Refraktometria. sin β

Wielkość: px
Rozpocząć pokaz od strony:

Download "Refraktometria. sin β"

Transkrypt

1 Refraktometria Podstawy teoretycze Wielkością o dość duŝym zaczeiu idetyfikacji związków chemiczych jest współczyik załamaia światła zway iekiedy współczyikiem refrakcji. Współczyik załamaia światła jest zdefiioway jako stosuek siusa kąta padaia, do siusa kąta załamaia i jest dla daych ośrodków wielkością stałą zaleŝą od długości fali uŝytego światła i od temperatury. siα = = cost. si β oŝa rówieŝ wprowadzić zaleŝość: c = c gdzie c i c są prędkościami światła w ośrodku I i II, przy czym promień przechodzi z ośrodka I do II. Dla gazów współczyik załamaia światła podaje się w odiesieiu do próŝi, dla ciał stałych i cieczy współczyik refrakcji mierzy się w stosuku do powietrza. Pomiarów współczyika załamaia światła ie wykouje się w oparciu o jego defiicję (a więc o pomiar kąta padaia i załamaia), gdyŝ zaczie wygodiejszą od pomiaru wielkością jest tzw. kąt graiczy β gra, który związay jest ze współczyikiem załamaia światła astępującą zaleŝością: = si β gra Jeśli światło przechodzi z powietrza do badaej substacji, to wystarczy zmierzyć kąt graiczy tej substacji. Jeśli atomiast światło przechodzi p. z pryzmatu szklaego do badaej substacji to w oparciu o powyŝszy wzór otrzymalibyśmy współczyik załamaia badaej substacji względem szkła daego pryzmatu. hcąc otrzymać współczyik załamaia światła badaej substacji względem powietrza ( ) aleŝy w tej sytuacji skorzystać z zaleŝości: = si βgra - współczyik refrakcji drugiego ośrodka β gra - wartość graicza kąta w drugim ośrodku Badaia współczyika refrakcji zajdują zastosowaie zarówo w aalizie ilościowej (zaleŝość = f() rzadko jest liią prostą), jak rówieŝ do idetyfikacji związków chemiczych. Z zestawień tabelaryczych współczyików refrakcji dla róŝych związków widać jedak, Ŝe zmieiają się oe iewiele w zaleŝości od substacji i dlatego ich przydatość do idetyfikacji jest iewielka (raczej stosuje się jako sprawdzia czystości). Natomiast fukcje współczyika załamaia światła, takie jak dyspersja D = ( ) i refrakcji molowa lub właściwa róŝią się zaczie bardziej między sobą przy przejściu p. od substacji do substacji w szeregu homologiczym. Drogą rozwaŝań teoretyczych H.A. Lorez stwierdził, Ŝe wartość: R = + d - cięŝar cząsteczkowy substacji d - gęstość substacji R - zwaa refrakcją molową jest dla określoego połączeia chemiczego stała i iezaleŝa od temp (wyraŝoa w cm 3 ).

2 Na podstawie rozwaŝań sił działających a cząsteczkę w jakimś ośrodku moŝa otrzymać tzw. rówaie lausiusa-asittiego: E = 4 Π N α E + 3 E- stała dielektycza ośrodka α - polaryzowalość cząsteczki N - liczba Avogadro 4/3ΠN = P - polaryzacja molowa ałkowita polaryzacja składa się z polaryzacji elektroowej, atomowej i polaryzacji ustawieia. Jeśli cząsteczki zajdują się w polu elektromagetyczym o odpowiedio duŝej częstości zmia p. w przedziale światła widzialego, zaika polaryzacja ustawieia i atomowa i pozostaje tylko polaryzacja elektroowa jedyie powłoki elektroowe zdąŝą się przesuwać w takt zmia tego pola. oŝa rówieŝ wykazać, Ŝe polaryzowalość elektroowa cząsteczki rówa się w przybliŝeiu sześciaowi jej promieia: α e = r 3, a więc polaryzacja elektroowa P E wyraŝa się wzorem: E P E = = 4 3 Π r N E + d 3 4/3Πr 3 N - jest sumaryczą objętością własą cząsteczek w molu. Wziąwszy pod uwagę fakt, iŝ: E = Z tj. stała dielektrycza ośrodka iedipolowego rówa się kwadratowi ekstrapolowaej a fale ieskończeie długie wartości współczyika załamaia światła, otrzymuje ostateczie R Z, czyli refrakcję molową ekstrapolowaą a fali ieskończeie długiej: E R Z = = + d E + d Dla substacji iedipolowych jest to po prostu całkowita polaryzacja molowa, dla substacji zaś dipolwych jest to wartość molowej polaryzacji elektroowej P E, czyli w przybliŝeiu objętość własa cząsteczek w molu. Wartość refrakcji molowej bardzo wyraźie zaleŝy od budowy cząsteczki związku orgaiczego, a więc od składu empiryczego badaego połączeia, a takŝe od sposobu powiązaia atomów w cząsteczce. W szczególości obecość w cząsteczce wiązań podwójych, potrójych lub układu sprzęŝoych wiązań podwójych powoduje zacze i swoiste dla kaŝdego wymieioych typów wiązań odchyleia od wartości obliczoej a podstawie wzoru sumaryczego. Odchyleie to osi azwę ikremetu (dla wiązaia podwójego lub potrójego) względie egzaltacji (adwyŝka poad sumę ikremetów w przypadku wiązaia, sprzęŝoego). Zając, zatem wzór sumaryczy połączeia, a ie zając jego wzoru strukturalego, moŝa za pomocą pomiaru refrakcji molowej uzyskać iformację o obecości wiązań wielokrotych w cząsteczce. Iym zastosowaiem pomiarów refrakcji jest określeie składu mieszaiy. Dla roztworów refrakcja molowa moŝe być obliczoa jako suma udziałów refrakcji molowych poszczególych składików, jeŝeli oddziaływań i między imi są iezacze. Dla roztworu dwuskładikowego słusze są astępujące rówaia:

