Parametry stanu w przemianie izobarycznej zmieniają się według zależności
|
|
- Amalia Cichoń
- 7 lat temu
- Przeglądów:
Transkrypt
1 Przyad szzegóne rzemany otroowej / Przemana zobaryzna Przemana rzy stałym śnen, zy zobaryzna jest rzemaną otroową o wyładn m = 0, gdyż m = 0 == onst. Przemana ta zahodz, gdy ogrzewa sę gaz zamnęty w yndrze tłoem, stae jednaowo obążonym, wę n. własnym ężarem b ężarem dodatowym. Przez ogrzewane gaz zwęsza swą objętość tło nos sę. Przy ozęban gaz będze sę rzył, wę tło będze oadać. Krzywa rzemany zobaryznej nazywana zobarą jest rzedstawona na rys w ładze s. Rys Przemana zobaryzna na wyrese s a, raa absotna,, - eło,, rzyrost energ wewnętrznej,, rzyrost enta, e, energa rzetłazana Parametry stan w rzemane zobaryznej zmenają sę wedłg zaeżnoś Praa absotna rzemany wynos Praa tehnzna wynos a, d ( ) t, d 0 Zgodne z defnją, eło rzemany wynos Oraowane: Ewa Fdaej-Kostrzewa
2 Przyad szzegóne rzemany otroowej /6 ( ), Wobe tego, że da rzemany zobaryznej wyładn otroy m = 0 eło właśwe tej rzemany wynos ( m ) m A zatem, eło dostarzone bądź odebrane w rzemane zobaryznej można rzedstawć zaeżnośą, Wobe tego, że w rzemane zobaryznej t, =0, z równana erwszej zasady termodynam w osta,, t, wyna, że dostarzone eło jest równe rzyrostow enta zynna.,, Przyrost entro można wyznazyć z defnj entro: d ds Da rzemany zobaryznej d = d, a zatem d d, n s Przyrost energ wewnętrznej, zgodne z defnją wynos ( ), Przyrost enta, zgodne z defnją wynos ( ), 5.5. Przemana zohoryzna Przemana rzy stałej objętoś zy zohoryzna zahodz wówzas, gdy mmo zman temeratry śnena oraz mmo dorowadzana odrowadzana eła objętość gaz zamnętego w nazyn ne ega zmane. Przemana zohoryzna ( = onst.) jest rzemaną otroową o wyładn m = ±. Krzywa rzemany zohoryznej nos nazwę zohory jest rzedstawona na rys w ładze s. Parametry stan gaz w tej rzemane zmenają sę zgodne z równanem Oraowane: Ewa Fdaej-Kostrzewa
3 Przyad szzegóne rzemany otroowej 3/6 Rys Przemana zohoryzna na wyrese s t, raa tehnzna,, - eło,, rzyrost energ wewnętrznej,, rzyrost enta, e, energa rzetłazana Praa absotna rzemany wynos Praa tehnzna wynos a, d 0 t, d Zgodne z defnją, eło rzemany wynos ( ), Wobe tego, że da rzemany zohoryznej =, otrzymje sę, Wobe tego, że w rzemane zobaryznej a, =0, z równana erwszej zasady termodynam w osta,, a, wyna, że dostarzone eło jest równe rzyrostow energ wewnętrznej zynna.,, Przyrost entro można wyznazyć z defnj entro: d ds Da rzemany zohoryznej d = d, a zatem d d, n s Oraowane: Ewa Fdaej-Kostrzewa
4 Przyad szzegóne rzemany otroowej 4/6 Przyrost energ wewnętrznej, zgodne z defnją wynos ( ), Przyrost enta, zgodne z defnją wynos ( ), 5.6. Przemana zotermzna Przemana rzy stałej temeratrze zy zotermzna ( = onst.) jest rzemaną otroową o wyładn m =, a wę = onst. Jest równoześne rzemaną rzy stałej energ wewnętrznej, tj. = = onst. b d = dt = 0 oraz rzemaną rzy stałej enta, tj. = = onst. b d = dt = 0 Lna rzemany rzestawająej rzemanę o stałej temeratrze nos nazwę zotermy jest rzedstawona na rys w ładze s. Parametry stan gaz w tej rzemane zmenają sę zgodne z równanem R Izoterma jest wę na wyrese herboą równoosową. Rys Przemana zohoryzna na wyrese s a, raa absotna, t, raa tehnzna,, - eło Praa absotna rzemany wynos Z równana zotermy:, d Oraowane: Ewa Fdaej-Kostrzewa a
