Fizyka 1- Mechanika. Wykład 6 9.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fizyka 1- Mechanika. Wykład 6 9.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów"

Transkrypt

1 izya 1- Mechania Wyład 6 9.XI.17 Zygun Szeflińsi Środowisowe Laboraoriu Ciężich Jonów szef@fuw.edu.l h://

2 Równania ruchu ole agneyczne,, r,, v Sałe jednorodne ole w chwili = w uncie wlauje w ole cząsa o asie i ładunu Q z rędością Siła Lorenza: v,, Q v 9.XI.17 izya 1 - Wyład 6 Z definicji iloczynu weorowego: d r Uład dwu równań: Oscylaor!!! Q Całując ierwsze równanie ay: i d d d y i y dy d Qy d y Q Q i z dz dy Q d Q y c y y c

3 d Równania ruchu ole agneyczne Orzyaliśy równania ruchu: Oscylaor: Q d y y y c y y y c y c -częsość cyloronowa Rozwiązanie: v r y r sin r cos c yc Gdzie r roień cyloronowy: r v Q Q Przy warunach oczaowych r Q r i v v r1 cos y r sin 9.XI.17 izya 1 - Wyład 6

4 Pole agneyczne ruch o oręgu Dla cząsi naładowanej w olu agneyczny siła Lorenza Q v Dla v Q v Proień cyloronowy: Q v v v r v r Q v r r Q r r Częsość ołowa nie zależy od v!!! Q!!! 9.XI.17 izya 1 - Wyład 6

5 Pole agneyczne cyloron Proień cyloronowy: v r Q ~ Q 9.XI.17 izya 1 - Wyład 6

6 Pole agneyczne W fizyce cząse ole agneyczne owszechnie wyorzysywane jes do oiaru ędu cząse. Wszysie długożyciowe cząsi naładowane ają ładune ±1e... Koora ęcherzyowa w CRN Deeor CD w erilab 9.XI.17 izya 1 - Wyład 6

7 Pole agneyczne - aceleracja W fizyce edycznej ole agneyczne wyorzysywane jes do rzysieszania cząse i serowania wiązą. ŚLCJ -UW Cyloron firy G PTrace 16,4 / 8,5 MeV HIT - Heidelberg Technia rasrowa serowania wiązą eraeuyczną 9.XI.17 izya 1 - Wyład 6

8 Pole agneyczne W ogólny rzyadu rędość cząsi nie usi być rosoadła do weora inducji ola agneycznego. Jedna siła Lorenza zawsze rosoadła do na ierunu równoległy do ola znia! W ierunu weora ola ruch cząsi jes ruche jednosajny. W ogólny rzyadu ore ruchu jes sirala. V 9.XI.17 izya 1 - Wyład 6

9 Odchylenie w olu agneyczny 9.XI.17 izya 1 - Wyład 6 Odchylenie cząsi rzelaującej rzez wąsi obszar jednorodnego ola. Załaday << 1: r r y r 1 1 Ką odchylenia an v L Q r L d dy L

10 Pole agneyczne seleor rędości Cząsa w srzyżowanych jednorodnych olach Q Q v Dla rędości V = / wyadowa sił or rosoliniowy eoda selecji cząse o usalonej rędości niezależnie od ich Q i 9.XI.17 izya 1 - Wyład 6

11 Pole agneyczne Mierzyy roień cyloronowy v r Q Zadanie z ćwiczeń Dla cząse o usalonej rędości ierzyy v Q Cząsi o różnych asach zaczernią liszę w różnych odległościach od szczeliny 9.XI.17 izya 1 - Wyład 6

12 Praca i energia Najrosszy rzyade: Sała siła działa na ciało P owodując jego rzesunięcie wzdłuż ierunu działania siły s. Praca jaą wyona rzy y siła W s s W rzyadu siły działającej od ąe w sosunu do rzesunięcia raca jaą wyonuje W s scos Sładowa rosoadła nie wyonuje racy! Liczy się ylo równoległa sładowa siły... 9.XI.17 izya 1 - Wyład 6

13 Praca i energia Dowolna siła działa na un aerialny P Praca jaą wyonuje siła rzy rzesunięciu o dr dw dr cos ds ds 9.XI.17 izya 1 - Wyład 6 by oliczyc racę siły dla dowolnej drogi, usiy osuować włady od olejnych ałych rzesunięć całowanie. Praca siły (r) na drodze iędzy i W dr r Siły rosoadłe do rzesunięcia nie wyonują racy! siła Lorenza, siła Coriolisa, siły reacji więzów ec...