3 { R, = R + R + = = + = +,, + + d, = + d + gdzie i są ułamkami molowymi składików roztworu. Wartości refrakcji atomowej grup są dołączoe a końcu istrukcji. Opis aparatury i metoda pomiaru + d Pomiary współczyika załamaia światła wykouje się a refraktometrze Abbego, schemat jego działaia poday jest a rys.. Rys. Schemat refraktometru Abbego. Promień świetly pada po odbiciu od lustra a pryzmat, załamuje się w warstwie cieczy badaej i astępie przechodzi przez drugi pryzmat 3, system optyczy 4, skrzyŝowae itki 5, wpada do okularu 6 i 7, w którym widzimy skrzyŝowae itki. Przez obrót pryzmatów zmieiamy kąt padaia od mometu, kiedy a skrzyŝowaiu itek, obserwowaych w okularze, pojawi się graica cieia. Zachodzi to dla kąta padaia rówego kątowi graiczemu. Wtedy przez lupę 8, sprzęgiętą a stałe z luetą główą, odczytujemy a skali 9 wartość współczyika. W refraktorze Abbego obudowa pryzmatów jest wykoaa tak, Ŝe zapewia utrzymaie w czasie pomiaru temperatury rówej 0 0, co uzyskuje się przez odpowiedie połączeie obudowy z termostatem, z którego doprowadza się ciecz opływającą pryzmaty. Wykoaie ćwiczeia Asystet podaje cięŝar cząsteczkowy składików I i II, oraz ich wzory sumarycze. Składiki te oraz ich mieszaia zajduje się w trzech butelkach. NaleŜy wykoać pomiary współczyików załamaia światła składików I i II oraz ich mieszaiy. Następie wykoujemy pomiary ich gęstości. W tym celu wykoujemy astępujące czyości: 3

4 a) waŝymy a wadze aalityczej pusty, czysty, suchy pikometr b) pikometr apełiamy wodą i waŝymy c) pilkometr apełiamy składikiem I i waŝymy d) pikometr apełiamy składikiem II i waŝymy e) pikometr apełiamy mieszaią składików I i II i waŝymy NaleŜy po kaŝdym pomiarze (z wyjątkiem pomiaru a) pikometr wyruszyć za pomocą dmuchaia feem, ie ogrzewać). Po waŝeiu wody pikometr przepłukać alkoholem metylowym, ale po waŝeiu substacji orgaiczych jest to zbytecze, gdyŝ z reguły są oe łatwo lote. Następie wykoać astępujące obliczeia: a) gęstość składika l i II oraz ich mieszaiy b) refrakcje molowe składików I i II a podstawie zmierzoych i d, oraz arysować wszystkie moŝliwe wzory tych składików i obliczyć refrakcje molowe jako sumy refrakcji atomowych odczytaych z tabeli. Ustalić wzory strukturale składików I i II. c) obliczyć ułamki molowe składików I i II w mieszaiie. UWAGA: Roztwory z butelek pobieramy za pomocą czystej i suchej pipetki. Roztwory po zwaŝeiu w pikometrze zlewamy z powrotem do odpowiedich butelek. Wzór sprawozdaia Numer mieszaiy: asa pikometru w [g] Gęstość d w [g/cm 3 ] pustego z H O z I z II z I + II H O I II I + II Współczyik załamaia światła I II I + II Refrakcja molowa dla składika I wyosi... Refrakcja molowa dla składika II wyosi... Podać wszystkie moŝliwe wzory strukturale dla składika I i II, wyliczyć dla ich refrakcje molowe z atomowych i porówać z refrakcjami molowymi. Na tej podstawie określić rodzaj składika I i II. Podać azwy tych związków. ieszaia zawierała: I... o ułamku masowym:... oraz II... o ułamku masowym... 4

