) do drugego () ne zależy od toru, o tórym odbyło sę to rzesunece: W W W 1A 1B 1 Dlatego rzy rzesunęcu untu materalnego wzdłuż zamnętego toru l, n l A B l, raca sły zachowawczej tożsamoścwo równa sę zeru Sła jest zachowawcza, jeżel raca wyonana rzez tę słę nad untem materalnym, tóry orusza sę o dowolnej drodze zamnętej jest równa zeru Sła jest nezachowawcza, jeżel raca wyonana rzez tę słę nad untem materalnym, tóry orusza sę o dowolnej drodze zamnętej ne jest równa zeru 5
6 Energa otencjalna Energą otencjalną nazywamy energę oddzaływań, zależną od wzajemnego ołożena oddzałujących ze sobą cał Energa otencjalna jest zawsze energą uładu cał, gdyż oddzaływana wążą sę zawsze, z co najmnej dwoma całam Energa ta jest zawsze zwązana z oddzaływanam realzowanym słam zachowawczym W rzyadu sł nezachowawczych ne ma energ otencjalnej Gdy dzałają sły zachowawcze staje sę celowe wrowadzene ojęca energ stanu lub energ otencjalnej E Jeżel energa netyczna uładu zmen sę o wartość E (to tym samym zmenł sę stan uładu) to energa otencjalna E (stanu) tego uładu mus sę zmenć o wartość równą co do wartośc bezwzględnej, lecz rzecwną co do znau, ta że suma tych zman jest równa zeru E E Innym słowy, ażda zmana energ netycznej E jest równoważona rzez równą co do wartośc, a rzecwną co do znau zmanę energ otencjalnej E uładu, ta że ch suma ozostaje rzez cały czas stała: E E const Energa otencjalna rzedstawa formę nagromadzonej energ, tóra może być całowce odzysana zamenna na energę netyczną Ne można, węc wązać energ otencjalnej z słą nezachowawczą Z twerdzena o racy energ: węc dla zachowawczej sły F: Stąd W E W E E E W F(x)dx Można, węc zasać zależność mędzy słą energą otencjalną: x x 6
7 de (x) F(x) dx Należy zwrócć uwagę, że narawdę można tylo olczyć E, a ne E samą Poneważ E E E Żeby znaleźć E B trzeba ne tylo znać słę, ale jeszcze wartość E A : A B E B E E A x x F(x)dx E A Punt A nazywamy untem odnesena zazwyczaj wyberamy go ta (umowne), żeby E było równe zeru w tym unce Przyład energ otencjalnej dla jednowymarowych sł zachowawczych - grawtacyjna energa otencjalna w oblżu owerzchn Zem Cało orusza sę wzdłuż os y: sła F jest stała, a dla y=, E ()= Wtedy F(y) mg, Srawdzene: E (y) y F(y)dy E () ( mg)dy de (y) F dy y d(mgy) dy mg mgy Inny rzyład ruch srężyny (energa srężyny) wzdłuż os x: Wtedy (dla x=, E ()=): Srawdzene: E F x x x ( x)dx 7
8 de (x) F dx x d dx x Zasada zachowana energ Gdy jedynym słam zachowawczym dzałającym w uładze są sły mechanczne, wtedy można sformułować zasadę zachowana energ: Całowta energa mechanczna uładu zamnętego, w tórym dzałają tylo sły zachowawcze, jest weloścą stalą: E A E E E A B B Sformułowana zasada zachowana energ mechancznej jest dealzacją warunów dośwadczalnych, z tórym sotyamy sę w rzeczywstośc Czy sełnna jest zasada zachowana energ w rzyadu, gdy dzała sła nezachowawcza? Dla sł zachowawczych E E Welość o lewej strone to o rostu zmana całowtej energ mechancznej E Zatem równane to ma ostać E= Jeżel orócz lu sł zachowawczych dzała sła nezachowawcza (n tarce) to wtedy: czyl co jest równoważne: W W E, NZ E E W, Z E W NZ Dlatego, sła tarca zmena energę mechanczną uładu (zmnejsza ją, bo tarce jest słą rozraszającą, czyl dysyatywną) NZ 8