5 Przyad szzegóne rzemany otroowej 5/6 A zatem a, n Praa tehnzna wynos d n d n n R n a, R n R n R n Z równana zotermy: A zatem t d t d n n d t, R n R n Przyrost energ wewnętrznej, zgodne z defnją wynos Poneważ : ( ), rzyrost energ wewnętrznej w rzemane zotermznej:, Przyrost enta, zgodne z defnją wynos Poneważ : 0 ( ), rzyrost enta w rzemane zotermznej:, 0 Ceło rzemany można wyznazyć z równana erwszej zasady termodynam. Wobe tego, że, 0, z erwszej osta równana a, Oraowane: Ewa Fdaej-Kostrzewa
6 Przyad szzegóne rzemany otroowej 6/6,, A, wyna, a, a wobe 0, z drgej osta równana wyna,,, t,, t, A zatem, w rzemane zotermznej, a, t, R n R n Przyrost entro można wyznazyć z defnj entro: a zatem: d ds s,, R n R n 5.7. Przemana zentroowa Jest to rzemana odbywająa sę bez wymany eła z otozenem, zy rzemana adabatyzna, w tórej d = 0 oraz = 0 Warne ten owązany ze wzorem defnyjnym na entroę, rerezentje jednoześne warne stałej entro d = ds. = 0 Poneważ 0 to ds = 0, zy s = onst. rzemana rzy stałej entro nazywa sę rzemaną zentroową a rzywa rzedstawająa tę rzemanę nos nazwę zentroy. Ne ażda jedna rzemana adabatyzna jest rzemaną zentroową. Równoważność ob rzeman odnos sę tyo do rzeman odwraanyh gaz dosonałego bez wymany eła z otozenem, gdy w ładze ne ma wewnętrznyh źródeł eła wynłyh n. z eoś. Perwsze równane termodynam w odnesen do rzemany adabatyznej rzybera ostać (5.7.) Oraowane: Ewa Fdaej-Kostrzewa
7 Przyad szzegóne rzemany otroowej 7/6 Z równana oraz obzone ma wartość a o wstawen tej wartoś do równana (5.7.) otrzymje sę a o rzeształen Różnzją równane =R, otrzymje sę d + d = R d odstawają do (5.7.) wartość R d otrzymje sę (5.7.) Stąd b ostatezne Jest to równane różnzowe adabaty. Całją to równane rzy założen, że = onst. otrzymje sę równane b sąd = onst. (5.7.3) A wę jest to ostać rzemany otroowej, da tórej m =. Adabata w ładze jest herboą nerównobozną rzebegająą bardzej stromo nż zoterma. Jest rzedstawona na rys w ładze s. Korzystają z równana stan gaz można w równan (5.7.3) wyemnować oejno jeden z arametrów zastąć go temeratrą. Po doonan rzeształeń otrzymje sę równane rzemany zentroowej w nastęjąyh ostaah ( ) ( ) Oraowane: Ewa Fdaej-Kostrzewa
8 Przyad szzegóne rzemany otroowej Oraowane: Ewa Fdaej-Kostrzewa 8/6 Rys Przemana zentroowa na wyrese s a, raa absotna, t, raa tehnzna,, rzyrost energ wewnętrznej,, rzyrost enta, e, rzyrost energ rzetłazana Praa absotna rzemany wynos, d a Z równana zentroy, d d a Wadomo, że: n n x dx x n n A zatem: d,., R a,, R a Praa tehnzna wynos d t
9 Przyad szzegóne rzemany otroowej Oraowane: Ewa Fdaej-Kostrzewa 9/6 Zrównana zentroy: d d t d,, ) ( R t,,, R t Ceło rzemany, zgodne z defnją: ( ), Wobe tego, że =0: 0, Przyrost entro, zgodne z defnją: d ds Wobe tego, że =0,, =0: 0, s Przyrost energ wewnętrznej, zgodne z defnją: ( ), Przyrost enta, zgodne z defnją: ( ),
ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco
ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos
GAZY DOSKONAŁE I PÓŁDOSKONAŁE
TERMODYNAMIKA GAZY DOSKONAŁE I PÓŁDOSKONAŁE Prawo Boyle a Marotte a p V = const gdy T = const Prawo Gay-Lussaca V = const gdy p = const T Równane stanu gau dosonałego półdosonałego p v = R T gde: p cśnene