5 Tabela. Refrakcje atomowe R a atomów (grup) wiązań dla liii D (5893A) widma sodowego. Lp. Rodzaje atomu (grupy) i wiązaia Symbol Ugrupowaia, w których atom występuje R a. Węgiel -- H H --, --H, --H, --H H,48. Wodór -H -H, O-H, H-H, S-H,00 3. hlor -l -l, O-l, S-l 5, Brom -Br -Br, O-Br, S-B 8, Jod -I -I, O-I, S-I 3,90 6. Tle karboylowy =O >=O, 7. Tle alkoholowy -O- -O-H,55 8. Tle eterowy -O- -O-, Siarka tiolowa -S- -S-H 7, Siarka tioeterowa -S- -S- 7,970 H. Azot ami I-rzędowych >N- -N,3 H. Azot ami II-rzędowych -N= H-N,50 3. Azot ami III-rzędowych N N -, Azot itro -N< O -N... O 5. Azot itrozo -N -N=O Grupa itrylowa -N - N 5,45 7. Grupa izoitrylowa -N -N= 6,36 8. Pierścień trójczłoowy 0,70 9. Pierścień czteroczłoowy 0, Pierścień bezoesowy 5,00. Wiązaie podwóje = >=<,733. Wiązaie potróje - -,336 5

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr

Bardziej szczegółowo

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9 Retgeowska aaliza fazowa jakościowa i ilościowa Wykład 9 1. Retgeowska aaliza fazowa jakościowa i ilościowa. 2. Metody aalizy fazowej ilościowej. 3. Dobór wzorca w aalizie ilościowej. 4. Przeprowadzeie

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

Prawo odbicia i załamania. Autorzy: Zbigniew Kąkol Piotr Morawski

Prawo odbicia i załamania. Autorzy: Zbigniew Kąkol Piotr Morawski Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol Piotr Morawski 207 Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol, Piotr Morawski Jeżeli światło pada a graicę dwóch ośrodków, to ulega zarówo odbiciu a

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji

Bardziej szczegółowo

REFRAKTOMETRIA. 19. Oznaczanie stężenia gliceryny w roztworze wodnym

REFRAKTOMETRIA. 19. Oznaczanie stężenia gliceryny w roztworze wodnym REFRAKTOMETRIA 19. Oznaczanie stężenia gliceryny w roztworze wodnym Celem ćwiczenia jest zaobserwowanie zmiany współczynnika refrakcji wraz ze zmianą stężenia w roztworu. Odczynniki i aparatura: 10% roztwór

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr

Bardziej szczegółowo

Refraktometria. sin β sin β

Refraktometria. sin β sin β Refraktometria Prędkość rozchodzenia się promieni świetlnych zależy od gęstości optycznej ośrodka oraz od długości fali promienienia. Promienie świetlne padając pod pewnym kątem na płaszczyznę graniczących

Bardziej szczegółowo

WYKORZYSTANIE POMIARU REFRAKCJI MOLOWEJ DO BADAŃ FIZYKOCHEMICZNYCH (Pomiar refrakcji molowej i sprawdzenie jej addytywności)

WYKORZYSTANIE POMIARU REFRAKCJI MOLOWEJ DO BADAŃ FIZYKOCHEMICZNYCH (Pomiar refrakcji molowej i sprawdzenie jej addytywności) Ćwiczenie nr 1b WYKORZYSTANIE POMIARU REFRAKCJI MOLOWEJ DO BADAŃ FIZYKOCHEMICZNYCH (Pomiar refrakcji molowej i sprawdzenie jej addytywności) I. Cel ćwiczenia Celem ćwiczenia jest teoretyczne i doświadczalne

Bardziej szczegółowo

2. Schemat ideowy układu pomiarowego

2. Schemat ideowy układu pomiarowego 1. Wiadomości ogóle o prostowikach sterowaych Układy prostowikowe sterowae są przekształtikami sterowaymi fazowo. UmoŜliwiają płya regulację średiej wartości apięcia wyprostowaego, a tym samym średiej

Bardziej szczegółowo

Błędy kwantyzacji, zakres dynamiki przetwornika A/C

Błędy kwantyzacji, zakres dynamiki przetwornika A/C Błędy kwatyzacji, zakres dyamiki przetworika /C Celem ćwiczeia jest pozaie wpływu rozdzielczości przetworika /C a błąd kwatowaia oraz ocea dyamiki układu kwatującego. Kwatowaie przyporządkowaie kolejym