14 Praca i energia - rzyład Rozciągnięcie srężyny wyaga wyonania racy rzeciwo sile srężysości: Wyonana raca: W s d s d s s 9.XI.17 izya 1 - Wyład 6

15 Praca i energia W ogólny rzyadu raca W jaą wyonujey odczas ruchu unu z do oże zależeć od: rzebyej drogi l n. raca sił arcia będzie roorcjonalna do l oru ruchu n. jeśli siły ooru zależą od wyboru oru rędości siły ooru w ośrodu zależą od rędości czasu jeśli działające siły zależą od czasu 9.XI.17 izya 1 - Wyład 6

16 Praca siły wyadowej i energia dw dv ds ds dv ds a ds dw Praca siły (r) na drodze od do jes równa zianie energii ineycznej W 9.XI.17 izya 1 - Wyład 6 Praca jaą wyonuje wyadowa siła rzy rzesunięciu unu P o ds dv ds ds dv v v v s ds v dv vdv

17 P śr W Praca, energia i oc Moc średnia oisuje średnią racę wyonywaną na jednosę czasu: Moc chwilowa: P li Po wsawieniu: ay: s W dw dw P v ds Moc siły jes roorcjonalna do rędości rzesuwania ciała! Jednosą racy jes Dżul: 1J 1N 1 g 1 s Jednosą ocy jes Wa: 1W 1J 1s g 1 3 s Wcześniej używaną jednosą ocy jes oń echaniczny: 1KM 735,5 W, 7355W 9.XI.17 izya 1 - Wyład 6

18 W nergia oencjalna Ruch w sały i jednorodny olu grawiacyjny. Siła ciężości działająca na asę : r dr g dr gr r gr r Możey wrowadzić energię oencjalną dla jednorodnego ola grawiacyjnego g r gy Pracę ożey wedy wyrazić rzez zianę energii oencjalnej W r r Siła ciężości jes siłą zachowawczą 9.XI.17 izya 1 - Wyład 6

19 nergia oencjalna Siła zachowawcza Siła jes zachowawcza (onserwaywna), jesli raca rzez nią wyonana zależy ylo od ołożenia unów ocząowego () i ońcowego (). Można ją wyrazić rzez zianę energii oencjalnej W r dr r r Siła zachowawcza nie oże zależeć od czasu ani od rędości. Jeśli droga jes zanięa o raca jes równa zeru r dr r dr Cyrulacja rążenie Siłai zachowawczyi są wszysie siły cenralne. Kulobowsa, grawiacyjna, srężysosci ec. ri r 9.XI.17 izya 1 - Wyład 6

20 Orzyujey: Siła energia oencjalna Wyonana raca rzy infiniezyalny rzesunięciu: Ziana energii oencjalnej: dw dw dr r dr 9.XI.17 izya 1 - Wyład 6 d d d r,, d dy d d, d dy, d dz d r d, dy, d Znajoość oencjału siły zachowawczej jes równoważna znajoości saej siły. nergia oencjalna jes oreślona z doładnością do sałej, isone są ylo jej ziany. dz dz

21 Praca a energia oencjalna 9.XI.17 izya 1 - Wyład 6 Rozciąganie srężyny wyaga wyonania racy rzeciwo sile srężysości: W s Kosze ej racy rośnie energia oencjalna: d Sąd siła srężysości: d s d d s Gdy uściy srężynę energia oencjalna zaienia się na ineyczną

22 Praca i energia - gradien Gradien wsazuje ierune w óry nasęuje najwięsza ziana warości funcji salarnej (,y,z). grad d d, d dy, d dz Warość gradienu odowiada warości ochodnej funcji (,y,z) wzdłuż ego ierunu. Siłę zachowawczą wyrażay jao gradien energii oencjalnej: r 9.XI.17 izya 1 - Wyład 6

23 Zasada zachowania energii 9.XI.17 izya 1 - Wyład 6 Praca siły zachowawczej oiędzy unai ocząowy () i ońcowy () wyraża się rzez zianę energii oencjalnej Z drugiej srony, raca siły działającej na ciało zienia energię ineyczną: r r dr r W W ruchu od działanie sił zachowawczych energia całowia jes zachowana. cons W

24 Zasada zachowania energii W eseryencie ciężare czerwony o asie = 5 g sada na odcinu L zieniając rzy y energię oencjalną o warość : s Ta energia oencjalna zaienia się na energię ineyczną całego uładu. Uład uzysuje rędość ierzoną jao 1,5 /s: 9.XI.17 gl,5g 1 1,3, 65J M,97,5 g v,66, 65J s Nawe uwzględnienie energii ineycznej ciężara (,6J) nie zienia niezgodności. W eseryencie z asąm=3,g uzysujey rędość /3 /s i energię =,65J. izya 1 - Wyład 6 Powórzyy eseryen!!!