1. Definicje podstawowe. Rys Profile prędkości w rurze. A przepływ laminarny, B - przepływ burzliwy. Liczba Reynoldsa
. Defncje odstaoe Rys... Profle rędkośc rurze. rzeły lamnarny, B - rzeły burzly. Lczba Reynoldsa D Re [m /s] - sółczynnk lekośc knematycznej Re 3 - rzeły lamnarny Re - rzeły burzly Średna rędkość masoa
Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie
Perwsza zasada termodynamk 2.2.. Dośwadczene Joule a jego konsekwencje 2.2.2. eło, ojemność celna sens oblczane 2.2.3. Praca sens oblczane 2.2.4. Energa wewnętrzna oraz entala 2.2.5. Konsekwencje I zasady
EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.
EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc
Entropia i druga zasada termodynamiki
Entroia-drga zasada- Entroia i drga zasada termodynamiki.9.6 :5: Entroia-drga zasada- Przemiana realizowana w kładzie rzedstawionym na rys. 3.7 jest równowagową rzemianą beztariową. Jest ona wię odwraalna.
Podstawy termodynamiki
Podstawy termodynamk Temperatura cepło Praca jaką wykonuje gaz I zasada termodynamk Przemany gazowe zotermczna zobaryczna zochoryczna adabatyczna Co to jest temperatura? 40 39 38 Temperatura (K) 8 7 6
= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE
Wykład Turbina parowa kondensacyjna
Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW
13. Termodynamika - równania Gibbsa, Gibbsa-Duhema i wstęp do diagramów fazowych.
13. Termodynamka - równana Gbbsa, Gbbsa-Duhema wstęp do dagramów fazowyh. 13.1. Potenjały termodynamzne: Energa wewnętrzna U reprezentuje ałkowtą energę układu, będąą sumą energ knetyznyh potenjalnyh zarówno
WYKŁAD 8. Równowagi w układach jedno- i dwuskładnikowych
WYKŁD 8. Równowag w układah jedno- dwuskładnkowyh Równowaga faz równane Claususa-Claeyrona Rozatrzmy ykl Carnota na ozomyh odnkah zoterm CD, odowadająyh równowadze ez-ara ewnej substanj. T kr Na odnku
Wykład 9. Silnik Stirlinga (R. Stirling, 1816)
Wykład 9 Maszyny celne c.d. Entala Entala reakcj chemcznych Entala rzeman azowych Procesy odwracalne neodwracalne Entroa ykl arnot W. Domnk Wydzał Fzyk UW Termodynamka 06/07 /0 Slnk Strlnga (R. Strlng,
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
V. TERMODYNAMIKA KLASYCZNA
46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..
Badanie energetyczne płaskiego kolektora słonecznego
Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
2. PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ
. PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ. Wroadzene Przemana jest adabatyczna, jeśl dla każdych dóch stanó l, leżących na tej rzemane Q - 0. Z tej defncj ynka, że aby zrealzoać yżej ymenony roces,
Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23
Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy
Sieć kątowa metoda spostrzeżeń pośredniczących. Układ równań obserwacyjnych
Seć kątowa etoda spostrzeżeń pośrednząyh Układ równań obserwayjnyh rzyrosty współrzędnyh X = X X X X = X X Y = Y Y X Y = Y Y Długość odnka X ' ' ' ' x y Współzynnk kerunkowe x y * B * x y x y gdze - odpowedn
Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.
Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej lub lodowej.
Wykład 4. Skręcanie nieskrępowane prętów o przekroju cienkościennym otwartym i zamkniętym. Pręt o przekroju cienkościennym otwartym
Wykład 4. Skręane nekrępowane prętów o przekroju enkośennym otwartym zamknętym. Pręt o przekroju enkośennym otwartym la przekroju pręta pokazanego na ryunku przyjmjmy funkje naprężeń Prandtla, która tylko
u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH
METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele
F - wypadkowa sił działających na cząstkę.
PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych
Fizykochemiczne podstawy inżynierii procesowej. Wykład IV Proste przemiany cd: Przemiana adiabatyczna Przemiana politropowa
Fizykoheizne odstawy inżynierii roesowej Wykład IV Proste rzeiany d: Przeiana adiabatyzna Przeiana olitroowa Przeiana adiabatyzna (izentroowa) Przeiana adiabatyzna odbywa się w układzie adiabatyzny tzn.
TERMODYNAMIKA II.A PROJEKT [WŁASNOŚCI PŁYNÓW ZŁOŻOWYCH - PODSTAWY] SPIS TREŚ CI. andrzej.magdziarz@agh.edu.pl. http://home.agh.edu.
TERMODYNAMIKA II.A PROJEKT [WŁASNOŚI PŁYNÓW ZŁOŻOWYH - PODSTAWY] andrzej.magdzarz@agh.edu.l htt://home.agh.edu.l/magdz erson 0.10 (005/09/0) SPIS TREŚ I 1. DWUFAZOWY UKŁAD GAZ-IEZ... 1.1. ILOŚĆ SUBSTANJI,
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy Eksploatacj Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwczena: PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ.
Płyny nienewtonowskie i zjawisko tiksotropii
Płyny nenewtonowske zjawsko tksotrop ) Krzywa newtonowska, lnowa proporcjonalność pomędzy szybkoścą ścnana a naprężenem 2) Płyny zagęszczane ścnanem, naprężene wzrasta bardzej nż proporcjonalne do wzrostu
D. II ZASADA TERMODYNAMIKI
. Hofman, Wykłady z Chem fzycznej I, Wydzał Chemczny PW, kerunek: echnologa chemczna, sem. 2017/2018 WYKŁAD D,E D. II zasada termodynamk E. Konsekwencje zasad termodynamk D. II ZAADA ERMODYNAMIKI D.1.
INTERPRETACJA PIERWSZEJ ZASADY TERMODYNAMIKI DLA UKŁADÓW ZAMKNIĘTYCH I OTWARTYCH
Polka Problemy Nauk Stoowanych, 05, Tom 3, 33 44 Szczecn Prof WSTE dr hab nż Benedykt LITKE Wyżza Szkoła Technczno-Ekonomczna w Szczecne, Wydzał Tranortu Samochodowego Hgher School of Technology and Economc
Egzamin poprawkowy z Analizy II 11 września 2013
Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy
Kwantowa natura promieniowania elektromagnetycznego
Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny
METODY KOMPUTEROWE 10
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
Zmiana entropii w przemianach odwracalnych
Wykład 4 Zmana entrop w przemanach odwracalnych: przemany obegu Carnota, spręŝane gazu półdoskonałego ze schładzanem, zobaryczne wytwarzane przegrzewane pary techncznej rzemany zentropowe gazu doskonałego
2 PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ. 2.1 Wprowadzenie
RAKTYCZNA REALIZACJA RZEMIANY ADIABATYCZNEJ. Wprowadzene rzeana jest adabatyczna, jeśl dla każdych dwóch stanów l, leżących na tej przeane Q - 0. Z tej defncj wynka, że aby zrealzować wyżej wyenony proces,
WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL
Zeszyty robemowe Maszyny Eetryczne Nr /203 (98) 233 Andrze ałas BOBRME KOMEL, Katowce WYZNACZENIE ROZKŁADU TEMERATUR STANU USTALONEGO W MODELU 2D RZY UŻYCIU ROGRMU EXCEL SOLVING STEADY STATE TEMERATURE
Wykład 2. Przemiany termodynamiczne
Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const
7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH
WYKŁAD 7 7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH 7.8.. Ogólne równane rucu Rucem zmennym w korytac otwartyc nazywamy tak przepływ, w którym parametry rucu take jak prędkość średna w przekroju
FUGATYWNOŚCI I AKTYWNOŚCI
TRMODYNAMIKA TCHNICZNA I CHMICZNA Część VI TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potenjał hemzny - rzyomnene G n de,t, n j G na odstawe tego, że otenjał
ZASADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERSKIE
Zasady wyznazana depozytów zabezpezaąyh po wprowadzenu do obrotu op w rela lent-buro malerse ZAADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERKIE
TERMODYNAMIKA TECHNICZNA I CHEMICZNA
TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potenjał hemzny - rzyomnene de G n na odstawe tego, że otenjał termodynamzny
Małe drgania wokół położenia równowagi.