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)

Bardziej szczegółowo

WYKORZYSTANIE POMIARU REFRAKCJI MOLOWEJ DO BADAŃ FIZYKOCHEMICZNYCH (Refrakcja molowa a budowa związku chemicznego)

WYKORZYSTANIE POMIARU REFRAKCJI MOLOWEJ DO BADAŃ FIZYKOCHEMICZNYCH (Refrakcja molowa a budowa związku chemicznego) Ćwiczenie nr 1a WYKORZYSTANIE POMIARU REFRAKCJI MOLOWEJ DO BADAŃ FIZYKOCHEMICZNYCH (Refrakcja molowa a budowa związku chemicznego) I. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie refrakcji molowej

Bardziej szczegółowo

POMIARY KIERUNKÓW I WYZNACZENIE KĄTÓW POZIOMYCH

POMIARY KIERUNKÓW I WYZNACZENIE KĄTÓW POZIOMYCH POMIARY KIERUNKÓW I WYZNACZENIE KĄTÓW POZIOMYCH KĄT POZIOMY Defiicja kąt poziomy wyzaczay jest przez ślady przecięcia dwóch płaszczyz pioowych przechodzących przez oś celową i obserwowae pukty z poziomą

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Refrakcja roztworów dwuskładnikowych związków organicznych. opiekun: mgr K.

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Refrakcja roztworów dwuskładnikowych związków organicznych. opiekun: mgr K. Katera Chemii Fizyczej Uiwersytetu Łózkiego Refrakcja roztworów wuskłaikowych związków orgaiczych opieku: mgr K. Łuzik ćwiczeie r 3 Zakres zagaień obowiązujących o ćwiczeia. Zjawisko załamaia światła..

Bardziej szczegółowo

Badanie właściwości optycznych roztworów.

Badanie właściwości optycznych roztworów. ĆWICZENIE 4 (2018), STRONA 1/6 Badanie właściwości optycznych roztworów. Cel ćwiczenia - wyznaczenie skręcalności właściwej sacharozy w roztworach wodnych oraz badanie współczynnika załamania światła Teoria

Bardziej szczegółowo

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5 Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 5 ANALIZA WŁASNOŚCI DYNAMICZNYCH WYBRANEGO OBIEKTU FIZYCZNEGO 1. Opis właściwości dyamiczych obiektu Typowym

Bardziej szczegółowo

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3. KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ OZNACZANIE ŚREDNIEJ MASY CZĄSTECZKOWEJ POLIMERU WSTĘP Lepkość roztworu polimeru jest z reguły większa od lepkości rozpuszczalnika. Dla polimeru lepkość graniczna [η ] określa zmianę lepkości roztworu przypadającą

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji

Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji Zagadnienia: polaryzacja światła, metody otrzymywania światła spolaryzowanego, budowa polarymetru, zjawisko

Bardziej szczegółowo

Repetytorium z wybranych zagadnień z chemii

Repetytorium z wybranych zagadnień z chemii Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie

Bardziej szczegółowo

( 0) ( 1) U. Wyznaczenie błędów przesunięcia, wzmocnienia i nieliniowości przetwornika C/A ( ) ( )

( 0) ( 1) U. Wyznaczenie błędów przesunięcia, wzmocnienia i nieliniowości przetwornika C/A ( ) ( ) Wyzaczeie błędów przesuięcia, wzmocieia i ieliiowości przetworika C/A Celem ćwiczeia jest wyzaczeie błędów przesuięcia, wzmocieia i ieliiowości przetworika C/A. Zając wartości teoretycze (omiale) i rzeczywiste

Bardziej szczegółowo

Spektroskopia molekularna. Spektroskopia w podczerwieni

Spektroskopia molekularna. Spektroskopia w podczerwieni Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE.

Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE. W S E i Z WYDZIAŁ. L A B O R A T O R I U M F I Z Y C Z N E Nr ćwicz. 9 Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE. Semestr Grupa Zespół Ocea Data / Podpis Warszawa,

Bardziej szczegółowo

LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 16

LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 16 KATEDRA INŻYNIERII CHEMICZNEJ I ROCESOWEJ INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM INŻYNIERII CHEMICZNEJ, ROCESOWEJ I BIOROCESOWEJ Ćwiczeie r 16 Mieszaie Osoba odpowiedziala: Iwoa Hołowacz Gdańsk,

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

Jednostki Ukadu SI. Jednostki uzupełniające używane w układzie SI Kąt płaski radian rad Kąt bryłowy steradian sr