9 Co stało sę ze "straconą" energą mechanczną? Zostaje ona rzeształcona na energę wewnętrzną U, tóra objawa sę wzrostem temeratury (jest równa rozroszonej energ mechancznej) W zew E E U Praca wyonana na cele rzez czynn zewnętrzny równa sę wzrostow energ netycznej, wzrostow energ otencjalnej wzrostow energ wewnętrznej Jest to zasada zachowane energ całowtej Energa może być rzeształcona z jednej formy w nną, ale ne może być wytwarzana an nszczona; energa całowta jest weloścą stałą Inne sformułowana tej zasady: W dowolnym rocese całowta energa uładu zolowanego jest stała Całowta energa zolowanego uładu jest taa sama rzed, ja o wystąenu rzeman w tym uładze Energa ne gne, an ne owstaje samorzutne 9
10 Przyład zasady zachowana energ dla wahadła matematycznego: Moc Praca wyonana w jednostce czasu to moc Moc średna: P śr W t Moc chwlowa: dw dr P F Fv dt dt Oczywśce, gdy moc jest stała w czase to P śr =P Jednostą mocy jest wat 1W=1J/1s 1
11 Dla celów ratycznych używa sę W (lowatów) Zderzena cał Wszele zderzena cał można odzelć na dwa rodzaje - zderzena srężyste nesrężyste Zderzena srężyste charateryzują sę tym, że zarówno ęd, ja energa netyczna uładu zderzających sę cał ozostają stałe Natomast w zderzenach nesrężystych ęd uładu cał jest jedyną weloścą, tóra ozostaje ne zmenna Zasada zachowana ędu jest sełnna we wszystch zdarzenach, nezależne od charateru Zderzena srężyste ja nesrężyste mogą być zderzenam centralnym - gdy rędośc obu cał są serowane wzdłuż rostej łączącej ch środ, lub zderzenam necentralnym, gdy rędośc cał ne leżą na rostej łączącej środ mas tych uł Zderzena centralne nazywane są neraz zderzenam środowym 11
F - wypadkowa sił działających na cząstkę.
PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych
Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego
5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.
Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił.
1 Sła jest przyczyną przyspeszena. Sła jest wektorem. Sła wypadkowa jest sumą wektorową dzałających sł. Sr Isaac Newton (164-177) Jeśl na cało ne dzała żadna sła lub sły dzałające równoważą sę, to cało
XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne
XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom
Badanie energetyczne płaskiego kolektora słonecznego
Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz
Zachowanie energii. W Y K Ł A D VI. 7-1 Zasada zachowania energii mechanicznej.
Wykład z zyk. Potr Posmykewcz 56 W Y K Ł A D VI Zachowane energ. Energę potencjalną układu moŝna zdenować w następujący sposób: praca wykonana nad układem przez wewnętrzne sły zachowawcze jest równa zmnejszenu
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II
Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kontakt,informacja i konsultacje. Co to jest chemia fizyczna?
Chemia Fizyczna Technologia Chemiczna II ro Wyład 1 Kierowni rzedmiotu: Dr hab. inż. Wojciech Chrzanowsi Kontat,informacja i onsultacje Chemia A ; oój 307 Telefon: 347-2769 E-mail: wojte@chem.g.gda.l tablica
3. Kinematyka podstawowe pojęcia i wielkości
3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny
Prawa Zachowania. Zasady zachowania odgrywaj w fizyce szczególn rol.
izya 1: Wyad II Prawa Zachowania 1 Zasady zachowania odgrywaj w fizyce szczególn rol. Orócz zasad zachowania oznanych w szole: zasady zachowania du zasady zachowania momentu du zasady zachowania energii
DOBÓR SERWOSILNIKA POSUWU. Rysunek 1 przedstawia schemat kinematyczny napędu jednej osi urządzenia.