ałe rgana woół położena równowag. ałe rgana Anazuemy ułay a tórych potencał Vqq,q,..,q posaa mnmum a oreśonych wartośc współrzęnych uogónonych q,, -czba stopn swoboy. ożemy ta przesaować te współrzęne
Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym
Załązn nr 3 Do zzegółowyh Zasad rowadzena Rozlzeń Transa rzez KDW_CC Zasady wyznazana mnmalne wartoś środów oberanyh rzez uzestnów od osób zleaąyh zaware transa na rynu termnowym 1. Metodologa wyznazana
Natalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
Zaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
dy dx stąd w przybliżeniu: y
Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc
Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej
Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const
Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna
rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc
SPEKTROSKOPIA MOLEKULARNA
SPEKTROSKOPIA MOLEKULARNA Ćwzene 1 Badane wązana wodorowego za pomoą spektroskop absorpyjnej w podzerwen. A. BADANIE AUTOASOCJACJI ALKOHOLU OKTYLOWEGO ODCZYNNIKI Substanja badana: oktanol (d=0.83 g/m 3
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
ż Ę ń Ś ó ź ó ń Ę ó ó ź ó Ń ó ó ż ż ó ż ń ó ć ń ź ó ó ó Ę Ę ó ź ó ó Ł Ł Ą Ś ó ń ó ń ó Ł Ł ó ó ó ń Ś Ń ń ń ó ó Ś ó ć ó Ą Ą ń ć ć ó ż ó ć Ł ó ń ó ó ż ó ó ć ż ż Ą ż ń ó Śó ó ó ó ć ć ć ń ó ć Ś ć ó ó ż ó ó
Termodynamika Techniczna dla MWT, Rozdział 9. AJ Wojtowicz IF UMK
Trmodynamka Thnzna dla MWT, Rozdzał 9. AJ Wojtowz IF UMK Rozdzał 9. Przykłady urządzń USUP.. Wymnnk pła.. Dysza dyfuzor.3. Dławk gazu.4. Turbna.5. SpręŜarka/pompa.6. Prosta słowna parowa.7. Chłodzarka
Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie
Pierwsza zasada termodynamiki 2.2.1. Doświadczenie Joule a i jego konsekwencje 2.2.2. ieło, ojemność cielna sens i obliczanie 2.2.3. Praca sens i obliczanie 2.2.4. Energia wewnętrzna oraz entalia 2.2.5.
Ą ź ń Ś Ź ń Ę Ś ź Ę ń ć ć ż ż ż ż ć ń Ę Ż ń ż ć ć Ł Ż Ż ćń Ą ć ć Ą Ż Ź Ą ż Ż ż Ą Ą Ę ń ć ć ń ń Ę ń ź ń Ż ż ć ń Ż ż ć Ż ń ż Ą ć ć Ą Ż Ą Ż Ł ź Ą ń Ź ń Ę ż Ń Ę Ń ż ć ż Ń ń ń Ę Ę ż Ź Ż ć Ą Ż ń ń Ż ć ż Ż ń
Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego
5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.