Jednostki Ukadu SI. Jednostki uzupełniające używane w układzie SI Kąt płaski radian rad Kąt bryłowy steradian sr Jednostki Ukadu SI Wielkość Nazwa Symbol Długość metr m Masa kilogram kg Czas sekunda s Natężenie prądu elektrycznego amper A Temperatura termodynamiczna kelwin K Ilość materii mol mol Światłość kandela

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII AKADEMIA MORSKA W SZCZECINIE Cetrum Iżyierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczeie 5 Aaliza statystycza wyików pomiarów pozycji GNSS Szczeci, 010 Zespół wykoawczy: Dr iż. Paweł Zalewski Mgr

Bardziej szczegółowo

20. Oznaczanie stężenia acetonu w czterochloroetanie

20. Oznaczanie stężenia acetonu w czterochloroetanie REFRAKTOMETRIA 20. Oznaczanie stężenia acetonu w czterochloroetanie Odczynniki i aparatura: Aceton Czterochloroetan Refraktometr Pulfricha PR-2 Wykonanie ćwiczenia: 1. 15 minut przed pomiarami włączyć

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym) Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie momentu dipolowego cieczy polarnych. opracował dr P. Góralski

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie momentu dipolowego cieczy polarnych. opracował dr P. Góralski Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie momentu dipolowego cieczy polarnych opracował dr P. Góralski ćwiczenie nr 15 Zakres zagadnień obowiązujących do ćwiczenia 1. Polaryzacja jako

Bardziej szczegółowo

Cząsteczkę A dielektryka, otoczoną sąsiadami można traktować tak, jak gdyby znajdowała się w centrum wnęki kulistej rys. 1.

Cząsteczkę A dielektryka, otoczoną sąsiadami można traktować tak, jak gdyby znajdowała się w centrum wnęki kulistej rys. 1. Pomiar współczyika załamaia roztworów. Sprawdzeie związku Loretza Loreza. Ćwiczeie O - I. Cel ćwiczeia: zapozaie z budową i działaiem refraktometru laboratoryjego oraz pomiar współczyika załamaia roztworów

Bardziej szczegółowo

Równowaga reakcji chemicznej

Równowaga reakcji chemicznej Rówowaga reakcji chemiczej Sta i stała rówowagi reakcji chemiczej (K) Reakcje dysocjacji Stopień dysocjacji Prawo rozcieńczeń Ostwalda utodysocjacja wody p roztworów p roztworów. p roztworów mocych elektrolitów

Bardziej szczegółowo

Chemiczne metody analizy ilościowej (laboratorium)

Chemiczne metody analizy ilościowej (laboratorium) Cheicze etody aalizy ilościowej (laboratoriu) Broiaoetria 9. Przygotowaie iaowaego roztworu broiau (V) potasu Broia(V) potasu ależy do stosowaych w aalizie cheiczej substacji podstawowych. oże być otrzyay

Bardziej szczegółowo

Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego

Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego 0 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 0. Pomiary współczyika załamaia światła z pomiarów kąta załamaia oraz kąta graiczego Wprowadzeie Światło widziale jest promieiowaiem elektromagetyczym o

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

WOJEWÓDZKI KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2017/2018 STOPIEŃ WOJEWÓDZKI 9 MARCA 2018 R.

WOJEWÓDZKI KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2017/2018 STOPIEŃ WOJEWÓDZKI 9 MARCA 2018 R. Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2017/2018 9 MARCA 2018 R. 1. Test konkursowy zawiera 12 zadań. Na ich rozwiązanie masz 90 minut. Sprawdź, czy

Bardziej szczegółowo

Ćwiczenie Nr 8 Współczynnik załamania refraktometr Abbego

Ćwiczenie Nr 8 Współczynnik załamania refraktometr Abbego Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 8 Współczynnik załamania refraktometr Abbego Zagadnienia: załamanie światła na anicy dwóch ośrodków, prawo Snelliusa, zjawisko całkowitego

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

Stechiometria analiza elementarna

Stechiometria analiza elementarna ZADAIA Z CHEII Stechioetria aaliza eleetara Stechioetria jest to etoda aalizy, w której wykorzystuje się reakcje cheicze, a w obliczeiach aalizy ilościowej rówaie reakcji cheiczej. Aaliza eleetara jest

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Fizyczny charakter wiązań w cząsteczkach. 2. Elektryczne momenty dipolowe cząsteczek.