25 Zasada zachowania energii cons gh v gh v gh 9.XI.17 izya 1 - Wyład 6

26 Zasada zachowania energii 9.XI.17 izya 1 - Wyład 6 Ruch od wływe siły srężysości: Ruch haroniczny: cons v cons v cos cos sin sin

27 Zasada zachowania energii Znajoość energii oencjalnej jes równoważna znajoości siły (zachowawczej): r r cons r Czy znając (r) ożey rozwiązać równania ruchu ciała? Możey wyznaczyć zależność (r) i sorzysać z II zasady dynaii... albo Możey wyorzysać zasadę zachowania energii: W zależności od zagadnienia jeden albo drugi sosób oże być bardziej użyeczny... 9.XI.17 izya 1 - Wyład 6

28 Zasada zachowania energii Dla ruchu rosoliniowego od działanie siły zachowawczej (), energia oencjalna = () d d cons Rozdzielając zienne i całując orzyujey: d d Znając () ożey zawsze znaleźć związe iędzy i. 9.XI.17 izya 1 - Wyład 6

29 Zasada zachowania energii 9.XI.17 izya 1 - Wyład 6 d d i Przyład: Przyjując, = w chwili = ay: V rędość ocząowa, energia całowia: v d d a 1 v

Fizyka 1- Mechanika. Wykład 6 10.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 6 10.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów izya 1- Mechania Wyład 6 1.XI.16 Zygun Szeflińi Środowiowe Laboraoriu Ciężich Jonów zef@fuw.edu.l h://www.fuw.edu.l/~zef/ Praca i energia Najrozy rzyade: Sała iła działa na ciało P owodując jego rzeunięcie

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład stycznia.2018 PODSUMOWANIE

Fizyka 1- Mechanika. Wykład stycznia.2018 PODSUMOWANIE Fizyka - Mechanika Wykład 5 5 stycznia.08 PODSUMOWANIE Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.l htt://www.fuw.edu.l/~szef/ Prędkość chwilowa Wykres oniżej okazuje jak ożey

Bardziej szczegółowo

3. Kinematyka podstawowe pojęcia i wielkości

3. Kinematyka podstawowe pojęcia i wielkości 3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny

Bardziej szczegółowo

Prawa Zachowania. Zasady zachowania odgrywaj w fizyce szczególn rol.

Prawa Zachowania. Zasady zachowania odgrywaj w fizyce szczególn rol. izya 1: Wyad II Prawa Zachowania 1 Zasady zachowania odgrywaj w fizyce szczególn rol. Orócz zasad zachowania oznanych w szole: zasady zachowania du zasady zachowania momentu du zasady zachowania energii

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać:

RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać: RUCH DRGAJĄCY Ruch haroniczny Ruch, tóry owtarza się w regularnych odstęach czasu, nazyway ruche oresowy (eriodyczny). Szczególny rzyadie ruchu oresowego jest ruch haroniczny: zależność rzeieszczenia od

Bardziej szczegółowo

Przemieszczeniem ciała nazywamy zmianę jego położenia

Przemieszczeniem ciała nazywamy zmianę jego położenia 1 Przemieszczeniem ciała nazywamy zmianę jego położenia + 0 k k 0 Przemieszczenie jes wekorem. W przypadku jednowymiarowym możliwy jes ylko jeden kierunek, a zwro określamy poprzez znak. Przyjmujemy, że

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości

Bardziej szczegółowo

cx siła z jaką element tłumiący działa na to ciało.

cx siła z jaką element tłumiący działa na to ciało. Drgania układu o jedny sopniu swobody Rozparzy układ składający się z ciała o asie połączonego z nierucoy podłoże za poocą eleenu sprężysego o współczynniku szywności k oraz eleenu łuiącego o współczynniku

Bardziej szczegółowo

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 5 płaszczyzna fazowa Poniższe ateriały tylo dla

Bardziej szczegółowo

F - wypadkowa sił działających na cząstkę.

F - wypadkowa sił działających na cząstkę. PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych

Bardziej szczegółowo

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kontakt,informacja i konsultacje. Co to jest chemia fizyczna?

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kontakt,informacja i konsultacje. Co to jest chemia fizyczna? Chemia Fizyczna Technologia Chemiczna II ro Wyład 1 Kierowni rzedmiotu: Dr hab. inż. Wojciech Chrzanowsi Kontat,informacja i onsultacje Chemia A ; oój 307 Telefon: 347-2769 E-mail: wojte@chem.g.gda.l tablica

Bardziej szczegółowo

MGR 2. 2. Ruch drgający.

