ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI TORFÓW

Wielkość: px
Rozpocząć pokaz od strony:

Download "ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI TORFÓW"

Transkrypt

1 ZYGUNT EYER, Zachodiopomorski Uiwersytet Techologiczy w Szczeciie Katedra Geotechiki, al. Piastów 5, 7-3 Szczeci ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI TORFÓW TE ANALYSIS OF FAILURE OF DIKE DURING CONSOLIDATION OF PEAT Streszczeie W pracy przedstawioo aalizę waruków kosolidacji torfu w podłoŝu pola refulacyjego a Ostrowie Grabowskim w Szczeciie. W szczególości przeaalizowao stateczość wałów opaskowych a refulowaym polu oraz przyczyę awarii wału opaskowego a tym polu. Abstract The paper presets the aalysis of cosolidatio of peat i foudatio of hydraulics fill i Szczeci at Ostrow Grabowski. The aalysis of dike stability together with cosideratio of failure of the dike is also preseted.. Wstęp Terey rozwojowe portu w Szczeciie obejmują obszar Ostrowa Grabowskiego. Jest to półwysep, który utworzoy został przez odogi ujścia Odry. Tere te charakteryzuje się tym, Ŝe zbudoway jest z grutów orgaiczych. Pierwotie miąŝszość torfów wyosiła ok. 4 m do m. Nad torfami zajdowała się warstwa asypowa o małej miąŝszości. W celu przygotowaia tego tereu pod przyszłe iwestycje, takie jak drogi dojazdowe, place składowe czy termial koteerowy w ostatich 5 latach przeprowadzoo licze prace refulacyje. W te sposób a zaczej części Ostrowa Grabowskiego skosolidowao torfy. Warstwa refulatu posiada róŝą miąŝszość od do 6 m. W efekcie polepszyły się moduły ściśliwości torfu i aktualie wyoszą od 6 do 9 kpa. Z uwagi a ciągle jeszcze duŝą miąŝszość warstwy torfu (awet 8 m) bezpośredie posadowieie obiektów awet lekkich, wywołuje zacze osiadaie awet do,5 m (ieraz więcej). W związku z tym podjęto decyzję o wykoaiu w wybraych miejscach kolejej kosolidacji. Istiejąca juŝ wcześiej wykoaa warstwa asypowa umoŝliwiała wykoaie wałów opaskowych o zaczej wysokości (awet do 3, m). To z kolei miało przyspieszyć zarefulowaie pola pozwalając a zalewaie warstwą pulpy o duŝej głębokości. Podczas prac a jedym z odcików doszło do przerwaia wału opaskowego. W pracy przeaalizowao prawdopodobe przyczyy awarii wału.. atematyczy opis zjawiska Zjawisko kosolidacji grutów słabych obciąŝoych warstwą asypową posiada bogatą literaturę. Teorię w tym zakresie przedstawił Terzaghi, a astępie badaia te były rozwijae przez de aaa, Wiłua, Lechowicza, eyera [,, 4, 5,]. Podstawową trudością w aalizie procesu kosolidacji jest opisaie jak zmieia się moduł ściśliwości kosolidowaego torfu w miarę jak zwiększa się osiadaie. Do aalizy przyjęto zweryfikowaą dla waruków

2 7 eyer Z.: Aaliza przyczy awarii obwałowań pola refulacyjego podczas kosolidacji torfów ujścia Odry metodę zapropoowaą przez eyera []. Wyik tej metody moŝa przedstawić w postaci wzorów, jak moduł ściśliwości oraz osiadaie torfów zaleŝą od apręŝeń wywołaych warstwą refulatu (asypową). Wzory te moŝa rówieŝ stosować przy obliczaiu dalszego osiadaia, jakie zostaie wywołae obciąŝeiem uŝytkowym. Schematyczie stay obciąŝeń i odkształceń pokazao a rys. Rys.. Schemat obciąŝeia kolumy torfu Na rys. przyjęto astępujące ozaczeia: miąŝszość warstwy torfu ieskosolidowaego; miąŝszość warstwy torfu skosolidowaego obciąŝeiem ; miąŝszość warstwy torfu ściskaego dodatkowo obciąŝeiem ; wartości ozaczają odpowiedio moduły ściśliwości, atomiast ozacza odpowiedio porowatość torfu. W praktyce często badaia miąŝszości oraz parametrów grutowych prowadzimy dla stau tj. po zakończeiu kosolidacji warstwą asypową, która wywołuje obciąŝeie stau torfów. W takiej sytuacji zaczeie posiada zalezieie związku, który pozwoli a określeie parametrów torfu ieskosolidowaego, czyli fazy. Podstawowa zaleŝość opisująca te zmiay wyika z propozycji Glazera [3] e ( s) ( ) () e s gdzie: e wskaźik porowatości torfu ieskosolidowaego, e(s) wskaźik porowatości torfu po wymuszeiu osiadaia s, bezwymiarowy parametr określoy w edometrze a podstawie krzywej ściskaia torfu. ZaleŜość () moŝa przedstawić jako: ( s) () s Z drugiej stroy a podstawie literatury Wiłu [5] przyjmuje się związek pomiędzy zmiaami osiadaia i obciąŝeia jako: ( s) d ds (3)

