Wykład 9. Silnik Stirlinga (R. Stirling, 1816)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 9. Silnik Stirlinga (R. Stirling, 1816)"

Transkrypt

1 Wykład 9 Maszyny celne c.d. Entala Entala reakcj chemcznych Entala rzeman azowych Procesy odwracalne neodwracalne Entroa ykl arnot W. Domnk Wydzał Fzyk UW Termodynamka 06/07 /0 Slnk Strlnga (R. Strlng, 86) slnk celny, który rzetwarza energę celną w energę mechanczną, jednak bez rocesu wewnętrznego salana alwa, a na skutek dostarczana ceła z zewnątrz. Zewnętrzne źródło ceła - rodukty salana ne meszają sę z substancją roboczą.. rozrężane zotermczne. chłodzene zochoryczne. srężane zotermczne 4. grzane zochoryczne RT b TL ln a S RT b ln T T L a Zbudowane rototyy slnka osągały moc do 500 KM dobre wsółczynnk srawnośc 5-40% Gaz roboczy o dużej rzewodnośc celnej (wodór, hel) Układy kogeneracj rodukcj ceła energ elektrycznej małej mocy (do 4 kw) oyrght 005 ohn Wley and Sons, Inc W. Domnk Wydzał Fzyk UW Termodynamka 06/07 /0

2 0 Idealna maszyna arowa tłokowa ykl maszyny arowej:. Tłok soczywa, ara dostaje sę z kotła do cylndra, wzrasta cśnene.. Tłok orusza sę, ara doływa, cśnene stałe, objętość rośne.. Dostę ary zamknęty, adabatyczne rozrężana 4. Otwarce cylndra do chłodncy, szybk sadek cśnena, stała objętość. 5. Usuwane resztek ary, stałe cśnene, objętość maleje. l.wkeda.org/wk/maszyna_arowa W. Domnk Wydzał Fzyk UW Termodynamka 06/07 /0 Turbna arowa cykl Rankne a W rzyblżenu osuje dzałane tyowej turbny arowej w elektrown Q kocoł Idealny cykl celny Rankne a cecz gaz Q adabata skralacz Q Q Q woda wrzene ara skralane Rozrężane rzez turbnę PRAA Srawność cyklu Rankne a: 4 := entala Q cecz + gaz Płyn roboczy (woda) zmena stan skuena w trakce racy! Wartośc ental dla wody ary można znaleźć w tablcach. W. Domnk Wydzał Fzyk UW Termodynamka 06/07 4/0

3 Entala Rozważmy roces (rzemana zobaryczna): roces zachodz od stałym cśnenem rowadz od stanu oczątkowego do stanu końcowego =const Q stan stan I zasada termodynamk: Praca objętoścowa: Q W Q = U U + W d d U U U U W. Domnk Wydzał Fzyk UW Termodynamka 06/07 5/0 Entala Adabatyczne dławene rzeływu gazu dla rzeływu ustalonego,, U,, U Adabatyczny rzeływ rzez zawór, Dławene rzeływu < Oór stawany rzez zawór owoduje sadek cśnena DU = -W oneważ rzemana adabatyczna W = U + = U + Przechnęce orcj gazu rzez zawór odbywa sę kosztem otoczena wymuszającego ruch gazu. W rocese tym zachowana jest welkość : = U + W. Domnk Wydzał Fzyk UW Termodynamka 05/06 6/0

4 ENTALPIA ceła reakcj chemcznych Wrowadzamy unkcję stanu zwaną entalą Entala: U [ ] W rocesach zachodzących od stałym cśnenem od stanu do stanu dostarczone do układu ceło można zasać : Q D Badane eektów celnych reakcj chemcznych (G.. ess - 840) : ceło wymenane odczas reakcj zależy jedyne od stanu oczątkowego końcowego, a ne zależy od rodzaju lczby kroków ośrednch (czyl drog łączącej stan oczątkowy końcowy). W. Domnk Wydzał Fzyk UW Termodynamka 06/07 7/0 Entala Wele rocesów, w naturze w laboratorum, zachodz rzy stałym cśnenu. W blanse energetycznym musmy wtedy brać od uwagę racę zwązaną ze zmaną objętośc. Wrowadzene ental uraszcza analzę takch rocesów U entala układu U energa wewnętrzna układu cśnene - objętość Z owyższego wzoru wynka sens zyczny ental. Entala jest równa sume: energ wewnętrznej, czyl energ U, jaka jest otrzebna do utworzena układu, gdy jest on tworzony w otoczenu różn oraz loczynu, który jest równy racy, jaką należy wykonać nad otoczenem, by w danych warunkach uzyskać mejsce na układ W. Domnk Wydzał Fzyk UW Termodynamka 06/07 8/0 4