MGR 2. 2. Ruch drgający. MGR. Ruch drgający. Ruch uładów drgających (sprężyny, guy, brzeszczou, ip.). Badanie ruchu ciała zawieszonego na sprężynie. Wahadło aeayczne. Wahadło fizyczne. Rezonans echaniczny. Ćw. 1. Wyznaczanie oresu

Bardziej szczegółowo

Szeregi Fouriera (6 rozwiązanych zadań +dodatek)

Szeregi Fouriera (6 rozwiązanych zadań +dodatek) PWR I Załad eorii Obwodów Szeregi ouriera (6 rozwiązanych zadań +dodae) Opracował Dr Czesław Michali Zad Znaleźć ores nasępujących sygnałów: a) y 3cos(ω ) + 5cos(7ω ) + cos(5ω ), b) y cos(ω ) + 5cos(ω

Bardziej szczegółowo

ver b drgania harmoniczne

ver b drgania harmoniczne ver-28.10.11 b drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne N = n=1 A n cos nω n Fig (...) analiza Fouriera małe drgania E p E E k jeden sopień swobody: E p -A E p A 0

Bardziej szczegółowo

Wykład 13 Druga zasada termodynamiki

Wykład 13 Druga zasada termodynamiki Wyład 3 Druga zasada termodynamii Entroia W rzyadu silnia Carnota z gazem dosonałym otrzymaliśmy Q =. (3.) Q Z tego wzoru wynia, że wielość Q Q = (3.) dla silnia Carnota jest wielością inwariantną (niezmienniczą).

Bardziej szczegółowo

Zasada zachowania pędu i krętu 5

Zasada zachowania pędu i krętu 5 Zasada zachowania pęd i krę 5 Wprowadzenie Zasada zachowania pęd pnk aerialnego Jeżeli w przedziale, sa sił działających na pnk aerialny kład pnków aerialnych jes równa zer, o pęd pnk aerialnego kład pnków

Bardziej szczegółowo

Temat ćwiczenia: GENERATOR FUNKCYJNY i OSCYLOSKOP Układ z diodą prostowniczą, pomiary i obserwacje sygnałów elektrycznych Wprowadzenie AMD

Temat ćwiczenia: GENERATOR FUNKCYJNY i OSCYLOSKOP Układ z diodą prostowniczą, pomiary i obserwacje sygnałów elektrycznych Wprowadzenie AMD Laboraoriu Eleroechnii i eleronii ea ćwiczenia: LABORAORIUM 6 GENERAOR UNKCYJNY i OSCYLOSKOP Uład z diodą prosowniczą, poiary i obserwacje sygnałów elerycznych Wprowadzenie Ćwiczenie a za zadanie zapoznanie

Bardziej szczegółowo

drgania h armoniczne harmoniczne

drgania h armoniczne harmoniczne ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate

Modelowanie przepływu cieczy przez ośrodki porowate Modelowanie rzeływu cieczy rzez ośrodi orowate Wyład IV Model D dla rzyadu rzeływu cieczy nieściśliwej rzez ory nieodształcalnego szieletu. 4.. Funcja otencjału rędości. Rozwiązanie onretnego zagadnienia

Bardziej szczegółowo

= 10 m/s i zatrzymał się o l = 20 m od miejsca uderzenia. Współczynnik tarcia krążka o lód wynosi a. 0,25 b. 0,3 c. 0,35 d. 0,4

= 10 m/s i zatrzymał się o l = 20 m od miejsca uderzenia. Współczynnik tarcia krążka o lód wynosi a. 0,25 b. 0,3 c. 0,35 d. 0,4 Imię i nazwiso Daa Klasa Grupa A Sprawdzian 3 PracA, moc, energia mechaniczna 1. Ze sojącego działa o masie 1 wysrzelono pocis o masie 1 g. nergia ineyczna odrzuu działa w chwili, gdy pocis opuszcza lufę

Bardziej szczegółowo

1. Sygnały i systemy dyskretne (LTI, SLS) (1w=2h)

1. Sygnały i systemy dyskretne (LTI, SLS) (1w=2h) Cyfrowe rzewarzanie sygnałów Jace Rezmer --. Sygnały i sysemy dysrene (LI, SLS (w=h.. Sysemy LI Pojęcie sysemy LI oznacza liniowe sysemy niezmienne w czasie (ang. Linear ime - Invarian. W lieraurze olsiej

Bardziej szczegółowo

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni. Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przesrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozparywania

Bardziej szczegółowo

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Drgania haroniczne Projet współfinansowany przez Unię Europejsą w raach Europejsiego Funduszu Społecznego Drgania haroniczne O oscylatorze haroniczny ożey ówić wtedy, iedy siła haująca działa proporcjonalnie

Bardziej szczegółowo

W technice często interesuje nas szybkość wykonywania pracy przez dane urządzenie. W tym celu wprowadzamy pojęcie mocy.