3 Geotechika 7 Z zaleŝości tych otrzymamy podstawowe wzory opisujące zmiaę modułu ściśliwości i osiadaia, jako fukcję obciąŝeia. Otrzymamy: oraz S (4) ( ) (5) Badaia przeprowadzoe a próbkach torfu pobraych z Ostrowa Grabowskiego wskazują, Ŝe z dostateczą dla celów praktyczych obliczeń dokładością, moŝa przyjąć parametr jako,68 < <,83 W praktyczych obliczeiach ajczęściej przyjmuje się,75. Parametr te zaleŝy główie od porowatości początkowej i dla torfów o porowatości,66 mamy,68, atomiast dla torfów o porowatości,8 mamy,83. Dokładą zaleŝość aalityczą trudo jest ustalić. NaleŜałoby dodatkowo uwzględić stopień rozłoŝeia oraz zawartość części mieralych w torfie. Wydaje się rówieŝ, Ŝe parametr te zaleŝy od obciąŝeia. Dotychczasowe badaia wskazują a moŝliwość wykorzystaia poiŝszej zaleŝości w obliczeiach przybliŝoych, 8 (6) gdzie: [kpa] jest obliczeiem kosolidacyjym. ZaleŜość pomiędzy porowatością oraz moŝa określić w postaci przybliŝoej (rys. ) Poadto z zaleŝości geometryczych mamy: S (7) S (8) JeŜeli zae jest obciąŝeie warstwą refulatu, które powoduje miąŝszość, to moŝemy zapisać: S (9) Jeśli zamy parametry torfu po pierwszej kosolidacji:,,, to moŝemy obliczyć parametry torfu pierwotego (przed obciąŝeiem) cofając się w obliczeiach tj.. Wtedy otrzymamy:

4 7 eyer Z.: Aaliza przyczy awarii obwałowań pola refulacyjego podczas kosolidacji torfów S i wtedy < s ; () oŝemy rówieŝ obliczyć efekt drugiej kosolidacji po wykoaiu kolejej warstwy przeciąŝającej oraz przyłoŝeiu w te sposób dodatkowych obciąŝeń : S ; () JeŜeli po wykoaiu drugiej kosolidacji przyłoŝymy obciąŝeia uŝytkowe p. od obciąŝeia budowlą, wówczas obciąŝeie to wywoła osiadaie S rówe S () W dalszej części pracy przedstawioo przybliŝoą postać tego wzoru przy załoŝeiu, Ŝe druga kosolidacja zakończyła się. Plaowaie drugiej kosolidacji ma a celu takie dobraie cięŝaru akładki, aby dla plaowaych obciąŝeń, osiadaie spowodowae tymi obciąŝeiami dodatkowymi S było miejsze od dopuszczalych dop. S S < 3. Przykład obliczeiowy Dla waruków Ostrowa Grabowskiego a podstawie badań laboratoryjych po pierwszej kosolidacji otrzymao astępujące parametry torfu:,68; 6 kpa; 75 kpa; 5,5 m. Przyjmując, Ŝe,75 otrzymamy: S,73 m, co daje am 6,3 m oraz 55 kpa. PoiewaŜ przedmiotem projektu jest budowa placu składowego oraz drogi, przyjmując obciąŝeie uŝytkowe 5 kpa otrzymamy osiadaie od tego obciąŝeia S,4 m. Jest to osiadaie za duŝe, dlatego postaowioo przeprowadzić drugą kosolidację. Wykoao warstwę asypową o wysokości 3 4 m z refulatu. Ozaczało to przyłoŝeie dodatkowego obciąŝeia 5 kpa. Zakładając, Ŝe kosolidacja druga zakończyła się po wybudowaiu drogi lub placu maewrowego od obciąŝeia uŝytkowego dodatkowe osiadaie wyiesie:

5 Geotechika 73 S (3) po podstawieiu za 5 kpa; 6 kpa; otrzymamy S, m. Ozacza to, Ŝe moŝa rozwaŝać posadowieie bezpośredio tego rodzaju lekkich kostrukcji. 4. Obliczeie stateczości wału osłoowego Wykoaie dodatkowego adkładu a rozpatrywaym polu refulacyjym odbywało się klasyczie poprzez wykoaie wałów opaskowych z materiału lokalego, a astępie wypełieie kwater urobkiem z pogłębiaia. Schematyczie a rys. pokazao przekrój poprzeczy przez wał opaskowy, który miał słuŝyć do wykoaia adkładu. Rys.. Przekrój poprzeczy przez wał opaskowy posadowioy a asypie z refulatu Do obliczeia stateczości wału przyjęto, Ŝe poziom zalaia kwatery sięga koroy asypu oraz Ŝe siłą przesuwającą asyp jest apór poziomy wody a wał. Rówaie rówowagi a przesuw ma zaą postać: T G tgφ > W (4) gdzie: G jest siłą cięŝkości wału z uwzględieiem wyporu wody, która przesiąka przez wał, W jest poziomym aporem wody a wał, atomiast T to siła tarcia w powierzchi poślizgu, a φ kąt tarcia wewętrzego grutu w poziomie ścięcia. Poszczególe siły składowe występujące w rówaiu rówowagi (4) mają postać: G ( ) ( B m ) ( γ γ ) s w (5) W w γ (6) Po podstawieiu powyŝszych zaleŝości otrzymamy rówaie, a obliczeie współczyika pewości N wyosi:

6 74 eyer Z.: Aaliza przyczy awarii obwałowań pola refulacyjego podczas kosolidacji torfów N T W ( ) ( B )( γ γ ) w γ s w tgφ (7) W rozpatrywaym przypadku wystąpiły astępujące waruki ścięcia 3 m; B, m; m ; 4%; γ s 6,5 kn/m 3 ; γ s kn/m 3 ; φ 6. Po podstawieiu otrzymamy N,96 co ozacza, Ŝe zostało przekroczoe kryterium ścięcia. oŝa rówieŝ rozwaŝyć kryterium ścięcia jako N i wtedy otrzymamy rówaie, które podaje jak aleŝy dobrać wymiary wału w przekroju poprzeczym aby zachować rówowagę. amy: B N ctgφ m (8) γ ( ) s γ w Wzór te pozwala przyjąć przekrój poprzeczy wału opaskowego w zaleŝości od załoŝoego współczyika pewości N. W rozpatrywaym przypadku dla p. N,5 aleŝało przyjąć B 3, m. 5. Wioski. W pracy przedstawioo aalizę waruków powstaia awarii wału opaskowego podczas prac związaych z kosolidacją grutów orgaiczych.. Szczegółowej aalizie poddao efekt kosolidacji, który miał doprowadzić do poprawy grutu słabego, tak aby obiekty liiowe moŝa było posadowić bezpośredio. 3. Okazuje się, Ŝe dopiero po zakończeiu drugiej kosolidacji moŝa uzyskać takie wzmocieie grutów orgaiczych, Ŝe istieje moŝliwość bezpośrediego posadowieia obiektów lekkich o acisku od 3 do 5 kpa. 4. W pracy przeaalizowao rówieŝ przyczyy awarii wału opaskowego, który umoŝliwił wykoaie adkładu a kwaterze poprzez zalaie urobkiem z prac refulacyjych. Bezpośredią przyczyą było utrzymywaie się przez długi okres czasu wysokiego apełieia kwatery, co pozwoliło a uruchomieie mechaizmu ścięcia wału w podstawie. atematyczy opis tego przypadku przedstawioo w pracy. 5. Przeprowadzoe badaia zmiay parametrów grutowych torfu w wyiku kosolidacji wskazują a potrzebę dalszych badań tereowych, które umoŝliwią głębszą weryfikację wzorów przedstawioych w rozdziale. W szczególości wydaje się, Ŝe parametr jest fukcją i maleje w miarę wzrostu tych apręŝeń, atomiast parametr, który występuje w tych wzorach jest większy od edometryczego modułu ściśliwości awet o 5%. Literatura. eyer Z.: Estimatio of Soil Parameters for Cosolidated Layer. The Secod Iteratioal Semiar o Eviromet Protectio Regioal Problems, Kalmar Swede 99.. De aa E. J., Termeat R., Edil T.:Advaces i Uderstadig ad odellig the athematical Behaviour of Peat. A. A. Belkea, Rotterdam Glazer Z.: echaika grutów. Wydawictwo Geologicze, Warszawa Lechowicz Z.: Współczese kieruki badań grutów orgaiczych. Semiarium Naukowo- Techicze Współczese Problemy GeoiŜyierii w Regioie Szczecińskim Wiłu Z.: Zarys geotechiki. Wydawictwo Komuikacji i Łączości, Warszawa 987.

ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI TORFÓW

ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO PODCZAS KONSOLIDACJI TORFÓW prof. dr hab. iż. ZYGUNT EYER e- mail: meyer@zut.edu.pl Zachodiopomorki Uiwerytet Techologiczy w Szczeciie Katedra Geotechiki, al. Piatów 5, 7-3 Szczeci ANALIZA PRZYCZYN AWARII OBWAŁOWAŃ POLA REFULACYJNEGO

Bardziej szczegółowo

MODELOWANIE OSIADAŃ PODŁOśA SŁABEGO W OPARCIU O BADANIA IN SITU

MODELOWANIE OSIADAŃ PODŁOśA SŁABEGO W OPARCIU O BADANIA IN SITU Prof. dr hab. iŝ. Zygmut eyer dr iŝ. ariusz Kowalów mgr iŝ. leksadra Plucińska Politechika zczecińska Katedra Geotechiki Geotechical Cosultig Office p.z o.o. Geotechical Cosultig Office p.z o.o. ODELOWNIE

Bardziej szczegółowo

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9 Retgeowska aaliza fazowa jakościowa i ilościowa Wykład 9 1. Retgeowska aaliza fazowa jakościowa i ilościowa. 2. Metody aalizy fazowej ilościowej. 3. Dobór wzorca w aalizie ilościowej. 4. Przeprowadzeie

Bardziej szczegółowo

2. Schemat ideowy układu pomiarowego

2. Schemat ideowy układu pomiarowego 1. Wiadomości ogóle o prostowikach sterowaych Układy prostowikowe sterowae są przekształtikami sterowaymi fazowo. UmoŜliwiają płya regulację średiej wartości apięcia wyprostowaego, a tym samym średiej