5 Entala Entala (zawartość ceła) w termodynamce welkość zyczna będąca unkcją stanu mająca wymar energ, będąca też otencjałem termodynamcznym, Wszystke welkośc denujące entalę (U,, ) są arametram stanu, dlatego entala też jest unkcją stanu. Gdy układ wykonuje wyłączne racę objętoścową oraz cśnene jest stałe, to zmana ental jest równa cełu dostarczonemu do układu: D Q D Q Zmana ental układu w warunkach stałego cśnena jest równa energ dostarczonej jako ceło W. Domnk Wydzał Fzyk UW Termodynamka 06/07 9/0 Entala, ceło molowe rzemany zobarycznej Rozważmy różnczkową zmanę ental: d d U du d d, ale (I zasada termodynamk): Q du W du d, (jeśl ne ma nnej racy nż objętoścowa) czyl d Q d Dla rocesów zachodzących od stałym cśnenem mamy węc: d du d d Q ( = const.) Q n dt Zachodz węc : n T W termodynamce techncznej stosuje sę welkośc termodynamczne właścwe (odnesone do jednostk masy rozatrywanego czynnka termodynamcznego). Wrowadza sę węc entalę właścwą: h m W. Domnk Wydzał Fzyk UW Termodynamka 06/07 0/0 kg 5

6 Entala reakcj chemcznych Przemany rzebegające rzy stałym cśnenu są bardzo często sotykane w raktyce (n. kocoł arowy, rzemany azowe, reakcje chemczne), stąd entala jest unkcją stanu bardzo często wykorzystywaną w oblczenach. Reakcje chemczne rzebegają na ogół rzy stałym cśnenu Możemy wyobrażać sobe, że entala jest całkowtą energą otrzebną do tego, aby wytworzyć układ o energ U objętośc umeścć go w otoczenu o cśnenu. zyl rozechnąć otoczene rzy =const, aby zrobć mejsce dla układu. W tablcach chemcznych zycznych można znaleźć tzw. entalę tworzena dla welu rocesów (rzeman azowych, reakcj chemcznych, jonzacj, rozuszczana td.), określone zazwyczaj dla cśnena normalnego temeratury 5º (98 K). Punktem odnesena są substraty w ch najtrwalszej ostac, dla których rzyjmuje sę entalę tworzena równą zeru. Tyowe równane termochemczne obejmujące eekt celny reakcj chemcznej: Przykład: ( gr) O( g) O( g) D 9.5 k W. Domnk Wydzał Fzyk UW Termodynamka 06/07 /0 Entala standardowa Entala standardowa to entala tworzena mola danej substancj w jej czystej ostac w warunkach standardowych, to jest rzy cśnenu bar temeraturze 98 K. Nazwa substancj Standardowa entala tworzena Δ 0 [k/mol] azot N (gaz) 0,00 tlen O (gaz) 0,00 węgel/grat gr 0,00 wodór (gaz) 0,00 dwutlenek węgla O (gaz) -9,5 woda O (gaz) -4,8 woda O (cecz) -85,8 metan 4(gaz) -74,6 Perwastk Wartość ental tworzena erwastków równa zero D > 0 roces endotermczny D < 0 roces egzotermczny W. Domnk Wydzał Fzyk UW Termodynamka 06/07 /0 6

7 Przykład: synteza wody Reakcja syntezy wody w temeraturze 5º (98 K) od cśnenem normalnym: ( g ) O ( g ) O ( c ) Z tablc: entala tworzena w tych warunkach jednego mola wody w stane cekłym z substratów w najbardzej trwałej ostac (a takm są wodór tlen cząsteczkowy) wynos: D k. Take ceło wydzel sę odczas reakcj syntezy mola wody. Wększość tej energ ochodz z energ wewnętrznej (wązana chemczne), ale ewna część ochodz z racy jaką wykona atmosera zajmująca mejsce substratów. D D U D eśl omnemy objętość wody (ceczy) w orównanu z objętoścą gazów, które z kole otraktujemy jako gazy doskonałe, to: D R T R T R T 0 O O K 7 6 K W. Domnk Wydzał Fzyk UW Termodynamka 06/07 /0 Reakcja salana mola metanu w temeraturze 5º (98 K) od cśnenem normalnym: 4 ( g ) O ( g ) O ( g ) O W tablcach znajdujemy wartośc ental tworzena substratów roduktów: D D k D O 9. 5 k ( g ) 0 k D O ( g ) 4. 8 k O Zmana ental w rozważanej reakcj: D D D O D O D O k Zmana energ układu (jeśl woda owstaje w ostac gazowej): D U D D D Gdyby woda owstawała w stane cekłym, to: D U D D Przykład: salane metanu D RT W. Domnk Wydzał Fzyk UW Termodynamka 06/07 4/0 D D n D RT k k ( g oneważ D=0 w tym rzyadku ) 7