W technice często interesuje nas szybkość wykonywania pracy przez dane urządzenie. W tym celu wprowadzamy pojęcie mocy. .. Moc Wykład 5 Informatyka 0/ W technice często interesuje nas szybkość wykonywania racy rzez dane urządzenie. W tym celu wrowadzamy ojęcie mocy. Moc (chwilową) definiujemy jako racę wykonaną w jednostce

Bardziej szczegółowo

- obliczyć względne procentowe odchylenie otrzymanej wartości od wartości tablicowej:

- obliczyć względne procentowe odchylenie otrzymanej wartości od wartości tablicowej: Kila uwa: - Doświadczenia przeprowadzay w rupach - osobowych (nie więszych), jedna w raach rupy ażdy suden wyonuje swoje osobne poiary i obliczenia. - Na zajęcia przychodziy z wydruowanyi wybranyi ćwiczeniai

Bardziej szczegółowo

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój

Bardziej szczegółowo

WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII

WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO RZETWARZANIA ENERGII 1.1. Zasada zachowania energii. unem wyjściowym dla analizy przewarzania energii i mocy w pewnym przedziale czasu jes zasada zachowania energii

Bardziej szczegółowo

I. KINEMATYKA I DYNAMIKA

I. KINEMATYKA I DYNAMIKA piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne

Bardziej szczegółowo

Fale elektromagnetyczne spektrum

Fale elektromagnetyczne spektrum Fale elekroagneyczne spekru w próżni wszyskie fale e- rozchodzą się z prędkością c 3. 8 /s Jaes Clerk Mawell (w połowie XIX w.) wykazał, że świało jes falą elekroagneyczną rozprzesrzeniającą się falą ziennego

Bardziej szczegółowo

WŁAŚCIWOŚCI TRAKCYJNE UNIWERSALNEGO CIĄGNIKA ROLNICZEGO W TRANSPORCIE DROGOWYM

WŁAŚCIWOŚCI TRAKCYJNE UNIWERSALNEGO CIĄGNIKA ROLNICZEGO W TRANSPORCIE DROGOWYM УДК 631 1 р. ŁAŚCIOŚCI TRAKCYJE UIERSALEGO CIĄGIKA ROLICZEGO TRASPORCIE DROGOYM Ziniew Kiernici Paweł Żelazo Poliechnia Luela, Pola Soe racion araeer o ar racor ued or ranor wor on olid urace have een

Bardziej szczegółowo

II.2 Położenie i prędkość cd. Wektory styczny i normalny do toru. II.3 Przyspieszenie

II.2 Położenie i prędkość cd. Wektory styczny i normalny do toru. II.3 Przyspieszenie II. Położenie i prędkość cd. Wekory syczny i normalny do oru. II.3 Przyspieszenie Wersory cylindrycznego i sferycznego układu współrzędnych krzywoliniowych Wyrażenia na prędkość w układach cylindrycznym

Bardziej szczegółowo

FIZYKA R.Resnick & D. Halliday

FIZYKA R.Resnick & D. Halliday FIZYKA R.Resnick & D. Halliday rozwiązania zadań (część IV) Jacek Izdebski 5 stycznia 2002 roku Zadanie 1 We wnętrzu zakniętego wagonu kolejowego znajduje się aratka wraz z zapase pocisków. Aratka strzela

Bardziej szczegółowo

Mechanika cieczy. Ciecz jako ośrodek ciągły. 1. Cząsteczki cieczy nie są związane w położeniach równowagi mogą przemieszczać się na duże odległości.

Mechanika cieczy. Ciecz jako ośrodek ciągły. 1. Cząsteczki cieczy nie są związane w położeniach równowagi mogą przemieszczać się na duże odległości. Mecanika cieczy Ciecz jako ośrodek ciągły. Cząsteczki cieczy nie są związane w ołożeniac równowagi mogą rzemieszczać się na duże odległości.. Cząsteczki cieczy oddziałują ze sobą, lecz oddziaływania te

Bardziej szczegółowo

1. Rezonans w obwodach elektrycznych 2. Filtry częstotliwościowe 3. Sprzężenia magnetyczne 4. Sygnały odkształcone

1. Rezonans w obwodach elektrycznych 2. Filtry częstotliwościowe 3. Sprzężenia magnetyczne 4. Sygnały odkształcone Wyład 6 - wersja srócona. ezonans w obwodach elerycznych. Filry częsoliwościowe. Sprzężenia magneyczne 4. Sygnały odszałcone AMD ezonans w obwodach elerycznych Zależności impedancji dwójnia C od pulsacji

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Zasada zachowania pędu

Zasada zachowania pędu Zasada zachowania pędu Fizyka I (B+C) Wykład XIII: Zasada zachowania pędu Zasada zachowania oentu pędu Ruch ciał o ziennej asie Zasada zachowania pędu Układ izolowany Każde ciało oże w dowolny sposób oddziaływać

Bardziej szczegółowo

5. Równania Maxwella. 5.1 Równania Maxwella 5.2 Transformacja pól 5.3 Fala elektromagnetyczna

5. Równania Maxwella. 5.1 Równania Maxwella 5.2 Transformacja pól 5.3 Fala elektromagnetyczna 5 Równania Maxwella 5 Równania Maxwella 5 Transformaja pól 53 ala eleromagnezna 86 5 Równania Maxwella Wśród poazanh uprzednio równań Maxwella znajduje się prawo Ampere a j Jedna można pozać, że posać

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Wyznaczanie ciepła właściwego powietrza metodą rozładowa- nia kondensatora I. Cel ćwiczenia: II. Przyrządy: III. Literatura: IV.