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

Ćw 1. Klinowe przekładnie pasowe podczas ich eksploatacji naraŝone są na oddziaływanie róŝnorodnych czynników, o trudnej do

Ćw 1. Klinowe przekładnie pasowe podczas ich eksploatacji naraŝone są na oddziaływanie róŝnorodnych czynników, o trudnej do Ćw BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW EKPLOATACYJNYCH NA WARTOŚCI PODTAWOWYCH PARAMETRÓW PRZEKŁADNI CIĘGNOWEJ Z PAKIEM KLINOWYM. WYBRANA METODA BADAŃ. Kliowe przekładie pasowe podczas

Bardziej szczegółowo

ZMIANY SPOSOBU WZMANIANIA GRUNTÓW SŁABYCH NA OSTROWIE GRABOWSKIM W OPARCIU O BADANIA KONSOLIDACJI TORFÓW

ZMIANY SPOSOBU WZMANIANIA GRUNTÓW SŁABYCH NA OSTROWIE GRABOWSKIM W OPARCIU O BADANIA KONSOLIDACJI TORFÓW prof. dr hab. inŝ. Zygmunt MEYER, meyer@ps.pl Politechnika Szczecińska dr inŝ. Mariusz KOWALOW LGA Bautechnik GmbH Oddział w Polsce dr inŝ. Roman BEDNAREK, bednarek@ps.pl Politechnika Szczecińska ZMIANY

Bardziej szczegółowo

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

1. Granica funkcji w punkcie

1. Granica funkcji w punkcie Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

MODELOWANIE OSIADAÑ POD OÝA S ABEGO W OPARCIU O BADANIA IN SITU

MODELOWANIE OSIADAÑ POD OÝA S ABEGO W OPARCIU O BADANIA IN SITU Prof. dr hab. i. Zygmut eyer dr i. ariusz Kowalów mgr i. leksadra Pluciñska Politechika zczeciñska Katedra Geotechiki LG Bautechik Gmb Oddziaù w Polsce LG Bautechik Gmb Oddziaù w Polsce ODELOWNIE OIDÑ

Bardziej szczegółowo

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5 Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 5 ANALIZA WŁASNOŚCI DYNAMICZNYCH WYBRANEGO OBIEKTU FIZYCZNEGO 1. Opis właściwości dyamiczych obiektu Typowym

Bardziej szczegółowo

Pomoce dydaktyczne do ćwiczeń z przedmiotu Budownictwo Wodne

Pomoce dydaktyczne do ćwiczeń z przedmiotu Budownictwo Wodne Politechika Gdańska Wydział IŜyierii Lądowej i Środowiska Katedra Hydrotechiki Pomoce dydaktycze do ćwiczeń z przedmiotu Budowictwo Wode Elektrowia woda z jazem klapowym w Juszkowie (rzeka Raduia) Opracował:

Bardziej szczegółowo

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia..

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia.. Projekt z dia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dia.. w sprawie szczegółowego zakresu obowiązku uzyskaia i przedstawieia do umorzeia świadectw efektywości eergetyczej i uiszczaia

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15 Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

ANALIZA PRZYCZYN DUśEGO OSIADANIA RUROCIĄGU KANALIZACYJNEGO W WILNIE

ANALIZA PRZYCZYN DUśEGO OSIADANIA RUROCIĄGU KANALIZACYJNEGO W WILNIE MARIUSZ KOWALOW, m.kowalow@gco-consult.com Geotechnical Consulting Office Sp. z o.o, Szczecin ZYGMUNT MEYER, z.meyer@gco-consult.com, meyer@zut.edu.pl Geotechnical Consulting Office Sp. z o.o., Zachodniopomorski

Bardziej szczegółowo

ZASTOSOWANIE SILNIKÓW O DUśEJ SPRAWNOŚCI DO NAPĘDÓW WENTYLATORÓW MŁYNOWYCH

ZASTOSOWANIE SILNIKÓW O DUśEJ SPRAWNOŚCI DO NAPĘDÓW WENTYLATORÓW MŁYNOWYCH Zeszyty Problemowe Maszyy Elektrycze Nr 88/2010 135 Grzegorz Badowski, Jerzy Hickiewicz, Krystya Macek-Kamińska, Marci Kamiński Politechika Opolska, Opole Piotr Pluta, PGE Elektrowia Opole SA, Brzezie

Bardziej szczegółowo

Zmiany Q wynikające z przyrostu zlewni

Zmiany Q wynikające z przyrostu zlewni uch wody w korytach rzeczych Klasyfikacja ruchu. uch ieustaloy zmiey przepływ Q a długości rzeki i w czasie: ruch fal wezbraiowych ruch wody a długim odciku rzeki Q fala wezbraiowa obserwowaa w przekroju

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne D o u ż y t k u w e w ę t r z e g o Katedra Iżyierii i Aparatury Przemysłu Spożywczego POMIARY WARSZTATOWE Ćwiczeia laboratoryje Opracowaie: Urszula Goik, Maciej Kabziński Kraków, 2015 1 SUWMIARKI Suwmiarka