8 śnene [bar] Porównane energ wewnętrznej ental Energa wewnętrzna, U w ogólnośc Entala, w ogólnośc du Q d d Q d. U n T n T U rzemana zochoryczna D U U U n U Q dt gaz doskonały U n T R rzemana zobaryczna D n dt Q gaz doskonały n T R W. Domnk Wydzał Fzyk UW Termodynamka 06/07 5/0 eła rzeman azowych Przemana azowa (zmana stanu skuena) skokowa zmana własnośc substancj n. gęstośc, energ wewnętrznej, ental cała. Równowaga mędzy azam wystęuje rzy ścśle określonej temeraturze zależnej od cśnena Przejśce azowe nastęuje w stałej temeraturze. Podczas rzejśca azowego cało oddaje ceło do otoczena lub obera ceło od otoczena. Energę koneczną do całkowtej rzemany mola substancj rzy stałym cśnenu nazywamy molowym cełem (entalą) rzemany azowej: L x Q n x mo l L, gdze x określa rodzaj rzemany Temeratura [º] W. Domnk Wydzał Fzyk UW Termodynamka 06/07 6/0 cało stałe cecz tonene krzenęce sublmacja resublmacja Entalę można też odneść do arowane skralane gaz całkowtej rzemany jednostkowej masy substancj: lx Qx m kg l. x 8

9 eła rzeman azowych c.d Na rzykład: W tablcach znajdujemy ceła rzemany wody: eło arowana: l =57 k/kg (L =40.60 k/mol) eło tonena (lodu): l t =.7 k/kg (L t =6.008 k/mol) D 4060 wrz mol Pamętamy, że : D DU D D Przemana rzy stałym cśnenu eśl omnemy objętość wody (ceczy) w orównanu z objętoścą ary, którą otraktujemy jak gaz doskonały, to: D RT ara 0 ara K K 0 (na mol) Ogromna wększość ceła arowana dze na zwększene energ wewnętrznej! aka część ceła tonena wody zwązana jest ze zmaną objętośc? Uwaga: objętość wody maleje odczas tonena (w temeraturze 0 gęstość wody: 0,9998 g/cm³, a lodu: 0,967 g/cm³) W. Domnk Wydzał Fzyk UW Termodynamka 06/07 7/0 eło arowana zależy od temeratury eło arowana zmnejsza sę wraz ze wzrostem temeratury znka w temeraturze krytycznej (oneważ w unkce krytycznym znka różnca mędzy ceczą a arą). D ar k mol sublmacja Molowe ceło arowana wody arowane Przemana azowa krzenęce/tonene Temeratura krytyczna T Molowe ceło arowana ceczy: T [º] L ar D gaz c e c z W. Domnk Wydzał Fzyk UW Termodynamka 06/07 8/0 9

Wykład 8. Silnik Stirlinga (R. Stirling, 1816)

Wykład 8. Silnik Stirlinga (R. Stirling, 1816) Wykład 8 Maszyny ceplne c.d. Rozkład Maxwella -wstęp Entalpa Entalpa reakcj chemcznych Entalpa przeman azowych Procesy odwracalne neodwracalne Entropa W. Domnk Wydzał Fzyk UW Termodynamka 018/019 1/6 Slnk

Bardziej szczegółowo

Wykład Turbina parowa kondensacyjna

Wykład Turbina parowa kondensacyjna Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamk Temperatura cepło Praca jaką wykonuje gaz I zasada termodynamk Przemany gazowe zotermczna zobaryczna zochoryczna adabatyczna Co to jest temperatura? 40 39 38 Temperatura (K) 8 7 6

Bardziej szczegółowo

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie Perwsza zasada termodynamk 2.2.. Dośwadczene Joule a jego konsekwencje 2.2.2. eło, ojemność celna sens oblczane 2.2.3. Praca sens oblczane 2.2.4. Energa wewnętrzna oraz entala 2.2.5. Konsekwencje I zasady

Bardziej szczegółowo

TERMODYNAMIKA TECHNICZNA I CHEMICZNA

TERMODYNAMIKA TECHNICZNA I CHEMICZNA TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potencjał chemczny - rzyomnene de G n na odstawe tego, że otencjał termodynamczny

Bardziej szczegółowo

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody. F-Pow wlot / Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej

Bardziej szczegółowo

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco

ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos

Bardziej szczegółowo

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody. Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej lub lodowej.