I zasada termodynamiki
W3 30 Układ termodynamizny ównowaga termodynamizna Praa I zasada dla układu zamkniętego Entalia I zasada dla układu otwartego Cieło o właśiwew К Srawność jest zastosowaniem zasady zahowania energii do
J. Szantyr Wykład nr 10 Podstawy gazodynamiki I
J. Szantyr Wyład nr Podstawy gazodynamii I Model łyn ściśliwego załada, że na dodatni rzyrost ciśnienia łyn odowiada dodatnim rzyrostem gęstości, czyli: a W łynie nieściśliwym jest: Gazodynamia zajmje
Ę ć ń ż ć Ń ń ż ć ć ń ż ć ń ź ń Ę Ń ń ń ż ć ż ć ć Ń ż ć ń ć ż ń ż ć ć Ń ż ć Ń ż Ń Ń Ń ż ż Ń ż ż Ń ń ź Ń ń Ń ń ń Ą ń ń ź ń Ń Ń ć Ę ż Ń ż ć ć ć Ę ńż ń Ą ć ć Ę ż ż ć ż ć Ń ż Ń ż Ń ż ż ń ć ń Ń ń Ę ż Ł Ń ż
Ą Ż Ł ś ż ńż ż ż ś ź ź ć ź ś ń ż ć ź ź ź ż ź ś ź ń ź Ę ż ź ź ź ż ż ś ń ż ż ś ż ź ż ź źń ż ż ż ź ś ś ż ś ż ż Ż Ł ń ż ś ż ń ź ź ż żń ść ż ż ń ń ń ń ń ż ś ź ż ń ż ś ń ż ć ż ś ż ż ć ń ż ż ź ż ć ż ż ś ż ż ć
Diagonalizacja macierzy kwadratowej
Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy
SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA
TERMODYNAMIKA FENOMENOLOGICZNA
TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N
Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)
Model odstawowe założena modelu: ceny płace mogą ulegać zmanom (w odróżnenu od poprzedno omawanych model) punktem odnesena analzy jest obserwacja pozomu produkcj cen (a ne stopy procentowej jak w modelu
Moment siły (z ang. torque, inna nazwa moment obrotowy)
Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene
Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.
Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można
WYSYCHANIE ZABYTKOWYCH MURÓW Z CEGŁY *
ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komsja Inżyner Budowlanej Oddzał Polskej Akadem Nauk w Katowah WYSYCHANIE ZABYTKOWYCH MURÓW Z CEGŁY * Andrzej KUCHARCZYK Poltehnka Opolska, Opole. Wprowadzene
Kryteria samorzutności procesów fizyko-chemicznych
Kytea samozutnośc ocesów fzyko-chemcznych 2.5.1. Samozutność ównowaga 2.5.2. Sens ojęce ental swobodnej 2.5.3. Sens ojęce eneg swobodnej 2.5.4. Oblczane zman ental oaz eneg swobodnych KRYERIA SAMORZUNOŚCI
III. Przetwornice napięcia stałego
III. Przewornce napęca sałego III.1. Wsęp Przewornce: dosarczane pożądanej warośc napęca sałego koszem energ ze źródła napęca G. Możlwość zmnejszana, zwększana, odwracana polaryzacj lb kszałowane pożądanego
MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
Wstęp do metod numerycznych Faktoryzacja SVD Metody iteracyjne. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja SVD Metody teracyjne P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ 2013 Sngular Value Decomposton Twerdzene 1. Dla każdej macerzy A R M N, M N, stneje rozkład
Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego
Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa
POLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w
POL AGNTYCZN W PRÓŻNI - CD Indukcja elektomagnetyczna Zjawsko ndukcj elektomagnetycznej polega na powstawanu pądu elektycznego w zamknętym obwodze wskutek zmany stumena wektoa ndukcj magnetycznej. Np.