Bardziej szczegółowo

Układy liniowosprężyste Clapeyrona

Układy liniowosprężyste Clapeyrona Układy liiowosprężyste Clapeyroa Liiowosprężysty układ Clapeyroa zbiór połączoych ze sobą ciał odkształcalych, w których przemieszczeia są liiowymi fukcjami sił Układ rzeczywisty może być traktoway jako

Bardziej szczegółowo

Modele wzrostu populacji w czasie dyskretnym

Modele wzrostu populacji w czasie dyskretnym Temat wykładu: Modele wzrostu populacji w czasie dyskretym Kody kolorów: Ŝółty owe pojęcie pomarańczowy uwaga kursywa kometarz * materiał adobowiązkowy Aa Rajfura, Matematyka a kieruku Biologia w SGGW

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Konsolidacja podłoŝa gruntowego

Konsolidacja podłoŝa gruntowego Konsolidacja podłoŝa gruntowego Konsolidacja gruntu jest to proces zmniejszania się objętości gruntu w wyniku zmian objętości porów, przy jednoczesnym wyciskaniu z nic wody. Proces ten jest skutkiem nacisku

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3. KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA CAŁKOWITOLICZBOWEGO W UTRZYMANIU POJAZDÓW I MASZYN. Paweł Mikołajczak

ZASTOSOWANIE PROGRAMOWANIA CAŁKOWITOLICZBOWEGO W UTRZYMANIU POJAZDÓW I MASZYN. Paweł Mikołajczak MOTROL, 007, 9, ZASTOSOWANE PROGRAMOWANA AŁKOWTOLZBOWEGO W UTRZMANU POJAZDÓW MASZN Katedra Budowy, Eksploatacji Pojazdów i Maszy Uiwersytet Warmińsko-Mazurski w Olsztyie Streszczeie. W artykule przedstawioo

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

D P. Rys. 1 Schemat hydrauliczny obliczeń filtracji przez zaporę ziemną z drenażem

D P. Rys. 1 Schemat hydrauliczny obliczeń filtracji przez zaporę ziemną z drenażem Kostrukcje budowle zeme OBLICZENIA WSPÓŁCZYNNIKA STATECZNOŚCI SKAPY ODWODNEJ METODĄ FELLENIUSA DLA ZAPOY ZIEMNEJ BEZ ELEMENTÓW USZCZELNIAJĄCYCH Z DENAŻEM Zapora zema posadowoa a podłożu przepuszczalym

Bardziej szczegółowo

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut

Bardziej szczegółowo

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzamiacyja dla Aktuariuszy XLVII Egzami dla Aktuariuszy z 6 paździerika 2008 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Kredytobiorca

Bardziej szczegółowo

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...

Bardziej szczegółowo

Błędy kwantyzacji, zakres dynamiki przetwornika A/C

Błędy kwantyzacji, zakres dynamiki przetwornika A/C Błędy kwatyzacji, zakres dyamiki przetworika /C Celem ćwiczeia jest pozaie wpływu rozdzielczości przetworika /C a błąd kwatowaia oraz ocea dyamiki układu kwatującego. Kwatowaie przyporządkowaie kolejym

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

( 0) ( 1) U. Wyznaczenie błędów przesunięcia, wzmocnienia i nieliniowości przetwornika C/A ( ) ( )

( 0) ( 1) U. Wyznaczenie błędów przesunięcia, wzmocnienia i nieliniowości przetwornika C/A ( ) ( ) Wyzaczeie błędów przesuięcia, wzmocieia i ieliiowości przetworika C/A Celem ćwiczeia jest wyzaczeie błędów przesuięcia, wzmocieia i ieliiowości przetworika C/A. Zając wartości teoretycze (omiale) i rzeczywiste

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy

Bardziej szczegółowo

Klasyfikacja inwestycji materialnych ze względu na ich cel:

Klasyfikacja inwestycji materialnych ze względu na ich cel: Metodologia obliczeia powyższych wartości Klasyfikacja iwestycji materialych ze względu a ich cel: mające a celu odtworzeie środków trwałych lub ich wymiaę w celu obiżeia kosztów produkcji, rozwojowe:

Bardziej szczegółowo

XXIV Konferencja Naukowo-Techniczna XXIV Szczecin-Międzyzdroje, maja awarie budowlane

XXIV Konferencja Naukowo-Techniczna XXIV Szczecin-Międzyzdroje, maja awarie budowlane XXIV Konferencja Naukowo-Techniczna XXIV Szczecin-Międzyzdroje, 26-29 maja 2009 awarie budowlane Prof. dr hab. inŝ. ZYGMUNT MEYER Dr hab. inŝ. RYSZARD COUFAL, prof. PS, coufal@ps.pl Dr inŝ. ROMAN BEDNAREK,

Bardziej szczegółowo

Przetworniki analogowo-cyfrowe i cyfrowo- analogowe

Przetworniki analogowo-cyfrowe i cyfrowo- analogowe Przetworiki aalogowo-cyfrowe i cyfrowo- aalogowe 14.1. PRZETWORNIKI C/A Przetworik cyfrowo-aalogowy (ag. Digital-to-Aalog Coverter) jest to układ przetwarzający dyskrety sygał cyfrowy a rówowaŝy mu sygał