Bardziej szczegółowo

Dr inż. Andrzej Tatarek. Siłownie cieplne

Dr inż. Andrzej Tatarek. Siłownie cieplne Dr nż. Andrzej Tatarek Słowne ceplne Wykład 2 Podstawowe przemany energetyczne Jednostkowe zużyce cepła energ chemcznej palwa w elektrown parowej 2 Podstawowe przemany Proces przetwarzana energ elektrycznej

Bardziej szczegółowo

Zmiana entropii w przemianach odwracalnych

Zmiana entropii w przemianach odwracalnych Wykład 4 Zmana entrop w przemanach odwracalnych: przemany obegu Carnota, spręŝane gazu półdoskonałego ze schładzanem, zobaryczne wytwarzane przegrzewane pary techncznej rzemany zentropowe gazu doskonałego

Bardziej szczegółowo

Entalpia swobodna (potencjał termodynamiczny)

Entalpia swobodna (potencjał termodynamiczny) Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:

Bardziej szczegółowo

Kryteria samorzutności procesów fizyko-chemicznych

Kryteria samorzutności procesów fizyko-chemicznych Kytea samozutnośc ocesów fzyko-chemcznych 2.5.1. Samozutność ównowaga 2.5.2. Sens ojęce ental swobodnej 2.5.3. Sens ojęce eneg swobodnej 2.5.4. Oblczane zman ental oaz eneg swobodnych KRYERIA SAMORZUNOŚCI

Bardziej szczegółowo

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne

Bardziej szczegółowo

α i = n i /n β i = V i /V α i = β i γ i = m i /m

α i = n i /n β i = V i /V α i = β i γ i = m i /m Ćwczene nr 2 Stechometra reakcj zgazowana A. Część perwsza: powtórzene koncentracje stężena 1. Stężene Stężene jest stosunkem lośc substancj rozpuszczonej do całkowtej lośc rozpuszczalnka. Sposoby wyrażena

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy Eksploatacj Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwczena: PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ.

Bardziej szczegółowo

D. II ZASADA TERMODYNAMIKI

D. II ZASADA TERMODYNAMIKI . Hofman, Wykłady z Chem fzycznej I, Wydzał Chemczny PW, kerunek: echnologa chemczna, sem. 2017/2018 WYKŁAD D,E D. II zasada termodynamk E. Konsekwencje zasad termodynamk D. II ZAADA ERMODYNAMIKI D.1.

Bardziej szczegółowo

Badanie energetyczne płaskiego kolektora słonecznego

Badanie energetyczne płaskiego kolektora słonecznego Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz

Bardziej szczegółowo

2. PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ

2. PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ . PRAKTYCZ A REALIZACJA PRZEMIA Y ADIABATYCZ EJ. Wroadzene Przemana jest adabatyczna, jeśl dla każdych dóch stanó l, leżących na tej rzemane Q - 0. Z tej defncj ynka, że aby zrealzoać yżej ymenony roces,

Bardziej szczegółowo

Wykład 2. Przemiany termodynamiczne

Wykład 2. Przemiany termodynamiczne Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 : I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej

Bardziej szczegółowo

Bada zaleŝno. nie zaleŝą. od ilości substancji. Funkcja stanu to taka wielkość. a mały y 10 cm, to: = F2 F 1 = 0,01 F 2.

Bada zaleŝno. nie zaleŝą. od ilości substancji. Funkcja stanu to taka wielkość. a mały y 10 cm, to: = F2 F 1 = 0,01 F 2. Zagadnena. Parametry stanu. Cśnene, słua ceczy (gazu) o wysokośc. Prawo rcmedesa.. emeratura. 4. Knetyczna teora w zastosowanu do gazu doskonałego.. Równane gazu doskonałego, zasady termodynamk (zerowa,

Bardziej szczegółowo

V. TERMODYNAMIKA KLASYCZNA

V. TERMODYNAMIKA KLASYCZNA 46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..

Bardziej szczegółowo

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt. ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,

Bardziej szczegółowo

1. Definicje podstawowe. Rys Profile prędkości w rurze. A przepływ laminarny, B - przepływ burzliwy. Liczba Reynoldsa

1. Definicje podstawowe. Rys Profile prędkości w rurze. A przepływ laminarny, B - przepływ burzliwy. Liczba Reynoldsa . Defncje odstaoe Rys... Profle rędkośc rurze. rzeły lamnarny, B - rzeły burzly. Lczba Reynoldsa D Re [m /s] - sółczynnk lekośc knematycznej Re 3 - rzeły lamnarny Re - rzeły burzly Średna rędkość masoa

Bardziej szczegółowo

prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość

prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość 5. Gazy, termochemia Doświadczalne rawa gazowe Model gazu doskonałego emeratura bezwzględna Układ i otoczenie Energia wewnętrzna, raca objęto tościowa i entalia Prawo Hessa i cykl kołowy owy Standardowe