DOBÓR SERWOSILNIKA POSUWU Rysunek 1 rzedstawa schemat knematyczny naędu jednej os urządzena. Rys. 1. Schemat knematyczny serwonaędu: rzełożene rzekładn asowej, S skok śruby ocągowej, F sła orzeczna, F
Moment pędu punktu materialnego i układu punktów materialnych, moment siły Dynamika ruchu obrotowego bryły
Moment ędu untu matealnego uładu untów matealnych, moment sły Dynama uchu obotowego były x Moment ędu untu matealnego L. O L α. α α A Oeślamy go względem ustalonego untu O v L mv -weto oeślający jego ołożene
Wykład 9. Silnik Stirlinga (R. Stirling, 1816)
Wykład 9 Maszyny celne c.d. Entala Entala reakcj chemcznych Entala rzeman azowych Procesy odwracalne neodwracalne Entroa ykl arnot W. Domnk Wydzał Fzyk UW Termodynamka 06/07 /0 Slnk Strlnga (R. Strlng,
Fizyka 1- Mechanika. Wykład 6 10.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
izya 1- Mechania Wyład 6 1.XI.16 Zygun Szeflińi Środowiowe Laboraoriu Ciężich Jonów zef@fuw.edu.l h://www.fuw.edu.l/~zef/ Praca i energia Najrozy rzyade: Sała iła działa na ciało P owodując jego rzeunięcie
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
Blok 7: Zasada zachowania energii mechanicznej. Zderzenia
Blok 7 Zaada zachowana energ echancznej. Zderzena I. Sły zachowawcze nezachowawcze Słą zachowawczą nazyway łę która wzdłuż dowolnego zaknętego toru wykonuje pracę równą zeru. Słą zachowawczą nazyway łę
Moment siły (z ang. torque, inna nazwa moment obrotowy)
Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene
EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.
EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc
Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23
Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy
Plan wykładu. Mnożenie wektorów
Plan wykładu Wstęp do mechank dr nż. Ireneusz Owczarek CMF PŁ reneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/owczarek 2013/14 1 Algebra wektorów Knematyka 2 Układy nercjalne mechanka klasyczna Sła bezwładnośc
Wstęp do mechaniki. Wektory. Mnożenie wektorów... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek
Wstęp do mechank dr nż. Ireneusz Owczarek CNMF PŁ reneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/owczarek 1 dr nż. Ireneusz Owczarek Wstęp do mechank Wektory Algebra wektorów przedstawa sę (na płaszczyźne
METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU
Stansław Bogdanowcz Poltechna Warszawsa Wydzał Transportu Załad Logsty Systemów Transportowych METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU Streszczene: Ogólna podstawa
3. Siła bezwładności występująca podczas ruchu ciała w układzie obracającym się siła Coriolisa
3. Sła bezwładnośc występująca podczas uchu cała w układze obacającym sę sła Coolsa ω ω ω v a co wdz obsewato w układze necjalnym co wdz obsewato w układze nenecjalnym tajemncze pzyspeszene: to właśne
Mechanika cieczy. Ciecz jako ośrodek ciągły. 1. Cząsteczki cieczy nie są związane w położeniach równowagi mogą przemieszczać się na duże odległości.
Mecanika cieczy Ciecz jako ośrodek ciągły. Cząsteczki cieczy nie są związane w ołożeniac równowagi mogą rzemieszczać się na duże odległości.. Cząsteczki cieczy oddziałują ze sobą, lecz oddziaływania te
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
exp jest proporcjonalne do czynnika Boltzmanna exp(-e kbt (szerokość przerwy energetycznej między pasmami) g /k B
Koncentracja nośnów ładunu w półprzewodnu W półprzewodnu bez domesz swobodne nośn ładunu (eletrony w paśme przewodnctwa, dzury w paśme walencyjnym) powstają tylo w wynu wzbudzena eletronów z pasma walencyjnego
Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12
Ker. MTR Programowane w MATLABe Laboratorum Ćw. Analza statystyczna grafczna danych pomarowych. Wprowadzene MATLAB dysponuje weloma funcjam umożlwającym przeprowadzene analzy statystycznej pomarów, czy
TERMODYNAMIKA TECHNICZNA I CHEMICZNA
TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potencjał chemczny - rzyomnene de G n na odstawe tego, że otencjał termodynamczny
Fizyka 1- Mechanika. Wykład 6 9.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
izya 1- Mechania Wyład 6 9.XI.17 Zygun Szeflińsi Środowisowe Laboraoriu Ciężich Jonów szef@fuw.edu.l h://www.fuw.edu.l/~szef/ Równania ruchu ole agneyczne,, r,, v Sałe jednorodne ole w chwili = w uncie
Podstawy termodynamiki
Podstawy termodynamk Temperatura cepło Praca jaką wykonuje gaz I zasada termodynamk Przemany gazowe zotermczna zobaryczna zochoryczna adabatyczna Co to jest temperatura? 40 39 38 Temperatura (K) 8 7 6
Fizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
zyka - Mechanka Wykład 7 6.XI.07 Zygunt Szeflńsk Środowskowe Laboratoru Cężkch Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Zasada zachowana pędu Układ zolowany Każde cało oże w dowolny sposób oddzaływać
V. TERMODYNAMIKA KLASYCZNA
46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..
ver ruch bryły
ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt
Pęd ciała. II zasada dynamiki-postać uogólniona. Pęd =iloczyn masy ciała i jego prędkości. Pęd jest wektorem skierowanym zgodnie z wektorem prędkości
Pęd cała y j,, x x y y z z x w Pęd loczyn asy cała jego ędośc. Pęd jest wetoe seowany zgodne z wetoe ędośc II zasada dyna-ostać uogólnona a d dt d( ) dt const d dt w d dt Szybość zany w czase ędu jest
W technice często interesuje nas szybkość wykonywania pracy przez dane urządzenie. W tym celu wprowadzamy pojęcie mocy.
.. Moc Wykład 5 Informatyka 0/ W technice często interesuje nas szybkość wykonywania racy rzez dane urządzenie. W tym celu wrowadzamy ojęcie mocy. Moc (chwilową) definiujemy jako racę wykonaną w jednostce
Parametry stanu w przemianie izobarycznej zmieniają się według zależności
Przyad szzegóne rzemany otroowej /6 5.4. Przemana zobaryzna Przemana rzy stałym śnen, zy zobaryzna jest rzemaną otroową o wyładn m = 0, gdyż m = 0 == onst. Przemana ta zahodz, gdy ogrzewa sę gaz zamnęty
RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać:
RUCH DRGAJĄCY Ruch haroniczny Ruch, tóry owtarza się w regularnych odstęach czasu, nazyway ruche oresowy (eriodyczny). Szczególny rzyadie ruchu oresowego jest ruch haroniczny: zależność rzeieszczenia od
Parametry zmiennej losowej
Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy
obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3
TEORI STNU ODKSZTŁCENI. WEKTOR RZEMIESZCZENI x u r r ' ' x stan p defrmacj x stan przed defrmacją płżene pt. przed defrmacją ( r) ( x, x, x ) płżene pt. p defrmacj ( r ) ( x, x, x ) przemeszczene puntu
(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy
(MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek
Analiza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła
Podstawy fizyki sezon 1 III. Praca i energia
Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy
WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.
ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,
Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :
I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.
0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,
Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie
Perwsza zasada termodynamk 2.2.. Dośwadczene Joule a jego konsekwencje 2.2.2. eło, ojemność celna sens oblczane 2.2.3. Praca sens oblczane 2.2.4. Energa wewnętrzna oraz entala 2.2.5. Konsekwencje I zasady
Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.
F-Pow wlot / Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne
Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech
emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne
Reprezentacje grup symetrii. g s
erezentace ru ymetr Teora rerezentac dea: oeracom ymetr rzyać oeratory dzałaące w rzetrzen func zwązać z nm funce, tóre oeratory te rzerowadzaą w ebe odobne a zb. untów odcza oerac ymetr rozważmy rzeztałcene
Wykład 13 Druga zasada termodynamiki
Wyład 3 Druga zasada termodynamii Entroia W rzyadu silnia Carnota z gazem dosonałym otrzymaliśmy Q =. (3.) Q Z tego wzoru wynia, że wielość Q Q = (3.) dla silnia Carnota jest wielością inwariantną (niezmienniczą).
Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Termodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Układ termodynamiczny Układ termodynamiczny to ciało lub zbiór rozważanych ciał, w którym obok innych
Tabela 9.1. Moc akustyczna niektórych źródeł hałasu.
Ćwczene 9 POMIAR POIOMU DŹWIĘKU 43 9.. Podstawy teoretyczne Dźwę jest zjawsem zycznym olegającym na drganu ośroda srężystego. Drgana rozchodzą sę w ostac al. Rozchodzene sę al dźwęowej olega na owstanu
Wykład 10 Teoria kinetyczna i termodynamika
Wykład 0 Teora knetyczna termodynamka Prawa gazów doskonałych Z dośwadczeń wynka, że przy dostateczne małych gęstoścach, wszystke gazy, nezależne od składu chemcznego wykazują podobne zachowana: w stałej
5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim
5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną
ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco
ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos
=(u 1.,t) dla czwórnika elektrycznego dysypatywnego o sygnale wejściowym (wymuszeniu) G k. i sygnale wyjściowym (odpowiedzi) u 2
Przyła Ułożyć równane ruchu u u,t la czwórna eletrycznego ysypatywnego o sygnale wejścowym wymuszenu G u sygnale wyjścowym opowez u. Zmenna uogólnona Współrzęna uogólnona Pręość uogólnona q Energa netyczna
Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie
Wykład 5. Zderzenia w mechanice
Wykład 5 Zderzena w echance Zderzene nazyway zjawsko, wskutek którego zachodzą raptowne zany ruchu dwóch albo klku zderzających sę cał. Warto podkreślć, że przy zderzenu sły, które dzałają ędzy cząstka
P 1, P 2 - wektory sił wewnętrznych w punktach powierzchni F wokół punktu A
TEORI STNU NPRĘŻENI. WEKTOR NPRĘŻENI r x P P P P, P - wektory sł wewnętrznych w unktach owerzchn wokół unktu P P r, P - suma sł wewnętrznych na owerzchn P P P P średna gęstość sł wewnętrznych na owerzchn
Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny
Konstrukcja gier sprawiedliwych i niesprawiedliwych poprzez. określanie prawdopodobieństwa.
Fundacja Centrum Edukacj Obyatelskej, ul. Noakoskego 10, 00-666 Warszaa, e-mal: ceo@ceo.org.l; Akadema ucznoska, Tel. 22 825 04 96, e-mal: au@ceo.org.l; ęcej nformacj:.akademaucznoska.l 1 Konstrukcja ger
Rozkłady statystyczne w fizyce jądrowej
UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwczene laboratoryjne Rozłady statystyczne w fzyce jądrowej SZCZECIN 005 WSTĘP Różne neontrolowane zaburzena zewnętrzne (wahana temperatury,
Wykres indykatorowy Kąt obrotu wału korbowego [stopnie OWK]
Cśnene w cylndrze Cśnene w cylndrze Wyres ndyatorowy 1/10 9. WYKRES PRACY SINIKA SPAINOWEGO Rzeczywsty wyres pracy slna spalnowego nazywany wyresem ndyatorowym przedstawa przebeg bezwzględnego cśnena w
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE
Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych
Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej
Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const
INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.
INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
7 Praca i energia. 7.1 Praca wykonana przez siłę stałą. Moduł II Praca i energia
MODUŁ II Moduł II Praca i energia 7 Praca i energia Znajomość zagadnień związanych z szeroko rozumianym ojęciem energii jest konieczna dla wszelkich rozważań zarówno technologicznych, ekonomicznych, ekologicznych
Fizyka 1- Mechanika. Wykład stycznia.2018 PODSUMOWANIE
Fizyka - Mechanika Wykład 5 5 stycznia.08 PODSUMOWANIE Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.l htt://www.fuw.edu.l/~szef/ Prędkość chwilowa Wykres oniżej okazuje jak ożey
2.14. Zasada zachowania energii mechanicznej
Wykład 6 14 Zasada zachowania energii mechanicznej Informatyka 011/1 Stajesz na szczycie góry Mocujesz deskę, zakładasz gogle i zaczynasz szaleńczy zjazd W miarę jak twoja energia otencjalna zamienia się
JEDNOWYMIAROWA ZMIENNA LOSOWA
JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E bedze zborem zdarzen elementarnych danego doswadczena. Funcje X(e) przyporzadowujaca azdemu zdarzenu elementarnemu e E jedna tylo jedna lczbe X(e)x nazywamy ZMIENNA
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
Wykład 21: Studnie i bariery cz.1.
Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera
r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej
Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy
I. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
A. ROZLICZENIE KOSZTÓW CENTRALNEGO OGRZEWANIA CHARAKTERYSTYKA KOSZTÓW DOSTAWY CIEPŁA
REGULAMIN ndywdualnego rozlczena osztów energ ceplnej dostarczonej na potrzeby centralnego ogrzewana cepłej wody meszań w zasobach Spółdzeln Meszanowej Lębora. POSTANOIENIA OGÓLNE Regulamn oreśla zasady:
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)
ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza
FUNKCJE WÓCH I TRZECH ZMIENNYCH (było w semestrze II) ef 1 (funcja dwóch zmiennych) Funcją f dwóch zmiennych oreśloną na zbiorze A R o wartościach w R nazywamy przyporządowanie ażdemu puntowi ze zbioru
Praca i energia. x jest. x i W Y K Ł A D 5. 6-1 Praca i energia kinetyczna. Ruch jednowymiarowy pod działaniem stałych sił.
ykład z fzyk. Pot Pomykewcz 40 Y K Ł A D 5 Pa enega. Pa enega odgywają waŝną olę zaówno w fzyce jak w codzennym Ŝycu. fzyce ła wykonuje konketną pacę, jeŝel dzała ona na pzedmot ma kładową wzdłuŝ pzemezczena
ZASADY DYNAMIKI. II. Przyspieszenie ciała jest proporcjonalne do przyłoŝonej siły. r r v. r dt
DYAKA Zsdy dynm Ułdy necjlne, zsd bezwłdnośc, zsd względnośc Defncje welośc dynmcznych Zsdy zchown ędu momentu ędu Ułdy nenecjlne Pc Sły zchowwcze neg otencjln netyczn Zsd zchown eneg ZASADY DYAK. Cło,
Bada zaleŝno. nie zaleŝą. od ilości substancji. Funkcja stanu to taka wielkość. a mały y 10 cm, to: = F2 F 1 = 0,01 F 2.
Zagadnena. Parametry stanu. Cśnene, słua ceczy (gazu) o wysokośc. Prawo rcmedesa.. emeratura. 4. Knetyczna teora w zastosowanu do gazu doskonałego.. Równane gazu doskonałego, zasady termodynamk (zerowa,
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blk 6: Pęd. Zasada zachwana pędu. Praca. Mc. ZESTAW ZADAŃ NA ZAJĘCIA Uwaga: w pnższych zadanach przyjmj, że wartść przyspeszena zemskeg jest równa g 10 m / s. PĘD I ZASADA ZACHOWANIA PĘDU 1. Płka mase
5. MES w mechanice ośrodka ciągłego
. MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m
σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;
Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia
OGÓLNE PODSTAWY SPEKTROSKOPII
WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/
Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
Prąd elektryczny U R I =
Prąd elektryczny porządkowany ruch ładunków elektrycznych (nośnków prądu). Do scharakteryzowana welkośc prądu służy natężene prądu określające welkość ładunku przepływającego przez poprzeczny przekrój
Wykład 15 Elektrostatyka
Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.
MECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie
DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 5 płaszczyzna fazowa Poniższe ateriały tylo dla