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fiasowy gospodarki Zajęcia r 5 Matematyka fiasowa Wartość pieiądza w czasie 1 złoty posiaday dzisiaj jest wart więcej iż 1 złoty posiaday w przyszłości, p. za rok. Powody: Suma posiadaa dzisiaj

Bardziej szczegółowo

Numeryczny opis zjawiska zaniku

Numeryczny opis zjawiska zaniku FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej

Bardziej szczegółowo

W(s)= s 3 +7s 2 +10s+K

W(s)= s 3 +7s 2 +10s+K PRZYKŁAD (LINIE PIERWIASTKOWE) Tramitacja operatorowa otwartego układu regulacji z jedotkowym ujemym przęŝeiem zwrotym daa jet wzorem: G O K ( + )( + 5) a) Podaj obraz liii pierwiatkowych układu zamkiętego.

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE

ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE ISSN 0209-2069 ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE EXPLO-SHIP 2004 Tadeusz Szelagiewicz, Katarzya Żelazy Progozowaie charakterystyk apędowych statku ze śrubą stałą podczas pływaia w

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.

Bardziej szczegółowo

WYZNACZANIE KSZTAŁTU PROFILU STATECZNEGO METODA MASŁOWA Fp

WYZNACZANIE KSZTAŁTU PROFILU STATECZNEGO METODA MASŁOWA Fp WYZNACZANIE KSZTAŁTU PROFILU STATECZNEGO METODA MASŁOWA Fp Metoda Masłowa Fp, zwana równieŝ metodą jednakowej stateczności słuŝy do wyznaczania kształtu profilu zboczy statecznych w gruntach spoistych.

Bardziej szczegółowo

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu

Bardziej szczegółowo

SYSTEM KOMPUTEROWY UŁATWIAJĄCY WYKORZYSTANIE INFORMACJI O ZJAWISKACH SOCJALNO-EKONOMICZNYCH PRZY WYBORZE FIRM INWESTUJĄCYCH NA DANYM TERENIE

SYSTEM KOMPUTEROWY UŁATWIAJĄCY WYKORZYSTANIE INFORMACJI O ZJAWISKACH SOCJALNO-EKONOMICZNYCH PRZY WYBORZE FIRM INWESTUJĄCYCH NA DANYM TERENIE Autoreferat rozprawy doktorskiej SYSTEM KOMPUTEROWY UŁATWIAJĄCY WYKORZYSTANIE INFORMACJI O ZJAWISKACH SOCJALNO-EKONOMICZNYCH PRZY WYBORZE FIRM INWESTUJĄCYCH NA DANYM TERENIE mgr iŝ. Jausz Rybarski PROMOTOR:

Bardziej szczegółowo

Metody i systemy detekcji nieszczelności rurociągów dalekosiężnych (1)

Metody i systemy detekcji nieszczelności rurociągów dalekosiężnych (1) Metody i systemy detekcji ieszczelości rurociągów dalekosiężych (1) Ryszard Sobczak Mateusz Turkowski Adrzej Bratek Marci Słowikowski Adam Bogucki Niezależie od tego, jak staraie rurociąg został zaprojektoway

Bardziej szczegółowo

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW I. Cel ćwiczeia Celem ćwiczeia jest zapozaie

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

Wstęp do informatyki. System komputerowy. Magistrala systemowa. Magistrala systemowa (System Bus) Architektura komputera

Wstęp do informatyki. System komputerowy. Magistrala systemowa. Magistrala systemowa (System Bus) Architektura komputera System komputerowy systemowa (System Bus) Wstęp do iformatyki Architektura komputera Cezary Bolek cbolek@ki.ui.lodz.pl Uiwersytet Łódzki Wydział Zarządzaia Katedra Iformatyki Pamięć operacyja ROM, Jedostka

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Analiza popytu na alkohol w Polsce z zastosowaniem modelu korekty błędem AIDS

Analiza popytu na alkohol w Polsce z zastosowaniem modelu korekty błędem AIDS Ekoomia Meedżerska 2011, r 10, s. 161 172 Jacek Wolak *, Grzegorz Pociejewski ** Aaliza popytu a alkohol w Polsce z zastosowaiem modelu korekty błędem AIDS 1. Wprowadzeie Okres trasformacji, zapoczątkoway

Bardziej szczegółowo

CIĄGI LICZBOWE. Poziom podstawowy

CIĄGI LICZBOWE. Poziom podstawowy CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy

Bardziej szczegółowo

Statystyka. Katarzyna Chudy Laskowska

Statystyka. Katarzyna Chudy Laskowska Statystyka Katarzya Chudy Laskowska http://kc.sd.prz.edu.pl/ WNIOSKOWANIE STATYSTYCZNE Celem aalizy statystyczej ie jest zwykle tylko opisaie (prezetacja) posiadaych daych, czyli tzw. próby statystyczej.

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki marzec 2012

Materiał ćwiczeniowy z matematyki marzec 2012 Materiał ćwiczeiowy z matematyki marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych dla iewidomych POZIOM PODSTAWOWY Klucz puktowaia do zadań zamkiętych Nr zad 3 4 6 7

Bardziej szczegółowo

500 1,1. b) jeŝeli w kolejnych latach stopy procentowe wynoszą odpowiednio 10%, 9% i 8%, wówczas wartość obecna jest równa: - 1 -

500 1,1. b) jeŝeli w kolejnych latach stopy procentowe wynoszą odpowiednio 10%, 9% i 8%, wówczas wartość obecna jest równa: - 1 - Zdyskotowae pzepływy pieięŝe - Pzepływy pieięŝe płatości ozłoŝoe w czasie - Pzepływy występujące w kilku óŝych okesach ie są poówywale z uwagi a zmiaę watość pieiądza w czasie - śeby poówywać pzepływy

Bardziej szczegółowo

Egzamin z MGIF, I termin, 2006 Imię i nazwisko

Egzamin z MGIF, I termin, 2006 Imię i nazwisko 1. Na podstawie poniższego wykresu uziarnienia proszę określić rodzaj gruntu, zawartość głównych frakcji oraz jego wskaźnik różnoziarnistości (U). Odpowiedzi zestawić w tabeli: Rodzaj gruntu Zawartość

Bardziej szczegółowo

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 2

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 2 Laboratorium Modelowaia i symulacji 008 r. Wydział Elektryczy Zesół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie Rozwiązywaie rówań róŝiczkowych zwyczajych metodą klasyczą.

Bardziej szczegółowo

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG Tomasz ŚWIĘTOŃ 1 TRANSFORMACJA DO UKŁADU 2000 A ROBLEM ZGODNOŚCI Z RG Na mocy rozporządzeia Rady Miistrów w sprawie aństwowego Systemu Odiesień rzestrzeych już 31 grudia 2009 roku upływa termi wykoaia

Bardziej szczegółowo

W³adys³aw Duliñski*, Czes³awa Ewa Ropa* ANALIZA RÓWNAÑ PRZEP YWU DLA USTALENIA ODLEG OŒCI POMIÊDZYT OCZNIAMI NA TRASIE GAZOCI GU WYSOKOPRÊ NEGO

W³adys³aw Duliñski*, Czes³awa Ewa Ropa* ANALIZA RÓWNAÑ PRZEP YWU DLA USTALENIA ODLEG OŒCI POMIÊDZYT OCZNIAMI NA TRASIE GAZOCI GU WYSOKOPRÊ NEGO WIERTNICTWO NAFTA GAZ TOM /1 005 W³ady³aw Duliñki*, Cze³awa Ewa Ropa* ANALIZA RÓWNAÑ RZE YWU DLA USTALENIA ODLEG OŒCI OMIÊDZYT OCZNIAMI NA TRASIE GAZOCI GU WYSOKORÊ NEGO 1. WSTÊ Sytem przey³owy azu ziemeo

Bardziej szczegółowo

DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM VIBRATION OF BEAM WITH TWO-PARAMETER ELASTIC FOUNDATION

DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM VIBRATION OF BEAM WITH TWO-PARAMETER ELASTIC FOUNDATION JEMIELITA Grzegorz 1 KOZYRA Zofia drgaia, belka, odłoŝe sręŝyste DRGANIA BELKI NA DWUPARAMETROWYM PODŁOśU SPRĘśYSTYM Praca dotyczy wyzaczaia drgań belki a dwuarametrowym odłoŝu sręŝystym obciąŝoej symetryczie

Bardziej szczegółowo

Konsolidacja torfów z wykorzystaniem przeciążenia warstwą popiołów

Konsolidacja torfów z wykorzystaniem przeciążenia warstwą popiołów Konsolidacja torfów z wykorzystaniem przeciążenia warstwą popiołów prof. dr hab. inż. Zygmunt Meyer Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Katedra Geotechniki al. Piastów 50, 70-310

Bardziej szczegółowo

Analiza potencjału energetycznego depozytów mułów węglowych

Analiza potencjału energetycznego depozytów mułów węglowych zaiteresowaia wykorzystaiem tej metody w odiesieiu do iych droboziaristych materiałów odpadowych ze wzbogacaia węgla kamieego ależy poszukiwać owych, skutecziej działających odczyików. Zdecydowaie miej

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Ciągi liczbowe z komputerem

Ciągi liczbowe z komputerem S t r o a 1 dr Aa Rybak Istytut Iformatyki Uiwersytet w Białymstoku Ciągi liczbowe z komputerem Wprowadzeie W artykule zostaie zaprezetoway sposób wykorzystaia arkusza kalkulacyjego do badaia własości

Bardziej szczegółowo

EKONOMETRIA. Temat wykładu: Co to jest model ekonometryczny? Dobór zmiennych objaśniających w modelu ekonometrycznym CZYM ZAJMUJE SIĘ EKONOMETRIA?

EKONOMETRIA. Temat wykładu: Co to jest model ekonometryczny? Dobór zmiennych objaśniających w modelu ekonometrycznym CZYM ZAJMUJE SIĘ EKONOMETRIA? EKONOMETRIA Temat wykładu: Co to jest model ekoometryczy? Dobór zmieych objaśiających w modelu ekoometryczym Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapata Tarapata@isi.wat..wat.edu.pl http://

Bardziej szczegółowo

KSZTAŁTOWANIE KRZYWEJ PRZEJŚCIOWEJ U PODSTAWY ZĘBA W ASPEKCIE MINIMALIZACJI NAPRĘŻEŃ ZGINAJĄCYCH

KSZTAŁTOWANIE KRZYWEJ PRZEJŚCIOWEJ U PODSTAWY ZĘBA W ASPEKCIE MINIMALIZACJI NAPRĘŻEŃ ZGINAJĄCYCH KSZTAŁTOWANIE KRZYWEJ PRZEJŚCIOWEJ U PODSTAWY ZĘBA W ASPEKCIE MINIMALIZACJI NAPRĘŻEŃ ZGINAJĄCYCH Marek MARTYNA 1, Ja ZWOLAK 2 Streszczeie W kolach zębatych tworzących złożoe układy apędowe występują zmiee

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej

Bardziej szczegółowo

1. Metoda zdyskontowanych przyszłych przepływów pieniężnych

1. Metoda zdyskontowanych przyszłych przepływów pieniężnych Iwetta Budzik-Nowodzińska SZACOWANIE WARTOŚCI DOCHODOWEJ PRZEDSIĘBIORSTWA STUDIUM PRZYPADKU Wprowadzeie Dochodowe metody wycey wartości przedsiębiorstw są postrzegae, jako ajbardziej efektywe sposoby określaia

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego

Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego 0 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 0. Pomiary współczyika załamaia światła z pomiarów kąta załamaia oraz kąta graiczego Wprowadzeie Światło widziale jest promieiowaiem elektromagetyczym o

Bardziej szczegółowo

PODSTAWOWE ZAGADNIENIA METODOLOGICZNE

PODSTAWOWE ZAGADNIENIA METODOLOGICZNE PODSTAWOWE ZAGADNIENIA METODOLOGICZNE. Wprowadzeie W ekoomii i aukach o zarządzaiu obserwuje się tedecję do ilościowego opisu zależości miedzy zjawiskami ekoomiczymi. Umożliwia to - zobiektywizowaie i

Bardziej szczegółowo

Jak kontrolować tkowzroczność? CHIRURGIA LASEROWA. Wady wzroku u dzieci. Krótkowzroczność Nadwzroczność Astygmatyzm. dr n. med. Anna M.

Jak kontrolować tkowzroczność? CHIRURGIA LASEROWA. Wady wzroku u dzieci. Krótkowzroczność Nadwzroczność Astygmatyzm. dr n. med. Anna M. Program wczesego wykrywaia wad wzroku u dzieci klas II szkół podstawowych m. st. Warszawy prof. dr hab.. med. Jerzy Szaflik Kliika Okulistyki II WL AM w Warszawie ie, Samodziely Publiczy Kliiczy Szpital

Bardziej szczegółowo

NAPRĘśENIE PIERWOTNE W PODŁOśU GRUNTOWYM

NAPRĘśENIE PIERWOTNE W PODŁOśU GRUNTOWYM NAPRĘśENIE PIERWOTNE W PODŁOśU GRUNTOWYM Pionowe napręŝenie pierwotne σ zρ jest to pionowy nacisk jednostkowy gruntów zalegających w podłoŝu gruntowym ponad poziomem z. σ zρ = ρ. g. h = γ. h [N/m 2 ] [1]

Bardziej szczegółowo

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

Klasa betonu Klasa stali Otulina [cm] 3.00 Średnica prętów zbrojeniowych ściany φ 1. [mm] 12.0 Średnica prętów zbrojeniowych podstawy φ 2

Klasa betonu Klasa stali Otulina [cm] 3.00 Średnica prętów zbrojeniowych ściany φ 1. [mm] 12.0 Średnica prętów zbrojeniowych podstawy φ 2 Projekt: Wzmocnienie skarpy w Steklnie_09_08_2006_g Strona 1 Geometria Ściana oporowa posadowienie w glinie piaszczystej z domieszką Ŝwiru Wysokość ściany H [m] 3.07 Szerokość ściany B [m] 2.00 Długość

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

ANALIZA POLA W STRUKTURZE NIEJEDNORODNEJ METODĄ ELEMENTÓW BRZEGOWYCH

ANALIZA POLA W STRUKTURZE NIEJEDNORODNEJ METODĄ ELEMENTÓW BRZEGOWYCH Bartosz WALESKA AALZA POLA W STRKTRZE EJEDORODEJ METODĄ ELEMETÓW BRZEOWYC STRESZCZEE iiejszy artykł opisje metodę elemetów brzegowych w aalizie pola w strktrze iejedorodej. Zaprezetowao algorytm rozwiązywaia

Bardziej szczegółowo

Refraktometria. sin β

Refraktometria. sin β Refraktometria Podstawy teoretycze Wielkością o dość duŝym zaczeiu idetyfikacji związków chemiczych jest współczyik załamaia światła zway iekiedy współczyikiem refrakcji. Współczyik załamaia światła jest

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Modele i arzędzia optymalizacji w systemach iformatyczych zarządzaia Prof. dr hab. iż. Joaa Józefowska Istytut Iformatyki Orgaizacja zajęć 8 godzi wykładów prof. dr hab. iż. J. Józefowska www.cs.put.poza.pl/jjozefowska

Bardziej szczegółowo