Bardziej szczegółowo

Jacek Hunicz. Modelowanie silników spalinowych

Jacek Hunicz. Modelowanie silników spalinowych Jacek Huncz Modelowane slnków salnowych Poltechnka Lubelska Lubln 04 . Wrowadzene Modelowane matematyczne jest narzędzem badawczym coraz częścej wykorzystywanym do analzy rocesów fzycznych chemcznych zachodzących

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

Wykład 7. Energia wewnętrzna jednoatomowego gazu doskonałego wynosi: 3 R . 2. Ciepło molowe przy stałym ciśnieniu obliczymy dzięki zależności: nrt

Wykład 7. Energia wewnętrzna jednoatomowego gazu doskonałego wynosi: 3 R . 2. Ciepło molowe przy stałym ciśnieniu obliczymy dzięki zależności: nrt W. Dominik Wydział Fizyki UW ermodynamika 08/09 /7 Wykład 7 Zasada ekwiartycji energii Stonie swobody ruchu cząsteczek ieło właściwe ciał stałych ównanie adiabaty w modelu kinetyczno-molekularnym g.d.

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na

Bardziej szczegółowo

INTERPRETACJA PIERWSZEJ ZASADY TERMODYNAMIKI DLA UKŁADÓW ZAMKNIĘTYCH I OTWARTYCH

INTERPRETACJA PIERWSZEJ ZASADY TERMODYNAMIKI DLA UKŁADÓW ZAMKNIĘTYCH I OTWARTYCH Polka Problemy Nauk Stoowanych, 05, Tom 3, 33 44 Szczecn Prof WSTE dr hab nż Benedykt LITKE Wyżza Szkoła Technczno-Ekonomczna w Szczecne, Wydzał Tranortu Samochodowego Hgher School of Technology and Economc

Bardziej szczegółowo

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ermodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Siik ciey siikach (maszynach) cieych cieło zamieniane jest na racę. Elementami siika są: źródło cieła

Bardziej szczegółowo

Wykład 13. Rozkład kanoniczny Boltzmanna Rozkład Maxwella-Boltzmanna III Zasada Termodynamiki. Rozkład Boltzmanna!!!

Wykład 13. Rozkład kanoniczny Boltzmanna Rozkład Maxwella-Boltzmanna III Zasada Termodynamiki. Rozkład Boltzmanna!!! Wykład 13 Rozkład kanonczny Boltzmanna Rozkład Maxwella-Boltzmanna III Zasada Termodynamk W. Domnk Wydzał Fzyk UW Termodynamka 2018/2019 1/30 Rozkład Boltzmanna!!! termostat T E n układ P n exp E n Z warunku

Bardziej szczegółowo

2 PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ. 2.1 Wprowadzenie

2 PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ. 2.1 Wprowadzenie RAKTYCZNA REALIZACJA RZEMIANY ADIABATYCZNEJ. Wprowadzene rzeana jest adabatyczna, jeśl dla każdych dwóch stanów l, leżących na tej przeane Q - 0. Z tej defncj wynka, że aby zrealzować wyżej wyenony proces,

Bardziej szczegółowo

Tadeusz Hofman, WYKŁADY Z CHEMII FIZYCZNEJ I dla chemików

Tadeusz Hofman, WYKŁADY Z CHEMII FIZYCZNEJ I dla chemików T. Hofman, Wykłady z Chem fzycznej I, Wydzał Chemczny PW, kerunek: Technologa chemczna, sem.3 2016/2017 Tadeusz Hofman, WYKŁADY Z CHEMII FIZYCZNEJ I dla chemków Adres nternetowy: http://hof.ch.pw.edu.pl/chf1.htm,

Bardziej szczegółowo

Termodynamika poziom podstawowy

Termodynamika poziom podstawowy ermodynamika oziom odstawowy Zadanie 1. (1 kt) Źródło: CKE 2005 (PP), zad. 8. Zadanie 2. (2 kt) Źródło: CKE 2005 (PP), zad. 17. 1 Zadanie 3. (3 kt) Źródło: CKE 2005 (PP), zad. 19. 2 Zadanie 4. (2 kt) Źródło:

Bardziej szczegółowo

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Termodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Układ termodynamiczny Układ termodynamiczny to ciało lub zbiór rozważanych ciał, w którym obok innych

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI. EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc

Bardziej szczegółowo

Wykład Mikroskopowa interpretacja ciepła i pracy Entropia

Wykład Mikroskopowa interpretacja ciepła i pracy Entropia Wykład 7 5.13 Mkroskopowa nterpretacja cepła pracy. 5.14 Entropa 5.15 Funkcja rozdzału 6 II zasada termodynamk 6.1 Sformułowane Claususa oraz Kelvna-Plancka II zasady termodynamk 6.2 Procesy odwracalne