Wyznaczanie ciepła właściwego powietrza metodą rozładowa- nia kondensatora I. Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Ćwiczenie -5 Wyznaczanie cieła właściwego owietrza etodą rozładowania kondensatora I. el ćwiczenia: oznanie jednej z etod oiaru cieła właściwego gazów, zjawiska rozładowania kondensatora i sosobu oiaru

Bardziej szczegółowo

Zadania do rozdziału 5

Zadania do rozdziału 5 Zadania do rozdziału 5 Zad.5.1. Udowodnij, że stosując równię pochyłą o dającym się zmieniać ącie nachylenia α można wyznaczyć współczynni tarcia statycznego µ o. ozwiązanie: W czasie zsuwania się po równi

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

Nara -Japonia. Yokohama, Japan, September 2014

Nara -Japonia. Yokohama, Japan, September 2014 Nara -Japonia Yokohaa, Japan, Septeber 4 -7 (Jaroszewicz slajdów Zasady zachowania, zderzenia ciał Praca, oc i energia echaniczna Zasada zachowania energii Zasada zachowania pędu Zasada zachowania oentu

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Fizyka I (Mechanika) Wykład VI: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne Układ środka masy Praca i energia

Bardziej szczegółowo

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 6 ułady dysretne o wielu stopniach swobody Poniższe

Bardziej szczegółowo

Komitet Główny Olimpiady Fizycznej; Kazimierz Rosiński: Fizyka w szkole nr 1, 1956; Czarnecki Stefan: Olimpiady Fizyczne I IV, PZWS, Warszawa 1956.

Komitet Główny Olimpiady Fizycznej; Kazimierz Rosiński: Fizyka w szkole nr 1, 1956; Czarnecki Stefan: Olimpiady Fizyczne I IV, PZWS, Warszawa 1956. V OLIMPIADA FIZYCZNA (955/956). Stopień wstępny, zad. doświadczalne D. Źródło: Nazwa zadania: Działy: Słowa luczowe: Koitet Główny Olipiady Fizycznej; Kaziierz Rosińsi: Fizya w szole nr, 956; Czarneci

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

Katedra Systemów Przetwarzania Sygnałów SZEREGI FOURIERA

Katedra Systemów Przetwarzania Sygnałów SZEREGI FOURIERA Ćwiczenie Zmodyfiowano 7..5 Prawa auorsie zasrzeżone: Kaedra Sysemów Przewarzania Sygnałów PWr SZEREGI OURIERA Celem ćwiczenia jes zapoznanie się z analizą i synezą sygnałów oresowych w dziedzinie częsoliwości.

Bardziej szczegółowo

Dynamika punktu materialnego

Dynamika punktu materialnego Dynaia punu aerialnego dr inż. Sebaian Pauła Wydział Inżynierii Mechanicznej i Roboyi Kaedra Mechanii i Wibroauyi ail: paula@agh.edu.pl www: hoe.agh.edu.pl/~paula/ dr inż. Sebaian Pauła - Kaedra Mechanii

Bardziej szczegółowo

WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ

WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ Wstęp. Za wyjątie nielicznych funcji, najczęściej w postaci wieloianów, dla tórych ożna znaleźć iniu na drodze analitycznej, pozostała więszość

Bardziej szczegółowo

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY zęść OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ 1 POLITEHNIK POZNŃSK INSTYTUT KONSTRUKJI UOWLNYH ZKŁ MEHNIKI UOWLI ĆWIZENIE NR 3 OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ O OSINI POPÓR I TEMPERTURY

Bardziej szczegółowo

Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór

Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór ema 6 Opracował: Lesław Dereń Kaedra eorii Sygnałów Insyu eleomuniacji, eleinformayi i Ausyi Poliechnia Wrocławsa Prawa auorsie zasrzeżone Szeregi ouriera Jeżeli f ( ) jes funcją oresową o oresie, czyli

Bardziej szczegółowo

Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne,

Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne, sg M 6-1 - Teat: Prawo Hooe a. Oscylacje haroniczne. Zagadnienia: prawa dynaii Newtona, siła sprężysta, prawo Hooe a, oscylacje haroniczne, ores oscylacji. Koncepcja: Sprężyna obciążana różnyi asai wydłuża

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

gdzie x jest wychyleniem z położenia równowagi. Współczynnik k jest tutaj współczynnikiem proporcjonalności.

gdzie x jest wychyleniem z położenia równowagi. Współczynnik k jest tutaj współczynnikiem proporcjonalności. RUCH DRGJĄCY Ruche drgający (drganiai) nazywa się każdy ruch, który charakteryzuje powtarzalność w czasie wielkości fizycznych (np wychylenia) określających ten ruch Występujące w przyrodzie drgania ożna

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12

Bardziej szczegółowo

G:\WYKLAD IIIBC 2001\FIN2001\Ruch falowy2001.doc. Drgania i fale II rok Fizyki BC

G:\WYKLAD IIIBC 2001\FIN2001\Ruch falowy2001.doc. Drgania i fale II rok Fizyki BC 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC Ruh falow: Fala rohodąe się w presreni aburenie lub odsałenie (pole). - impuls lub drgania. Jeśli rohodi się prędośią o po asie : ( r)

Bardziej szczegółowo

I. KINEMATYKA, DYNAMIKA, ENERGIA

I. KINEMATYKA, DYNAMIKA, ENERGIA iagoras.d.l I. KINEMATYKA, DYNAMIKA, ENERGIA KINEMATYKA: Ruch i soczynek są względne w zależności od wyboru układu odniesienia ciało w ym samym momencie może znajdować się w ruchu lub być w soczynku (n.

Bardziej szczegółowo

Równanie Fresnela. napisał Michał Wierzbicki

Równanie Fresnela. napisał Michał Wierzbicki napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)

Bardziej szczegółowo

Część A. PRZEPŁYWOMIERZE ZWĘŻKOWE

Część A. PRZEPŁYWOMIERZE ZWĘŻKOWE Lab Zin AiR Ćw 3 A PRZEPŁYWOMIERZE ZWĘŻKOWE B WSPÓŁCZYNNIK STRATY HYDRAULICZNEJ Część A PRZEPŁYWOMIERZE ZWĘŻKOWE Cel ćwiczenia Celem ćwiczenia jes: a) zaoznanie się z zasadą omiaru wydau rzeływomierzami

Bardziej szczegółowo

Fizyka 5. Janusz Andrzejewski

Fizyka 5. Janusz Andrzejewski Fizyka 5 Przykład R y F s x F n mg W kierunku osi Y: W kierunku osi X: m*0=r-f n m*a=f s F s =mgsinα F n =mgcosα Dynamiczne równania ruchu Interesujące jest tylko rozpatrywanie ruchu w kierunku osi X a=gsin

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu

Bardziej szczegółowo

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzain aturalny aj 009 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Wyznaczenie wartości prędkości i przyspieszenia ciała wykorzystując równanie ruchu. Wartość prędkości

Bardziej szczegółowo

Podstawy fizyki sezon 1 III. Praca i energia

Podstawy fizyki sezon 1 III. Praca i energia Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnia Gdańsa Wydział Eletrotechnii i Autoatyi Katedra Inżynierii Systeów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI Systey ciągłe budowa odeli enoenologicznych z praw zachowania Materiały poocnicze

Bardziej szczegółowo

dla małych natężeń polaryzacja podatność elektryczna natężenie pola elektrycznego

dla małych natężeń polaryzacja podatność elektryczna natężenie pola elektrycznego OPTYKA NILINIOWA W zaresie opyi liniowej naężenia promieniowania emiowane z onwencjonalnych źródeł świała są niewielie (0-0 3 V/cm) i oddziałując z maerią nie zmieniają jej własności miro- i marosopowych,

Bardziej szczegółowo

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8 Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny

Bardziej szczegółowo

Układ termodynamiczny

Układ termodynamiczny Uład terodynaiczny Uład terodynaiczny to ciało lub zbiór rozważanych ciał, w tóry obo wszelich innych zjawis (echanicznych, eletrycznych, agnetycznych itd.) uwzględniay zjawisa cieplne. Stan uładu charateryzuje

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 5 2.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 5 2.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów izyka 1- Mechanika Wykład 5.XI.017 Zygunt Szefliński Śodowiskowe Laboatoiu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Ruch po okęgu - bezwładność Aby ciało pozostawało w uchu po okęgu

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA FIZYKA marzec 2013

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA FIZYKA marzec 2013 PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZDMIOTOWA FIZYKA arzec 0 KARTA PUNKTACJI ZADAŃ (wypełnia koisja konkursowa): Nuer zadania Zad. Zad. Zad. Zad. 4 Zad. 5 SUMA PUNKTÓW Poprawna Zad. 6 Zad. 7 Zad. 8 odpowiedź

Bardziej szczegółowo

Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji.

Teoria sterowania 1 Temat ćwiczenia nr 7a: Synteza parametryczna układów regulacji. eoria serowania ema ćwiczenia nr 7a: Syneza parameryczna uładów regulacji. Celem ćwiczenia jes orecja zadanego uładu regulacji wyorzysując nasępujące meody: ryerium ampliudy rezonansowej, meodę ZiegleraNicholsa

Bardziej szczegółowo

FIZYKA CZĄSTECZKOWA I TERMODYNAMIKA

FIZYKA CZĄSTECZKOWA I TERMODYNAMIKA FIZYKA CZĄSTECZKOWA I TERMODYNAMIKA Fizyka - cząsteczkowa Dział fizyki badający budowę i własności aterii przy założeniu, że każde ciało składa się z dużej liczby bardzo ałych cząsteczek. Cząsteczki te

Bardziej szczegółowo

Fizyka Procesów Klimatycznych Wykład 9 proste modele klimatu

Fizyka Procesów Klimatycznych Wykład 9 proste modele klimatu Fizyka Procesów Kliaycznych Wykład 9 prose odele kliau prof. dr hab. Szyon Malinowski Insyu Geofizyki, Wydział Fizyki Uniwersye Warszawski alina@igf.fuw.edu.pl dr hab. Krzyszof Markowicz Insyu Geofizyki,

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie

Bardziej szczegółowo

OBLICZENIA W POMIARACH POŚREDNICH

OBLICZENIA W POMIARACH POŚREDNICH ROZDZAŁ 6 OBLCZENA W POMARACH POŚREDNCH Stefan ubisa Zachodniopoorsi niwersytet Technologiczny. Wstęp Poiar pośredni to tai w tóry wartość wielości ierzonej wielości wyjściowej ezurandu y oblicza się z

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: OF_I_ Źródło: XX OLIMPIADA FIZYCZNA (97/97). Stopień I, zadanie teoretyczne Nazwa zadania: Działy: Słowa kluczowe: Koitet Główny Olipiady Fizycznej; Waldear Gorzkowski: Olipiady fizyczne XIX i XX. WSiP,

Bardziej szczegółowo

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna,

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna, Praca domowa nr. Meodologia Fizyki. Grupa. Szacowanie warości wielkości fizycznych Zad... Soisz na brzegu oceanu, pogoda jes idealna, powierze przeźroczyse; proszę oszacować jak daleko od Ciebie znajduje

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

ODDZIAŁYWANIE WYORYWACZA POLDEROWEGO NA KORZEŃ BURAKA CUKROWEGO

ODDZIAŁYWANIE WYORYWACZA POLDEROWEGO NA KORZEŃ BURAKA CUKROWEGO nŝynieria Rolnica 5/006 Volodyir Bulaov *, Janus owa **, Wojciech Prysupa ** * arodowy Uniwersye Rolnicy w Kijowie ** Aadeia Rolnica w Lublinie ODDZAŁYWAE WYORYWACZA POLDEROWEO A KORZEŃ BURAKA CUKROWEO

Bardziej szczegółowo

Obwody prądu zmiennego. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Obwody prądu zmiennego. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Obwody prądu ziennego rojekt współfinansowany przez nię Europeją w raach Europejiego Funduszu Społecznego rąd elektryczny: oc lość ciepła wydzielanego na eleencie oporowy określa prawo Joule a: Q t Moc

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Praca i energia Praca Najprostszy przypadek: Stała siła działa na ciało P powodując jego przesunięcie wzdłuż kierunku działania siły o. Praca jaką wykona przy tym siła W przypadku

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 (22.04.2013) Współczynnik przyrosu nauralnego. Koncepcja ludności zasojowej i usabilizowanej. Prawo Loki. Współczynnik przyrosu nauralnego r = U Z L gdzie: U - urodzenia w roku Z - zgony w

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Zasady zachowania. Fizyka I (Mechanika) Wykład V: Zasada zachowania pędu

Zasady zachowania. Fizyka I (Mechanika) Wykład V: Zasada zachowania pędu Zasady zachowania Wykład V: Zasada zachowania pędu izyka I (Mechanika) Ruch ciał o zmiennej masie Praca, moc, energia kinetyczna Siły zachowawcze i energia potencjalna Zasada zachowania energii Przypomnienie

Bardziej szczegółowo

2.5. Ciepło właściwe gazów doskonałych

2.5. Ciepło właściwe gazów doskonałych Gazy dosonałe i ółdosonałe /3.. ieło właśiwe gazów dosonałyh Definija ieła właśiwego: es o ilość ieła orzebna do ogrzania jednosi asy subsanji o. W odniesieniu do g ieło właśiwe ilograowe; wyraża się w

Bardziej szczegółowo

KĄCIK ZADAŃ Drugi stopień olimpiady fizycznej na Ukrainie (rok 2000)

KĄCIK ZADAŃ Drugi stopień olimpiady fizycznej na Ukrainie (rok 2000) KĄCIK ZADAŃ Drugi stopień oipiady fizycznej na Ukrainie (rok 000) Jadwiga Saach Redakcja prezentuje trzy przykładowe zadania z drugiego stopnia oipiady fizycznej na Ukrainie (rok 000) Zadania z tej oipiady

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z FIZYKI w klasie II gimnazjum sr. 1 4. Jak opisujemy ruch? oblicza średnią

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

I. KINEMATYKA, DYNAMIKA, ENERGIA

I. KINEMATYKA, DYNAMIKA, ENERGIA iagoras.d.l I. KINEMATYKA, DYNAMIKA, ENERGIA KINEMATYKA: Położenie ciała w rzesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i soczynek są

Bardziej szczegółowo