Bardziej szczegółowo

Rozpuszczalność gazów w cieczach. Prawo Henry ego

Rozpuszczalność gazów w cieczach. Prawo Henry ego Rozpuszczalość gazów w cieczach. rawo ery ego Empiryczie stwierdzoo, że, w k, czyli ilość gazu rozpuszczoego w cieczy jest w warukach izotermiczych proporcjoala do jego ciśieia. V Jeśli gaz jest gazem

Bardziej szczegółowo

Model Bohra atomu wodoru

Model Bohra atomu wodoru Model Bohra atomu wodoru Widma liiowe pierwiastków. wodór hel eo tle węgiel azot sód Ŝelazo Aby odpowiedzieć a pytaie dlaczego wodór i ie pierwiastki ie emitują wszystkich częstotliwości fal elektromagetyczych

Bardziej szczegółowo

Podstawowe pojęcia optyki geometrycznej. c prędkość światła w próżni v < c prędkość światła w danym ośrodku

Podstawowe pojęcia optyki geometrycznej. c prędkość światła w próżni v < c prędkość światła w danym ośrodku Optyka geometrycza Podstawowe pojęcia optyki geometryczej Bezwzględy współczyik załamaia c prędkość światła w próżi v < c prędkość światła w daym ośrodku c v > 1 Aksjomaty Światło w ośrodku jedorodym propaguje

Bardziej szczegółowo

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU.

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. 0.X.00 ĆWICZENIE NR 76 A (zestaw ) WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. I. Zestaw przyrządów:. Spektrometr (goniometr), Lampy spektralne 3. Pryzmaty II. Cel ćwiczenia: Zapoznanie

Bardziej szczegółowo

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI Grupa: 1. 2. 3. 4. 5. LABORATORIUM ELEKTROENERGETYKI Data: Ocea: ĆWICZENIE 3 BADANIE WYŁĄCZNIKÓW RÓŻNICOWOPRĄDOWYCH 3.1. Cel ćwiczeia Celem ćwiczeia jest:

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza ĆWICZENIE 76A WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw ) Instrukcja wykonawcza. Wykaz przyrządów Spektrometr (goniometr) Lampy spektralne Pryzmaty. Cel ćwiczenia

Bardziej szczegółowo

WYZNACZANIE ROZMIARÓW

WYZNACZANIE ROZMIARÓW POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 6 WYZNACZANIE ROZMIARÓW MAKROCZĄSTECZEK I. WSTĘP TEORETYCZNY Procesy zachodzące między atomami lub cząsteczkami w skali molekularnej

Bardziej szczegółowo

IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO

IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO Cel ćwiczenia: Zapoznanie się z metodą pomiaru grubości cienkich warstw za pomocą interferometrii odbiciowej światła białego, zbadanie zjawiska pęcznienia warstw

Bardziej szczegółowo

sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin,

sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin, Wykład XI Elemety optycze II pryzmat kąt ajmiejszego odchyleia powierzchia serycza tworzeie obrazów rówaie soczewka rodzaje rówaia szliierzy i Gaussa kostrukcja obrazów moc optycza korekcja wad wzroku

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1 (MAP 1024) LISTY ZADAŃ

ANALIZA MATEMATYCZNA 1 (MAP 1024) LISTY ZADAŃ ANALIZA MATEMATYCZNA (MAP 0) LISTY ZADAŃ Listy zadań przezaczoe są dla studetów którzy program matematyki szkoły poadgimazjalej zają jedyie a poziomie podstawowym Obejmują iezbęde do dalszej auki zagadieia

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

Zapis równań reakcji chemicznych oraz ich uzgadnianie

Zapis równań reakcji chemicznych oraz ich uzgadnianie Zapis równań reakcji chemicznych oraz ich uzgadnianie Równanie reakcji chemicznej jest symbolicznym zapisem reakcji przy uŝyciu symboli wzorów oraz odpowiednich współczynników i znaków. Obrazuje ono przebieg

Bardziej szczegółowo

(opracował Leszek Szczepaniak)

(opracował Leszek Szczepaniak) ĆWICZENIE NR 3 POMIARY POŁOśENIA I PRZEMIESZCZEŃ LINIOWYCH I KĄTOWYCH (opracował Leszek Szczepaiak) Cel i zakres ćwiczeia Celem ćwiczeia jest praktycze zapozaie się z metodami pomiarowymi i czujikami do

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

Ćw 1. Klinowe przekładnie pasowe podczas ich eksploatacji naraŝone są na oddziaływanie róŝnorodnych czynników, o trudnej do

Ćw 1. Klinowe przekładnie pasowe podczas ich eksploatacji naraŝone są na oddziaływanie róŝnorodnych czynników, o trudnej do Ćw BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW EKPLOATACYJNYCH NA WARTOŚCI PODTAWOWYCH PARAMETRÓW PRZEKŁADNI CIĘGNOWEJ Z PAKIEM KLINOWYM. WYBRANA METODA BADAŃ. Kliowe przekładie pasowe podczas

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

Ćwiczenie 74. Zagadnienia kontrolne. 2. Sposoby otrzymywania światła spolaryzowanego liniowo. Inne rodzaje polaryzacji fali świetlnej.