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Termodynamika statystyczna

Termodynamika statystyczna ermodynamka statystyczna. Smrnova Metody termodynamk statystycznej w chem fzycznej J. Steck ermodynamka statystyczna K. Gumńsk P. Petelenz Elementy chem teoretycznej Druga część wykładu dla I roku chem

Bardziej szczegółowo

Kalorymetria paliw gazowych

Kalorymetria paliw gazowych Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cielnych W9/K2 Miernictwo energetyczne laboratorium Kalorymetria aliw gazowych Instrukcja do ćwiczenia nr 7 Oracowała: dr inż. Elżbieta Wróblewska Wrocław,

Bardziej szczegółowo

Termochemia Prawo Hessa Równania termochemiczne Obliczanie efektów cieplnych Prawo Kirchoffa

Termochemia Prawo Hessa Równania termochemiczne Obliczanie efektów cieplnych Prawo Kirchoffa ermchema.3.. Praw essa.3.. Równana termchemczne.3.3. Oblczane efektów ceplnych.3.4. Praw Krchffa ermchema praw essa ERMOCEMIA CIEPŁO REAKCJI - PRAWO ESSA W warunkach zchrycznych termchema zajmuje sę pmarem

Bardziej szczegółowo

Parametry stanu w przemianie izobarycznej zmieniają się według zależności

Parametry stanu w przemianie izobarycznej zmieniają się według zależności Przyad szzegóne rzemany otroowej /6 5.4. Przemana zobaryzna Przemana rzy stałym śnen, zy zobaryzna jest rzemaną otroową o wyładn m = 0, gdyż m = 0 == onst. Przemana ta zahodz, gdy ogrzewa sę gaz zamnęty

Bardziej szczegółowo

Wykład 10 Teoria kinetyczna i termodynamika

Wykład 10 Teoria kinetyczna i termodynamika Wykład 0 Teora knetyczna termodynamka Prawa gazów doskonałych Z dośwadczeń wynka, że przy dostateczne małych gęstoścach, wszystke gazy, nezależne od składu chemcznego wykazują podobne zachowana: w stałej

Bardziej szczegółowo

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach? 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii

Bardziej szczegółowo

Termochemia Prawo Hessa Równania termochemiczne Obliczanie efektów cieplnych Prawo Kirchoffa

Termochemia Prawo Hessa Równania termochemiczne Obliczanie efektów cieplnych Prawo Kirchoffa emchema.3.. Paw essa.3.. Równana temchemczne.3.3. Oblczane efektów celnych.3.4. Paw Kchffa emchema aw essa ERMOCEMIA CIEPŁO REAKCJI - PRAWO ESSA W waunkach zchycznych temchema zajmuje sę maem az lścwą

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, Rozdział 14. AJ Wojtowicz IF UMK. 5.2. Generacja entropii; transfer ciepła przy skończonej róŝnicy temperatur

Termodynamika Techniczna dla MWT, Rozdział 14. AJ Wojtowicz IF UMK. 5.2. Generacja entropii; transfer ciepła przy skończonej róŝnicy temperatur ermodynamka echnczna dla MW, Rozdzał 4. AJ Wojtowcz IF UMK Rozdzał 4. Zmana entrop w przemanach odwracalnych.. rzemany obegu Carnota.. SpręŜane gazu półdoskonałego ze schładzanem.3. Izobaryczne wytwarzane

Bardziej szczegółowo

GAZY DOSKONAŁE I PÓŁDOSKONAŁE

GAZY DOSKONAŁE I PÓŁDOSKONAŁE TERMODYNAMIKA GAZY DOSKONAŁE I PÓŁDOSKONAŁE Prawo Boyle a Marotte a p V = const gdy T = const Prawo Gay-Lussaca V = const gdy p = const T Równane stanu gau dosonałego półdosonałego p v = R T gde: p cśnene

Bardziej szczegółowo

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram

Bardziej szczegółowo

FUGATYWNOŚCI I AKTYWNOŚCI

FUGATYWNOŚCI I AKTYWNOŚCI TRMODYNAMIKA TCHNICZNA I CHMICZNA Część VI TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potenjał hemzny - rzyomnene G n de,t, n j G na odstawe tego, że otenjał

Bardziej szczegółowo

TERMODYNAMIKA TECHNICZNA I CHEMICZNA

TERMODYNAMIKA TECHNICZNA I CHEMICZNA TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potenjał hemzny - rzyomnene de G n na odstawe tego, że otenjał termodynamzny

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego

Bardziej szczegółowo

16 GAZY CZ. I PRZEMIANY.RÓWNANIE CLAPEYRONA

16 GAZY CZ. I PRZEMIANY.RÓWNANIE CLAPEYRONA Włodzimierz Wolczyński 16 GAZY CZ. PRZEMANY.RÓWNANE CLAPEYRONA Podstawowy wzór teorii kinetyczno-molekularnej gazów N ilość cząsteczek gazu 2 3 ś. Równanie stanu gazu doskonałego ż ciśnienie, objętość,

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Badanie turbiny parowej

Badanie turbiny parowej Badane trbny arowej Instrkcja do ćwczena nr Badane aszyn - laborator Oracował: dr nŝ. Andrzej Tatarek Zakład Mernctwa Ochrony Atosfery Wrocław, kweceń 009 r. . Cel zakres ćwczena Cele ćwczena jest rzerowadzene

Bardziej szczegółowo

I zasada termodynamiki

I zasada termodynamiki W3 30 Układ termodynamizny ównowaga termodynamizna Praa I zasada dla układu zamkniętego Entalia I zasada dla układu otwartego Cieło o właśiwew К Srawność jest zastosowaniem zasady zahowania energii do

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH.

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH. POLITECHIKA ŚLĄSKA W GLIWICACH WYDZIAŁ IŻYIERII ŚRODOWISKA EERGETYKI ISTYTUT MASZY URZĄDZEŃ EERGETYCZYCH Turbna arowa II Laboratoru oarów azyn celnych (PM 8) Oracował: dr nż. Grzegorz Wcak Srawdzł: dr

Bardziej szczegółowo

termodynamika fenomenologiczna

termodynamika fenomenologiczna termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskoowych uogólnienie licznych badań doświadczalnych ois makro i mikro rezygnacja z rzyczynowości znaczenie raktyczne układ termodynamiczny

Bardziej szczegółowo

F - wypadkowa sił działających na cząstkę.

F - wypadkowa sił działających na cząstkę. PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych

Bardziej szczegółowo

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Pomiar ciepła spalania paliw gazowych

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Pomiar ciepła spalania paliw gazowych Katedra Silników Salinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Pomiar cieła salania aliw gazowych Wstę teoretyczny. Salanie olega na gwałtownym chemicznym łączeniu się składników aliwa z tlenem, czemu

Bardziej szczegółowo

Inżynieria procesów przetwórstwa węgla, zima 15/16

Inżynieria procesów przetwórstwa węgla, zima 15/16 Inżynieria procesów przetwórstwa węgla, zima 15/16 Ćwiczenia 1 7.10.2015 1. Załóżmy, że balon ma kształt sfery o promieniu 3m. a. Jaka ilość wodoru potrzebna jest do jego wypełnienia, aby na poziomie morza

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

Procentowa zawartość sodu (w molu tej soli są dwa mole sodu) wynosi:

Procentowa zawartość sodu (w molu tej soli są dwa mole sodu) wynosi: Stechiometria Każdą reakcję chemiczną można zapisać równaniem, które jest jakościową i ilościową charakterystyką tej reakcji. Określa ono bowiem, jakie pierwiastki lub związki biorą udział w danej reakcji

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

MPEC wydaje warunki techniczne KONIEC

MPEC wydaje warunki techniczne KONIEC 1 2 3 1 2 2 1 3 MPEC wydaje warunk technczne 4 5 6 10 9 8 7 11 12 13 14 15 KONIEC 17 16 4 5 Chcesz wedzeć, czy masz możlwość przyłączena budynku Możlwośc dofnansowana wymany peców węglowych do sec mejskej?

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

3 BADANIE WYDAJNOŚCI SPRĘŻARKI TŁOKOWEJ. 1. Wprowadzenie

3 BADANIE WYDAJNOŚCI SPRĘŻARKI TŁOKOWEJ. 1. Wprowadzenie 3 BADANIE WYDAJNOŚCI SPRĘŻARKI TŁOKOWEJ. Wprowadzene Sprężarka jet podtawowym przykładem otwartego układu termodynamcznego. Jej zadanem jet medzy nnym podwyżzene cśnena gazu w celu: uzykane czynnka napędowego

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa 1. Adiatermiczny wymiennik ciepła to wymiennik, w którym a) ciepło płynie od czynnika o niższej temperaturze do czynnika o wyższej temperaturze b) nie ma strat ciepła na rzecz otoczenia c) czynniki wymieniające

Bardziej szczegółowo

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie Pierwsza zasada termodynamiki 2.2.1. Doświadczenie Joule a i jego konsekwencje 2.2.2. ieło, ojemność cielna sens i obliczanie 2.2.3. Praca sens i obliczanie 2.2.4. Energia wewnętrzna oraz entalia 2.2.5.

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

Płyny nienewtonowskie i zjawisko tiksotropii

Płyny nienewtonowskie i zjawisko tiksotropii Płyny nenewtonowske zjawsko tksotrop ) Krzywa newtonowska, lnowa proporcjonalność pomędzy szybkoścą ścnana a naprężenem 2) Płyny zagęszczane ścnanem, naprężene wzrasta bardzej nż proporcjonalne do wzrostu

Bardziej szczegółowo

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III Włodzimierz Wolczyński 44 POWÓRKA 6 ERMODYNAMKA Zadanie 1 Przedstaw cykl rzemian na wykresie oniższym w układach wsółrzędnych rzedstawionych oniżej Uzuełnij tabelkę wisując nazwę rzemian i symbole: >0,

Bardziej szczegółowo

Wykład 7. Podstawy termodynamiki i kinetyki procesowej - wykład 7. Anna Ptaszek. 21 maja Katedra Inżynierii i Aparatury Przemysłu Spożywczego

Wykład 7. Podstawy termodynamiki i kinetyki procesowej - wykład 7. Anna Ptaszek. 21 maja Katedra Inżynierii i Aparatury Przemysłu Spożywczego Wykład 7 knetyk knetyk procesowej - Katedra Inżyner Aparatury Przemysłu Spożywczego 21 maja 2018 1 / 31 Układ weloskładnkowy dwufazowy knetyk P woda 1 atm lód woda cek a woda + substancja nelotna para

Bardziej szczegółowo

Część III: Termodynamika układów biologicznych

Część III: Termodynamika układów biologicznych Część III: Termodynamka układów bologcznych MATERIAŁY POMOCNICZE DO WYKŁADÓW Z PODSTAW BIOFIZYKI IIIr. Botechnolog prof. dr hab. nż. Jan Mazersk TERMODYNAMIKA UKŁADÓW BIOLOGICZNYCH Nezwykle cenną metodą

Bardziej szczegółowo

STECHIOMETRIA SPALANIA

STECHIOMETRIA SPALANIA STECHIOMETRIA SPALANIA Mole i kilomole Masa atomowa pierwiastka to średnia waŝona mas wszystkich jego naturalnych izotopów w stosunku do 1/12 masy izotopu węgla: 1/12 126 C ~ 1,66 10-27 kg Liczba Avogadra

Bardziej szczegółowo

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami TERMODYNAMIKA Termodynamika jest to dział nauk rzyrodniczych zajmujący się własnościami energetycznymi ciał. Przy badaniu i objaśnianiu własności układów fizycznych termodynamika osługuje się ojęciami

Bardziej szczegółowo

TERMOCHEMIA SPALANIA

TERMOCHEMIA SPALANIA TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena

Bardziej szczegółowo

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. (1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA . PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

Wykłady z termodynamiki i fizyki statystycznej. Semestr letni 2009/2010 Ewa Gudowska-Nowak, IFUJ, p.441 a

Wykłady z termodynamiki i fizyki statystycznej. Semestr letni 2009/2010 Ewa Gudowska-Nowak, IFUJ, p.441 a Wykłady z termodynamk fzyk statystycznej. Semestr letn 2009/2010 Ewa Gudowska-Nowak, IFUJ, p.441 a gudowska@th.f.uj.edu.pl Zalecane podręcznk: 1.Termodynamka R. Hołyst, A. Ponewersk, A. Cach 2. Podstay

Bardziej szczegółowo

11. Termodynamika. Wybór i opracowanie zadań od 11.1 do Bogusław Kusz.

11. Termodynamika. Wybór i opracowanie zadań od 11.1 do Bogusław Kusz. ermodynamia Wybór i oracowanie zadań od do 5 - Bogusław Kusz W zamniętej butelce o objętości 5cm znajduje się owietrze o temeraturze t 7 C i ciśnieniu hpa Po ewnym czasie słońce ogrzało butelę do temeratury

Bardziej szczegółowo

TERMODYNAMIKA. Andrzej Syrwid. Kraków 2011 r.

TERMODYNAMIKA. Andrzej Syrwid. Kraków 2011 r. ERMODYNAMIKA Andrzej Syrwd Kraków 011 r. Sps treśc 1 Podstawowe pojęca 5 Zasady termodynamk 6 3 Podstawowe skale temperatur 6 4 Podstawowe zależnośc pomędzy parametram opsującym układ 7 5 Gaz doskonały

Bardziej szczegółowo

Wykład 10 Równowaga chemiczna

Wykład 10 Równowaga chemiczna Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości

Bardziej szczegółowo

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E ROK AKADEMICKI 2015/2016 Zad. nr 4 za 3% [2015.10.29 16:00] Ciepło właściwe przy stałym ciśnieniu gazu zależy liniowo od temperatury.

Bardziej szczegółowo