ENERGIA I PRACA Praca

Wielkość: px
Rozpocząć pokaz od strony:

Download "ENERGIA I PRACA Praca"

Transkrypt

1 ENERGIA I PRACA Pojęce energ jest fundamentalne dla całej fzy Energa łączy ona ze sobą różne zjawsa rocesy - jest jaby wsólnym manownem ozwalającym orównywać ze sobą rzemany chemczne, celne eletryczne, romenwane, ruch dużych obetów, grawtację, rozady cząste elementarnych Problem energ rowadz do najważnejszej chyba zasada całej fzy - zasada zachowana energ Nałada ona grance na rzetwarzane energ jej wyorzystane W mechance zasada zachowana energ ozwala oblczać w bardzo rosty sosób ruch cał bez onecznośc orzystana z zasad dynam Newtona Praca Wzajemne oddzaływane mędzy całam owoduje zmanę stanu mechancznego ruchu cała, a węc jego energ Proces zmany energ cała sowodowany dzałanem sły nazywamy rocesem wyonana racy, a rzyrost energ cała w tym rocese nazywamy racą, tórą ta sła wyonała Każde dostateczne małe (elementarne) rzesunęce untu materalnego, albo cała będącego w ruchu ostęowym, możemy uważać za rostolnwe Dlatego raca elementarna dw wyonana rzez słę F dla małego rzesunęca d r jest równa: dw Fdr, lub dw Fx Fcos x Jeżel ąt θ<9 (gdze θ jest to ąt omędzy wetoram F d r ), słę F nazywamy słą naędową Jeżel ąt θ>9, to F jest słą ooru Sła tarca jest właśne taą słą ooru

2 Jednostą racy jest w uładze SI dżul (J), 1J= 1N 1m Często używa sę jednost eletronowolt 1eV=1, J Zagadnene jest bardzej złożone, gdy F ne jest stała, wówczas trzeba osługwać sę bardzej somlowaną matematyą (całowane) Tae sły to n sła grawtacj mędzy dwoma całam zależy od ch odległośc, sła wywerana rzez rozcągnętą srężynę zależy od stona rozcągnęca Jeżel sła F (x) jest funcją ołożena, a jej erune jest zgodny z osą x, to raca, jaą wyona ta sła rzy rzesuwanu cała od ołożena x 1 do ołożena x może być oblczona orzez rzyblżene Dzel sę całowte rzemeszczene na n jednaowych odcnów x Wewnątrz taego rzedzału sła jest stała można teraz olczyć racę na tym odcnu x: W Fx, gdze F jest wartoścą sły na tym odcnu Z geometrycznego untu wdzena raca jest równoważna sume owerzchn rostoątów o szeroośc x wysoośc F : lub n W F x, 1 W lm x n 1 1 Fx Fdx To jest defncja cał Lczbowo odowada to olu owerzchn od rzywą

3 Praca wyonana rzez słę F na sończonej drodze równa sę sume elementarnych rac na nesończene małych odcnach drog, suma ta rowadz do cał: W Fdx Energa netyczna W mechance rozróżnamy dwa rodzaje energ: netyczną otencjalną Energą netyczną nazywamy mechanczną energę ażdego oruszającego sę cała: mv E Jaą racę wyonuje nezrównoważona sła rzy rzemeszczenu cała na odległość x (erune sły F rzyseszena a orywa sę z erunem os x)? Dla stałego rzyseszena droga: x oraz rzyseszene co daje Wyonana raca jest równa v t v v t at a v v t x 3

4 v v W Fx max m t Twerdzene o racy energ: v v t mv mv Praca wyonana rzez wyadową słę F dzałającą na unt materalny jest równa zmane energ netycznej tego untu W E E Z twerdzena owyższego wyna, że jednost racy energ są tae same Ponadto: gdy ne ma zmany wartośc rędośc to ne ma zmany energ netycznej tzn ne jest wyonywana raca Dlaczego energa netyczna rośne bardzej ze wzrostem rędośc nż masy? Wyna to z fatu, że raca zwązana z rozędzanem cała o 1m/s jest węsza dla cał oruszających sę szybo, nż dla tych wolnych Czy owyższy wzór na energę netyczną jest ścsły? Pewne odchylena od omawanego wzoru mogą ojawć sę dla cał oruszających sę z ogromnym rędoścam (blsm rędośc śwatła) Efet ten (nazywany efetem relatywstycznym) zwązany jest z teorą względnośc Enstena Na szczęśce można rzyjąć, że dla tyowych, (a nawet w zwyłym ojęcu dużych) rędośc wzór jest bardzo doładny Sły zachowawcze Interretowano energę netyczną jao zdolność cała do wyonana racy osztem jego ruchu (osztem E ) Po rzebycu zamnętej drog (cylu) zdolność cała do wyonana racy ozostaje taa sama, jest zachowana Słam zachowawczym są n: sły owszechnego cążena, sły srężystośc, sły wzajemnego dzałana mędzy całam naeletryzowanym N sła srężysta wywerana rzez dealną srężynę jest zachowawcza, w rzyadu sły grawtacj cało rzucone do góry, rzy zanedbanu ooru owetrza, wróc z tą samą rędoścą energą netyczną 4

5 Jeżel jedna cało, na tóre dzała jedna lub węcej sł owraca do ołożena oczątowego ma nną energę netyczną nż na oczątu to oznacza, że o rzebycu drog zamnętej zdolność tego cała do wyonana racy ne została zachowana Oznacza to, że rzynajmnej jedną z dzałających sł oreśla sę jao nezachowawczą Tyowym rzyładem sł nezachowawczych są sły tarca; są one zawsze serowane rzecwne do erunu ruchu Słę F, dzałającą na unt materalny albo na cało oruszające sę ruchem ostęowym, nazywamy zachowawczą albo otencjalną, jeżel raca wyonana rzez słę rzy rzesunęcu untu (cała) z jednego dowolnego ołożena (1) do drugego () ne zależy od toru, o tórym odbyło sę to rzesunece: W W W 1A 1B 1 Dlatego rzy rzesunęcu untu materalnego wzdłuż zamnętego toru l, n l A B l, raca sły zachowawczej tożsamoścwo równa sę zeru Sła jest zachowawcza, jeżel raca wyonana rzez tę słę nad untem materalnym, tóry orusza sę o dowolnej drodze zamnętej jest równa zeru Sła jest nezachowawcza, jeżel raca wyonana rzez tę słę nad untem materalnym, tóry orusza sę o dowolnej drodze zamnętej ne jest równa zeru 5

6 Energa otencjalna Energą otencjalną nazywamy energę oddzaływań, zależną od wzajemnego ołożena oddzałujących ze sobą cał Energa otencjalna jest zawsze energą uładu cał, gdyż oddzaływana wążą sę zawsze, z co najmnej dwoma całam Energa ta jest zawsze zwązana z oddzaływanam realzowanym słam zachowawczym W rzyadu sł nezachowawczych ne ma energ otencjalnej Gdy dzałają sły zachowawcze staje sę celowe wrowadzene ojęca energ stanu lub energ otencjalnej E Jeżel energa netyczna uładu zmen sę o wartość E (to tym samym zmenł sę stan uładu) to energa otencjalna E (stanu) tego uładu mus sę zmenć o wartość równą co do wartośc bezwzględnej, lecz rzecwną co do znau, ta że suma tych zman jest równa zeru E E Innym słowy, ażda zmana energ netycznej E jest równoważona rzez równą co do wartośc, a rzecwną co do znau zmanę energ otencjalnej E uładu, ta że ch suma ozostaje rzez cały czas stała: E E const Energa otencjalna rzedstawa formę nagromadzonej energ, tóra może być całowce odzysana zamenna na energę netyczną Ne można, węc wązać energ otencjalnej z słą nezachowawczą Z twerdzena o racy energ: węc dla zachowawczej sły F: Stąd W E W E E E W F(x)dx Można, węc zasać zależność mędzy słą energą otencjalną: x x 6

7 de (x) F(x) dx Należy zwrócć uwagę, że narawdę można tylo olczyć E, a ne E samą Poneważ E E E Żeby znaleźć E B trzeba ne tylo znać słę, ale jeszcze wartość E A : A B E B E E A x x F(x)dx E A Punt A nazywamy untem odnesena zazwyczaj wyberamy go ta (umowne), żeby E było równe zeru w tym unce Przyład energ otencjalnej dla jednowymarowych sł zachowawczych - grawtacyjna energa otencjalna w oblżu owerzchn Zem Cało orusza sę wzdłuż os y: sła F jest stała, a dla y=, E ()= Wtedy F(y) mg, Srawdzene: E (y) y F(y)dy E () ( mg)dy de (y) F dy y d(mgy) dy mg mgy Inny rzyład ruch srężyny (energa srężyny) wzdłuż os x: Wtedy (dla x=, E ()=): Srawdzene: E F x x x ( x)dx 7

8 de (x) F dx x d dx x Zasada zachowana energ Gdy jedynym słam zachowawczym dzałającym w uładze są sły mechanczne, wtedy można sformułować zasadę zachowana energ: Całowta energa mechanczna uładu zamnętego, w tórym dzałają tylo sły zachowawcze, jest weloścą stalą: E A E E E A B B Sformułowana zasada zachowana energ mechancznej jest dealzacją warunów dośwadczalnych, z tórym sotyamy sę w rzeczywstośc Czy sełnna jest zasada zachowana energ w rzyadu, gdy dzała sła nezachowawcza? Dla sł zachowawczych E E Welość o lewej strone to o rostu zmana całowtej energ mechancznej E Zatem równane to ma ostać E= Jeżel orócz lu sł zachowawczych dzała sła nezachowawcza (n tarce) to wtedy: czyl co jest równoważne: W W E, NZ E E W, Z E W NZ Dlatego, sła tarca zmena energę mechanczną uładu (zmnejsza ją, bo tarce jest słą rozraszającą, czyl dysyatywną) NZ 8

9 Co stało sę ze "straconą" energą mechanczną? Zostaje ona rzeształcona na energę wewnętrzną U, tóra objawa sę wzrostem temeratury (jest równa rozroszonej energ mechancznej) W zew E E U Praca wyonana na cele rzez czynn zewnętrzny równa sę wzrostow energ netycznej, wzrostow energ otencjalnej wzrostow energ wewnętrznej Jest to zasada zachowane energ całowtej Energa może być rzeształcona z jednej formy w nną, ale ne może być wytwarzana an nszczona; energa całowta jest weloścą stałą Inne sformułowana tej zasady: W dowolnym rocese całowta energa uładu zolowanego jest stała Całowta energa zolowanego uładu jest taa sama rzed, ja o wystąenu rzeman w tym uładze Energa ne gne, an ne owstaje samorzutne 9

10 Przyład zasady zachowana energ dla wahadła matematycznego: Moc Praca wyonana w jednostce czasu to moc Moc średna: P śr W t Moc chwlowa: dw dr P F Fv dt dt Oczywśce, gdy moc jest stała w czase to P śr =P Jednostą mocy jest wat 1W=1J/1s 1

11 Dla celów ratycznych używa sę W (lowatów) Zderzena cał Wszele zderzena cał można odzelć na dwa rodzaje - zderzena srężyste nesrężyste Zderzena srężyste charateryzują sę tym, że zarówno ęd, ja energa netyczna uładu zderzających sę cał ozostają stałe Natomast w zderzenach nesrężystych ęd uładu cał jest jedyną weloścą, tóra ozostaje ne zmenna Zasada zachowana ędu jest sełnna we wszystch zdarzenach, nezależne od charateru Zderzena srężyste ja nesrężyste mogą być zderzenam centralnym - gdy rędośc obu cał są serowane wzdłuż rostej łączącej ch środ, lub zderzenam necentralnym, gdy rędośc cał ne leżą na rostej łączącej środ mas tych uł Zderzena centralne nazywane są neraz zderzenam środowym 11

F - wypadkowa sił działających na cząstkę.

F - wypadkowa sił działających na cząstkę. PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego 5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.

Bardziej szczegółowo

Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił.

Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił. 1 Sła jest przyczyną przyspeszena. Sła jest wektorem. Sła wypadkowa jest sumą wektorową dzałających sł. Sr Isaac Newton (164-177) Jeśl na cało ne dzała żadna sła lub sły dzałające równoważą sę, to cało

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom

Bardziej szczegółowo

Badanie energetyczne płaskiego kolektora słonecznego

Badanie energetyczne płaskiego kolektora słonecznego Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz

Bardziej szczegółowo

Zachowanie energii. W Y K Ł A D VI. 7-1 Zasada zachowania energii mechanicznej.

Zachowanie energii. W Y K Ł A D VI. 7-1 Zasada zachowania energii mechanicznej. Wykład z zyk. Potr Posmykewcz 56 W Y K Ł A D VI Zachowane energ. Energę potencjalną układu moŝna zdenować w następujący sposób: praca wykonana nad układem przez wewnętrzne sły zachowawcze jest równa zmnejszenu

Bardziej szczegółowo

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac) Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kontakt,informacja i konsultacje. Co to jest chemia fizyczna?

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kontakt,informacja i konsultacje. Co to jest chemia fizyczna? Chemia Fizyczna Technologia Chemiczna II ro Wyład 1 Kierowni rzedmiotu: Dr hab. inż. Wojciech Chrzanowsi Kontat,informacja i onsultacje Chemia A ; oój 307 Telefon: 347-2769 E-mail: wojte@chem.g.gda.l tablica

Bardziej szczegółowo

3. Kinematyka podstawowe pojęcia i wielkości

3. Kinematyka podstawowe pojęcia i wielkości 3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny

Bardziej szczegółowo

Prawa Zachowania. Zasady zachowania odgrywaj w fizyce szczególn rol.

Prawa Zachowania. Zasady zachowania odgrywaj w fizyce szczególn rol. izya 1: Wyad II Prawa Zachowania 1 Zasady zachowania odgrywaj w fizyce szczególn rol. Orócz zasad zachowania oznanych w szole: zasady zachowania du zasady zachowania momentu du zasady zachowania energii

Bardziej szczegółowo

DOBÓR SERWOSILNIKA POSUWU. Rysunek 1 przedstawia schemat kinematyczny napędu jednej osi urządzenia.

DOBÓR SERWOSILNIKA POSUWU. Rysunek 1 przedstawia schemat kinematyczny napędu jednej osi urządzenia. DOBÓR SERWOSILNIKA POSUWU Rysunek 1 rzedstawa schemat knematyczny naędu jednej os urządzena. Rys. 1. Schemat knematyczny serwonaędu: rzełożene rzekładn asowej, S skok śruby ocągowej, F sła orzeczna, F

Bardziej szczegółowo

Moment pędu punktu materialnego i układu punktów materialnych, moment siły Dynamika ruchu obrotowego bryły

Moment pędu punktu materialnego i układu punktów materialnych, moment siły Dynamika ruchu obrotowego bryły Moment ędu untu matealnego uładu untów matealnych, moment sły Dynama uchu obotowego były x Moment ędu untu matealnego L. O L α. α α A Oeślamy go względem ustalonego untu O v L mv -weto oeślający jego ołożene

Bardziej szczegółowo

Wykład 9. Silnik Stirlinga (R. Stirling, 1816)

Wykład 9. Silnik Stirlinga (R. Stirling, 1816) Wykład 9 Maszyny celne c.d. Entala Entala reakcj chemcznych Entala rzeman azowych Procesy odwracalne neodwracalne Entroa ykl arnot W. Domnk Wydzał Fzyk UW Termodynamka 06/07 /0 Slnk Strlnga (R. Strlng,

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 6 10.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 6 10.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów izya 1- Mechania Wyład 6 1.XI.16 Zygun Szeflińi Środowiowe Laboraoriu Ciężich Jonów zef@fuw.edu.l h://www.fuw.edu.l/~zef/ Praca i energia Najrozy rzyade: Sała iła działa na ciało P owodując jego rzeunięcie

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Blok 7: Zasada zachowania energii mechanicznej. Zderzenia

Blok 7: Zasada zachowania energii mechanicznej. Zderzenia Blok 7 Zaada zachowana energ echancznej. Zderzena I. Sły zachowawcze nezachowawcze Słą zachowawczą nazyway łę która wzdłuż dowolnego zaknętego toru wykonuje pracę równą zeru. Słą zachowawczą nazyway łę

Bardziej szczegółowo

Moment siły (z ang. torque, inna nazwa moment obrotowy)

Moment siły (z ang. torque, inna nazwa moment obrotowy) Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI. EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

Plan wykładu. Mnożenie wektorów

Plan wykładu. Mnożenie wektorów Plan wykładu Wstęp do mechank dr nż. Ireneusz Owczarek CMF PŁ reneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/owczarek 2013/14 1 Algebra wektorów Knematyka 2 Układy nercjalne mechanka klasyczna Sła bezwładnośc

Bardziej szczegółowo

Wstęp do mechaniki. Wektory. Mnożenie wektorów... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek

Wstęp do mechaniki. Wektory. Mnożenie wektorów... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek Wstęp do mechank dr nż. Ireneusz Owczarek CNMF PŁ reneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/owczarek 1 dr nż. Ireneusz Owczarek Wstęp do mechank Wektory Algebra wektorów przedstawa sę (na płaszczyźne

Bardziej szczegółowo

METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU

METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU Stansław Bogdanowcz Poltechna Warszawsa Wydzał Transportu Załad Logsty Systemów Transportowych METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU Streszczene: Ogólna podstawa

Bardziej szczegółowo

3. Siła bezwładności występująca podczas ruchu ciała w układzie obracającym się siła Coriolisa

3. Siła bezwładności występująca podczas ruchu ciała w układzie obracającym się siła Coriolisa 3. Sła bezwładnośc występująca podczas uchu cała w układze obacającym sę sła Coolsa ω ω ω v a co wdz obsewato w układze necjalnym co wdz obsewato w układze nenecjalnym tajemncze pzyspeszene: to właśne

Bardziej szczegółowo

Mechanika cieczy. Ciecz jako ośrodek ciągły. 1. Cząsteczki cieczy nie są związane w położeniach równowagi mogą przemieszczać się na duże odległości.

Mechanika cieczy. Ciecz jako ośrodek ciągły. 1. Cząsteczki cieczy nie są związane w położeniach równowagi mogą przemieszczać się na duże odległości. Mecanika cieczy Ciecz jako ośrodek ciągły. Cząsteczki cieczy nie są związane w ołożeniac równowagi mogą rzemieszczać się na duże odległości.. Cząsteczki cieczy oddziałują ze sobą, lecz oddziaływania te

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

exp jest proporcjonalne do czynnika Boltzmanna exp(-e kbt (szerokość przerwy energetycznej między pasmami) g /k B

exp jest proporcjonalne do czynnika Boltzmanna exp(-e kbt (szerokość przerwy energetycznej między pasmami) g /k B Koncentracja nośnów ładunu w półprzewodnu W półprzewodnu bez domesz swobodne nośn ładunu (eletrony w paśme przewodnctwa, dzury w paśme walencyjnym) powstają tylo w wynu wzbudzena eletronów z pasma walencyjnego

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12

Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12 Ker. MTR Programowane w MATLABe Laboratorum Ćw. Analza statystyczna grafczna danych pomarowych. Wprowadzene MATLAB dysponuje weloma funcjam umożlwającym przeprowadzene analzy statystycznej pomarów, czy

Bardziej szczegółowo

TERMODYNAMIKA TECHNICZNA I CHEMICZNA

TERMODYNAMIKA TECHNICZNA I CHEMICZNA TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potencjał chemczny - rzyomnene de G n na odstawe tego, że otencjał termodynamczny

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 6 9.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 6 9.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów izya 1- Mechania Wyład 6 9.XI.17 Zygun Szeflińsi Środowisowe Laboraoriu Ciężich Jonów szef@fuw.edu.l h://www.fuw.edu.l/~szef/ Równania ruchu ole agneyczne,, r,, v Sałe jednorodne ole w chwili = w uncie

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamk Temperatura cepło Praca jaką wykonuje gaz I zasada termodynamk Przemany gazowe zotermczna zobaryczna zochoryczna adabatyczna Co to jest temperatura? 40 39 38 Temperatura (K) 8 7 6

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów zyka - Mechanka Wykład 7 6.XI.07 Zygunt Szeflńsk Środowskowe Laboratoru Cężkch Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Zasada zachowana pędu Układ zolowany Każde cało oże w dowolny sposób oddzaływać

Bardziej szczegółowo

V. TERMODYNAMIKA KLASYCZNA

V. TERMODYNAMIKA KLASYCZNA 46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..

Bardziej szczegółowo

ver ruch bryły

ver ruch bryły ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt

Bardziej szczegółowo

Pęd ciała. II zasada dynamiki-postać uogólniona. Pęd =iloczyn masy ciała i jego prędkości. Pęd jest wektorem skierowanym zgodnie z wektorem prędkości

Pęd ciała. II zasada dynamiki-postać uogólniona. Pęd =iloczyn masy ciała i jego prędkości. Pęd jest wektorem skierowanym zgodnie z wektorem prędkości Pęd cała y j,, x x y y z z x w Pęd loczyn asy cała jego ędośc. Pęd jest wetoe seowany zgodne z wetoe ędośc II zasada dyna-ostać uogólnona a d dt d( ) dt const d dt w d dt Szybość zany w czase ędu jest

Bardziej szczegółowo

W technice często interesuje nas szybkość wykonywania pracy przez dane urządzenie. W tym celu wprowadzamy pojęcie mocy.

W technice często interesuje nas szybkość wykonywania pracy przez dane urządzenie. W tym celu wprowadzamy pojęcie mocy. .. Moc Wykład 5 Informatyka 0/ W technice często interesuje nas szybkość wykonywania racy rzez dane urządzenie. W tym celu wrowadzamy ojęcie mocy. Moc (chwilową) definiujemy jako racę wykonaną w jednostce

Bardziej szczegółowo

Parametry stanu w przemianie izobarycznej zmieniają się według zależności

Parametry stanu w przemianie izobarycznej zmieniają się według zależności Przyad szzegóne rzemany otroowej /6 5.4. Przemana zobaryzna Przemana rzy stałym śnen, zy zobaryzna jest rzemaną otroową o wyładn m = 0, gdyż m = 0 == onst. Przemana ta zahodz, gdy ogrzewa sę gaz zamnęty

Bardziej szczegółowo

RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać:

RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać: RUCH DRGAJĄCY Ruch haroniczny Ruch, tóry owtarza się w regularnych odstęach czasu, nazyway ruche oresowy (eriodyczny). Szczególny rzyadie ruchu oresowego jest ruch haroniczny: zależność rzeieszczenia od

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3

obliczenie różnicy kwadratów odległości punktów po i przed odkształceniem - różniczka zupełna u i, j =1, 2, 3 TEORI STNU ODKSZTŁCENI. WEKTOR RZEMIESZCZENI x u r r ' ' x stan p defrmacj x stan przed defrmacją płżene pt. przed defrmacją ( r) ( x, x, x ) płżene pt. p defrmacj ( r ) ( x, x, x ) przemeszczene puntu

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

Podstawy fizyki sezon 1 III. Praca i energia

Podstawy fizyki sezon 1 III. Praca i energia Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 : I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie Perwsza zasada termodynamk 2.2.. Dośwadczene Joule a jego konsekwencje 2.2.2. eło, ojemność celna sens oblczane 2.2.3. Praca sens oblczane 2.2.4. Energa wewnętrzna oraz entala 2.2.5. Konsekwencje I zasady

Bardziej szczegółowo

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody. F-Pow wlot / Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne

Bardziej szczegółowo

Reprezentacje grup symetrii. g s

Reprezentacje grup symetrii. g s erezentace ru ymetr Teora rerezentac dea: oeracom ymetr rzyać oeratory dzałaące w rzetrzen func zwązać z nm funce, tóre oeratory te rzerowadzaą w ebe odobne a zb. untów odcza oerac ymetr rozważmy rzeztałcene

Bardziej szczegółowo

Wykład 13 Druga zasada termodynamiki

Wykład 13 Druga zasada termodynamiki Wyład 3 Druga zasada termodynamii Entroia W rzyadu silnia Carnota z gazem dosonałym otrzymaliśmy Q =. (3.) Q Z tego wzoru wynia, że wielość Q Q = (3.) dla silnia Carnota jest wielością inwariantną (niezmienniczą).

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Termodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Układ termodynamiczny Układ termodynamiczny to ciało lub zbiór rozważanych ciał, w którym obok innych

Bardziej szczegółowo

Tabela 9.1. Moc akustyczna niektórych źródeł hałasu.

Tabela 9.1. Moc akustyczna niektórych źródeł hałasu. Ćwczene 9 POMIAR POIOMU DŹWIĘKU 43 9.. Podstawy teoretyczne Dźwę jest zjawsem zycznym olegającym na drganu ośroda srężystego. Drgana rozchodzą sę w ostac al. Rozchodzene sę al dźwęowej olega na owstanu

Bardziej szczegółowo

Wykład 10 Teoria kinetyczna i termodynamika

Wykład 10 Teoria kinetyczna i termodynamika Wykład 0 Teora knetyczna termodynamka Prawa gazów doskonałych Z dośwadczeń wynka, że przy dostateczne małych gęstoścach, wszystke gazy, nezależne od składu chemcznego wykazują podobne zachowana: w stałej

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos

Bardziej szczegółowo

=(u 1.,t) dla czwórnika elektrycznego dysypatywnego o sygnale wejściowym (wymuszeniu) G k. i sygnale wyjściowym (odpowiedzi) u 2

=(u 1.,t) dla czwórnika elektrycznego dysypatywnego o sygnale wejściowym (wymuszeniu) G k. i sygnale wyjściowym (odpowiedzi) u 2 Przyła Ułożyć równane ruchu u u,t la czwórna eletrycznego ysypatywnego o sygnale wejścowym wymuszenu G u sygnale wyjścowym opowez u. Zmenna uogólnona Współrzęna uogólnona Pręość uogólnona q Energa netyczna

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie

Bardziej szczegółowo

Wykład 5. Zderzenia w mechanice

Wykład 5. Zderzenia w mechanice Wykład 5 Zderzena w echance Zderzene nazyway zjawsko, wskutek którego zachodzą raptowne zany ruchu dwóch albo klku zderzających sę cał. Warto podkreślć, że przy zderzenu sły, które dzałają ędzy cząstka

Bardziej szczegółowo

P 1, P 2 - wektory sił wewnętrznych w punktach powierzchni F wokół punktu A

P 1, P 2 - wektory sił wewnętrznych w punktach powierzchni F wokół punktu A TEORI STNU NPRĘŻENI. WEKTOR NPRĘŻENI r x P P P P, P - wektory sł wewnętrznych w unktach owerzchn wokół unktu P P r, P - suma sł wewnętrznych na owerzchn P P P P średna gęstość sł wewnętrznych na owerzchn

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny

Bardziej szczegółowo

Konstrukcja gier sprawiedliwych i niesprawiedliwych poprzez. określanie prawdopodobieństwa.

Konstrukcja gier sprawiedliwych i niesprawiedliwych poprzez. określanie prawdopodobieństwa. Fundacja Centrum Edukacj Obyatelskej, ul. Noakoskego 10, 00-666 Warszaa, e-mal: ceo@ceo.org.l; Akadema ucznoska, Tel. 22 825 04 96, e-mal: au@ceo.org.l; ęcej nformacj:.akademaucznoska.l 1 Konstrukcja ger

Bardziej szczegółowo

Rozkłady statystyczne w fizyce jądrowej

Rozkłady statystyczne w fizyce jądrowej UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwczene laboratoryjne Rozłady statystyczne w fzyce jądrowej SZCZECIN 005 WSTĘP Różne neontrolowane zaburzena zewnętrzne (wahana temperatury,

Bardziej szczegółowo

Wykres indykatorowy Kąt obrotu wału korbowego [stopnie OWK]

Wykres indykatorowy Kąt obrotu wału korbowego [stopnie OWK] Cśnene w cylndrze Cśnene w cylndrze Wyres ndyatorowy 1/10 9. WYKRES PRACY SINIKA SPAINOWEGO Rzeczywsty wyres pracy slna spalnowego nazywany wyresem ndyatorowym przedstawa przebeg bezwzględnego cśnena w

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej

Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej. INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

7 Praca i energia. 7.1 Praca wykonana przez siłę stałą. Moduł II Praca i energia

7 Praca i energia. 7.1 Praca wykonana przez siłę stałą. Moduł II Praca i energia MODUŁ II Moduł II Praca i energia 7 Praca i energia Znajomość zagadnień związanych z szeroko rozumianym ojęciem energii jest konieczna dla wszelkich rozważań zarówno technologicznych, ekonomicznych, ekologicznych

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład stycznia.2018 PODSUMOWANIE

Fizyka 1- Mechanika. Wykład stycznia.2018 PODSUMOWANIE Fizyka - Mechanika Wykład 5 5 stycznia.08 PODSUMOWANIE Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.l htt://www.fuw.edu.l/~szef/ Prędkość chwilowa Wykres oniżej okazuje jak ożey

Bardziej szczegółowo

2.14. Zasada zachowania energii mechanicznej

2.14. Zasada zachowania energii mechanicznej Wykład 6 14 Zasada zachowania energii mechanicznej Informatyka 011/1 Stajesz na szczycie góry Mocujesz deskę, zakładasz gogle i zaczynasz szaleńczy zjazd W miarę jak twoja energia otencjalna zamienia się

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E bedze zborem zdarzen elementarnych danego doswadczena. Funcje X(e) przyporzadowujaca azdemu zdarzenu elementarnemu e E jedna tylo jedna lczbe X(e)x nazywamy ZMIENNA

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.1.

Wykład 21: Studnie i bariery cz.1. Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera

Bardziej szczegółowo

r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej

r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

A. ROZLICZENIE KOSZTÓW CENTRALNEGO OGRZEWANIA CHARAKTERYSTYKA KOSZTÓW DOSTAWY CIEPŁA

A. ROZLICZENIE KOSZTÓW CENTRALNEGO OGRZEWANIA CHARAKTERYSTYKA KOSZTÓW DOSTAWY CIEPŁA REGULAMIN ndywdualnego rozlczena osztów energ ceplnej dostarczonej na potrzeby centralnego ogrzewana cepłej wody meszań w zasobach Spółdzeln Meszanowej Lębora. POSTANOIENIA OGÓLNE Regulamn oreśla zasady:

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)

Bardziej szczegółowo

ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza

ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza FUNKCJE WÓCH I TRZECH ZMIENNYCH (było w semestrze II) ef 1 (funcja dwóch zmiennych) Funcją f dwóch zmiennych oreśloną na zbiorze A R o wartościach w R nazywamy przyporządowanie ażdemu puntowi ze zbioru

Bardziej szczegółowo

Praca i energia. x jest. x i W Y K Ł A D 5. 6-1 Praca i energia kinetyczna. Ruch jednowymiarowy pod działaniem stałych sił.

Praca i energia. x jest. x i W Y K Ł A D 5. 6-1 Praca i energia kinetyczna. Ruch jednowymiarowy pod działaniem stałych sił. ykład z fzyk. Pot Pomykewcz 40 Y K Ł A D 5 Pa enega. Pa enega odgywają waŝną olę zaówno w fzyce jak w codzennym Ŝycu. fzyce ła wykonuje konketną pacę, jeŝel dzała ona na pzedmot ma kładową wzdłuŝ pzemezczena

Bardziej szczegółowo

ZASADY DYNAMIKI. II. Przyspieszenie ciała jest proporcjonalne do przyłoŝonej siły. r r v. r dt

ZASADY DYNAMIKI. II. Przyspieszenie ciała jest proporcjonalne do przyłoŝonej siły. r r v. r dt DYAKA Zsdy dynm Ułdy necjlne, zsd bezwłdnośc, zsd względnośc Defncje welośc dynmcznych Zsdy zchown ędu momentu ędu Ułdy nenecjlne Pc Sły zchowwcze neg otencjln netyczn Zsd zchown eneg ZASADY DYAK. Cło,

Bardziej szczegółowo

Bada zaleŝno. nie zaleŝą. od ilości substancji. Funkcja stanu to taka wielkość. a mały y 10 cm, to: = F2 F 1 = 0,01 F 2.

Bada zaleŝno. nie zaleŝą. od ilości substancji. Funkcja stanu to taka wielkość. a mały y 10 cm, to: = F2 F 1 = 0,01 F 2. Zagadnena. Parametry stanu. Cśnene, słua ceczy (gazu) o wysokośc. Prawo rcmedesa.. emeratura. 4. Knetyczna teora w zastosowanu do gazu doskonałego.. Równane gazu doskonałego, zasady termodynamk (zerowa,

Bardziej szczegółowo

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. Blk 6: Pęd. Zasada zachwana pędu. Praca. Mc. ZESTAW ZADAŃ NA ZAJĘCIA Uwaga: w pnższych zadanach przyjmj, że wartść przyspeszena zemskeg jest równa g 10 m / s. PĘD I ZASADA ZACHOWANIA PĘDU 1. Płka mase

Bardziej szczegółowo

5. MES w mechanice ośrodka ciągłego

5. MES w mechanice ośrodka ciągłego . MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

OGÓLNE PODSTAWY SPEKTROSKOPII

OGÓLNE PODSTAWY SPEKTROSKOPII WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą

Bardziej szczegółowo

Prąd elektryczny U R I =

Prąd elektryczny U R I = Prąd elektryczny porządkowany ruch ładunków elektrycznych (nośnków prądu). Do scharakteryzowana welkośc prądu służy natężene prądu określające welkość ładunku przepływającego przez poprzeczny przekrój

Bardziej szczegółowo

Wykład 15 Elektrostatyka

Wykład 15 Elektrostatyka Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 5 płaszczyzna fazowa Poniższe ateriały tylo dla

Bardziej szczegółowo