Ćwiczenie 74. Zagadnienia kontrolne. 2. Sposoby otrzymywania światła spolaryzowanego liniowo. Inne rodzaje polaryzacji fali świetlnej. PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Polarymetr Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia 74 Data oddania Data zaliczenia OCENA Ćwiczenie 74 Cel ćwiczenia:

Bardziej szczegółowo

Przejście światła przez pryzmat i z

Przejście światła przez pryzmat i z I. Z pracowi fizyczej. Przejście światła przez pryzmat - cz. II 1. Przejście światła przez pryzmat. Kąt odchyleia. W paragrafie 8.10 trzeciego tomu e-podręczika opisao bieg światła moochromatyczego w pryzmacie.

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

POMIAR WARTOŚCI SKUTECZNEJ NAPIĘĆ OKRESOWO ZMIENNYCH METODĄ ANALOGOWEGO PRZETWARZANIA SYGNAŁU

POMIAR WARTOŚCI SKUTECZNEJ NAPIĘĆ OKRESOWO ZMIENNYCH METODĄ ANALOGOWEGO PRZETWARZANIA SYGNAŁU POMIAR WARTOŚCI SKTECZNEJ NAPIĘĆ OKRESOWO ZMIENNYCH METODĄ ANALOGOWEGO PRZETWARZANIA SYGNAŁ CEL ĆWICZENIA Celem ćwiczeia jest zwróceie uwagi a ograiczeie zakresu poprawego pomiaru apięć zmieych wyikające

Bardziej szczegółowo

1. Granica funkcji w punkcie

1. Granica funkcji w punkcie Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem

Bardziej szczegółowo

Polarymetr. Ćwiczenie 74. Cel ćwiczenia Pomiar kąta skręcenia płaszczyzny polaryzacji w roztworach cukru. Wprowadzenie

Polarymetr. Ćwiczenie 74. Cel ćwiczenia Pomiar kąta skręcenia płaszczyzny polaryzacji w roztworach cukru. Wprowadzenie Ćwiczenie 74 Polarymetr Cel ćwiczenia Pomiar kąta skręcenia płaszczyzny polaryzacji w roztworach cukru. Wprowadzenie Światło liniowo spolaryzowane* rozchodzi się bez zmiany płaszczyzny polaryzacji w próŝni

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia..

Projekt z dnia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia.. Projekt z dia 24.05.2012 r. Wersja 0.5 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dia.. w sprawie szczegółowego zakresu obowiązku uzyskaia i przedstawieia do umorzeia świadectw efektywości eergetyczej i uiszczaia

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z CHEMII

KONKURS PRZEDMIOTOWY Z CHEMII Pieczęć KONKURS PRZEDMIOTOWY Z CHEMII dla uczniów gimnazjów województwa lubuskiego 26 stycznia 2012 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu Chemicznego. Przed przystąpieniem

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

2. Podczas spalania 2 objętości pewnego gazu z 4 objętościami H 2 otrzymano 1 objętość N 2 i 4 objętości H 2O. Jaki gaz uległ spalaniu?

2. Podczas spalania 2 objętości pewnego gazu z 4 objętościami H 2 otrzymano 1 objętość N 2 i 4 objętości H 2O. Jaki gaz uległ spalaniu? 1. Oblicz, ilu moli HCl należy użyć, aby poniższe związki przeprowadzić w sole: a) 0,2 mola KOH b) 3 mole NH 3 H 2O c) 0,2 mola Ca(OH) 2 d) 0,5 mola Al(OH) 3 2. Podczas spalania 2 objętości pewnego gazu

Bardziej szczegółowo

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2012/2013

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2012/2013 Kuratorium Oświaty w Lublinie Kod ucznia KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2012/2013 ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu chemicznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,

Bardziej szczegółowo

TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI

TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI Ćwiczenie nr 7 TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI Celem ćwiczenia jest zapoznanie się z podstawami teorii procesów transportu nieelektrolitów przez błony.

Bardziej szczegółowo

A4.04 Instrukcja wykonania ćwiczenia

A4.04 Instrukcja wykonania ćwiczenia Katedra Chemii Fizycznej Uniwersytetu Łódzkiego A4.04 Instrukcja wykonania ćwiczenia Wyznaczanie cząstkowych molowych objętości wody i alkoholu Zakres zagadnień obowiązujących do ćwiczenia 1. Znajomość

Bardziej szczegółowo

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH Ćwiczenie 14 aria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYATYCZNYCH Zagadnienia: Podstawowe pojęcia kinetyki chemicznej (szybkość reakcji, reakcje elementarne, rząd reakcji). Równania kinetyczne prostych