Wykład Mikroskopowa interpretacja ciepła i pracy Entropia
Wykład 7 5.13 Mkroskopowa nterpretacja cepła pracy. 5.14 Entropa 5.15 Funkcja rozdzału 6 II zasada termodynamk 6.1 Sformułowane Claususa oraz Kelvna-Plancka II zasady termodynamk 6.2 Procesy odwracalne
13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe:
) Ołowiana kula o masie kilograma sada swobodnie z wysokości metrów. Który wzór służy do obliczenia jej energii na wysokości metrów? ) E=m g h B) E=m / C) E=G M m/r D) Q=c w m Δ ) Oblicz energię kulki
ELEMENTY ELEKTRONICZNE
AKADMA GÓRNZO-HUTNZA M. STANSŁAWA STASZA W KRAKOW Wydzał nformatyk, lektronk Telekomunkacj Katedra lektronk LMNTY LKTRONZN dr nż. Potr Dzurdza aw. -3, okój 413; tel. 617-27-02, otr.dzurdza@agh.edu.l dr
Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź
Ś Ł Ó Ó ć ć Ń ć Ą ć ć Ń Ń Ł Ńź Ą Ą Ł Ś Ń Ó Ó ź ć ć ć ć ć Ł Ż Ą Ł Ł Ś Ń Ó ć ć Ń Ą Ą ć ć ć Ś Ń ć ć Ą Ą ź ć Ś Ą Ą Ó ć Ą Ń ź Ą ć Ą ź Ą ź Ń ć ź ć Ą ź ć ć ć Ą ź ź ź Ą ź ź Ą Ą ź ź Ś Ś ć Ł ć ź Ą Ą ź Ą ć Ś ź
Stateczność układów ramowych
tateczność układów ramowych PRZYPONIENIE IŁ KRYTYCZN DL POJEDYNCZYCH PRĘTÓW tateczność ustrou tateczność ustrou est to zdoność ustrou do zachowana nezmennego położena (kształtu) ub nacze mówąc układ po
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II
OGÓLNE PODSTAWY SPEKTROSKOPII
WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/
Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody
Os układu we wsółrędnch uogólnonch wę ch reakce stone swobod Roatruem układ o welu stonach swobod n. układ łożon unktów materalnch. Na układ mogą bć nałożone wę. P r unkt materaln o mase m O Układ swobodn
XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne
XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom
Zestaw przezbrojeniowy na inne rodzaje gazu. 1 Dysza 2 Podkładka 3 Uszczelka
Zestaw przezbrojenowy na nne rodzaje gazu 8 719 002 262 0 1 Dysza 2 Podkładka 3 Uszczelka PL (06.04) SM Sps treśc Sps treśc Wskazówk dotyczące bezpeczeństwa 3 Objaśnene symbol 3 1 Ustawena nstalacj gazowej
Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :
I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej
Jacek Hunicz. Modelowanie silników spalinowych
Jacek Huncz Modelowane slnków salnowych Poltechnka Lubelska Lubln 04 . Wrowadzene Modelowane matematyczne jest narzędzem badawczym coraz częścej wykorzystywanym do analzy rocesów fzycznych chemcznych zachodzących
Ą Ś Ś ż Ż ć Ś Ż Ś Ń Ó Ż ć Ź ć ć Ż Ź Ś Ą Ą Ż Ś Ą ĘĄ Ś Ę ŚĘ Ę Ó Ś Ą ć Ś ź Ś ż Ż Ź ć ć ć Ą ć ć Ź ć ć ć ć Ś ć Ż ć ć Ą ć Ż ć Ż ć Ż Ż Ż ć Ż ć Ż ć Ż ż ź Ą ż ć Ż Ź Ż Ś Ż Ś Ą ż Ą Ż ź Ż ż ć Ż Ż Ą Ś Ź ć Ś ż Ź ż Ł
Wykład 10 Teoria kinetyczna i termodynamika
Wykład 0 Teora knetyczna termodynamka Prawa gazów doskonałych Z dośwadczeń wynka, że przy dostateczne małych gęstoścach, wszystke gazy, nezależne od składu chemcznego wykazują podobne zachowana: w stałej