Bardziej szczegółowo

ELEKTROGRAWIMETRIA. Warunki jakie musi spełniać osad analitu na elektrodzie

ELEKTROGRAWIMETRIA. Warunki jakie musi spełniać osad analitu na elektrodzie ELEKTROGRAWIETRIA Zasada ozaczaia polega a wydzieleiu aalitu w procesie elektrolizy w postaci osadu a elektrodzie roboczej ( katodzie lub aodzie) i wagowe ozaczeie masy osadu z przyrostu masy elektrody

Bardziej szczegółowo

ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n)

ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n) ZADANIA - ZESTAW Zadaie.. Wyzaczyć m (), D ( ) dla procesu symetryczego (p = q =,) błądzeia przypadkowego. Zadaie.. Narysuj graf łańcucha Markowa symetrycze (p = q =,) błądzeie przypadkowe z odbiciem.

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

1. WSPÓŁCZNNIK ZAŁAMANIA ŚWIATŁA ORAZ WSPÓŁCZYNNIK DYSPERSJI SZKŁA. a) Bezwzględny współczynnik załamania światła

1. WSPÓŁCZNNIK ZAŁAMANIA ŚWIATŁA ORAZ WSPÓŁCZYNNIK DYSPERSJI SZKŁA. a) Bezwzględny współczynnik załamania światła . WSPÓŁCZNNIK ZAŁAMANIA ŚWIATŁA ORAZ WSPÓŁCZYNNIK DYSPERSJI SZKŁA a) Bezwzględy współczyik załamaia światła Bezwzględy współczyik załamaia światła b dla daego ośrodka to stosuek prędkości rozchodzeia się

Bardziej szczegółowo

Badanie kinetyki inwersji sacharozy

Badanie kinetyki inwersji sacharozy Badanie kinetyki inwersji sacharozy Cel ćwiczenia: Celem ćwiczenia jest wyznaczenie stałej szybkości, energii aktywacji oraz czynnika przedwykładniczego reakcji inwersji sacharozy. Opis metody: Roztwory

Bardziej szczegółowo

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu

Bardziej szczegółowo

I PRACOWNIA FIZYCZNA, UMK TORUŃ WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO

I PRACOWNIA FIZYCZNA, UMK TORUŃ WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO I PRACOWNIA FIZYCZNA, UMK TORUŃ Istrukcja do ćwiczeia r WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO Istrukcję wykoał Mariusz Piwiński I. Cel ćwiczeia. pozaie ruchu harmoiczeo oraz

Bardziej szczegółowo

Płaskie układy obciąŝeń. Opis analityczny wielkości podstawowych. wersory. mechanika techniczna i wytrzymałość materiałów 1 statyka 2

Płaskie układy obciąŝeń. Opis analityczny wielkości podstawowych. wersory. mechanika techniczna i wytrzymałość materiałów 1 statyka 2 Opis aalitcz wielkości podstawowch wersor e x, e Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B ) ) Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B )

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Instrukcja wykonawcza 1. Wykaz przyrządów Polarymetr Lampa sodowa Solenoid Źródło napięcia stałego o wydajności prądowej min. 5A Amperomierz prądu stałego

Bardziej szczegółowo

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Obliczenia chemiczne Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny 1 STĘŻENIA ROZTWORÓW Stężenia procentowe Procent masowo-masowy (wagowo-wagowy) (% m/m) (% w/w) liczba gramów substancji rozpuszczonej

Bardziej szczegółowo

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 16 stycznia 2015 r. zawody II stopnia (rejonowe)

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 16 stycznia 2015 r. zawody II stopnia (rejonowe) Konkurs przedmiotowy z chemii dla uczniów gimnazjów 16 stycznia 2015 r. zawody II stopnia (rejonowe) Kod ucznia Suma punktów Witamy Cię na drugim etapie konkursu chemicznego. Podczas konkursu możesz korzystać

Bardziej szczegółowo

O1. POMIARY KĄTA GRANICZNEGO

O1. POMIARY KĄTA GRANICZNEGO O1 POMIARY KĄTA GRANICZNEGO tekst opraowała: Bożea Jaowska-Dmoh Gdy wiązka światła pada a aię dwóh ośrodków przezrozystyh od stroy ośrodka optyzie gęstszego pod kątem aizym, to promień załamay ślizga się

Bardziej szczegółowo

Pytania do ćwiczeń na I-szej Pracowni Fizyki

Pytania do ćwiczeń na I-szej Pracowni Fizyki Ćw. nr 5 Oscylator harmoniczny. 1. Ruch harmoniczny prosty. Pojęcia: okres, wychylenie, amplituda. 2. Jaka siła powoduje ruch harmoniczny spręŝyny i ciała do niej zawieszonego? 3. Wzór na okres (Studenci

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo