TOM III ZESZYT 2. MSCHAKrKI BUDOWLI POLlTKCHNIia GDAŃSK 1951
|
|
- Ignacy Sikora
- 6 lat temu
- Przeglądów:
Transkrypt
1 MECHANIKI STOSOWANEJ TOM III ZESZYT 2 MSCHAKrKI BUDOWLI POLlTKCHNIia GDAŃSK 1951 GOA3&SKIEJ
2 ARCHIWUM MECHANIKI STOSOWANEJ Tom III. Zeszyi Zastosowanie całki Fouriera do teorii płyt ortotrop owych HHTerpana Oypbe B TeopMM optotponhbix W. Nowacki i St. Turski W zastosowaniach praktycznych nabierają coraz większego znaczenia płyty ortotropowe. Równanie różniczkowe powierzchni odkształcenia płyty ortotropowej w układzie współrzędnych prostokątnych przyjmuje następującą, podaną przez M. T. Hub er a l ) postać: D x *1?L + 2H^-+D B i^-p (1) Tutaj D x, H, D s są wielkościami stałymi. D x = m x m!l 1 12 m x m y l 12 m g m x gdzie E x, E s są modułami sprężystości w kierunku osi x i y, m x, mg odpowiednimi liczbami Poissona dla tych kierunków, G o jest stałą materiałową, stanowiącą odpowiednik modułu odkształcenia postaciowego płyty izotropowej, h jest grubością płyty, p(x, y) obciążeniem na jednostkę powierzchni środkowej płyty, Przy oznaczeniach Q ]/D x D s ' ' D x *) Praca niniejsza była referowana na posiedzeniu sekcji matematyki stosowanej I-go Kongresu Matematyków Węgierskich w Budapeszcie we -wrześniu J ) M. T. Huber, La theorie generale des hourdis en beton arme. Lwów Archiwum Mechaniki Stosowanej
3 90 W. Nowacki i St. Turski Arch. Mech. Stos. napiszemy równanie (1) w postaci d i w 3 x 2 'd y 2 ay (2) Wielkość p odgrywa w teorii płyt ortotropowych ważną rolę. Mianowicie rozwiązanie równania (1) dla p> 1 znajdują zazwyczaj zastosowanie dla płyt żelbetowych krzyżowo zbrojonych, a dla o < 1 dla płyt z blachy falistej i gęstożebrowych krat belkowych. Wypadek g=l; e==l odpowiada płytom izotropowym. Rozważmy płytę w kierunku y nieskończenie długą, opierającą się na niepodatnych, równoległych podporach liniowych (rys. 1). Załóżmy rozmaite rozpiętości a r i rozmaite sztywności D, w poszczególnych y przęsłach. My) Pr. X Niech na płytę działa obciążenie P(y) wzdłuż prostej równoległej do osi y. Przyjmijmy, że obciążenie to r-4 r r->4 jest ciągłe lub nieciągłe, ale ograniczone i ustawione symetrycznie w stosunku do osi x; poszukujemy powierzchni odkształcenia płyty, Tak a r - ar ~' Rys. l - określone zadanie zawierać będzie cały szereg' wypadków szczególnych i charakteryzować się będzie tym, że rozwiązanie równania (1) da się przedstawić przy pomocy całek Fouriera. Jako wielkości nadliczbowe przyjmiemy momenty podporowe o wektorach skierowanych w kierunku osi y. Oznaczmy je odpowiednio do podpór przez M r (r i, 2,.) Zarówno obciążenie P(y) jak i momenty M r (y) wyrazimy przy pomocy całek Fouriera. DO j p(a) cos uy da, p(a)= fp(\) s ax dl; (3) CO CO
4 Tom III 1951 Zastosowanie całki Fouriera 91 co r c M r (y) = -~ nj m,(c) cos uy da, m r {a) J M r {l) cos al dl; o o co przy czym zakładamy, że J\P{l)\dl posiada wartość skończoną. co Wielkość momentów podporowych M r wyznaczymy z odpowiedniej ilości równań ciągłości płyty na podporach r. Równania te jak niżej zobaczymy, dają się przedstawić w postaci równań trójczłonowych. W dalszych wywodach zajmować się będziemy równaniem, jednorodnym 8 l ^l + e 4^i=o. (4) 3 l Rozwiązanie tego równania przedstawimy w postaci oo gdzie dla Q > 1 w = -' X(n, x) cos ay da,. (5) jt J a 2 0 X(x,a) U l cosh ^sr+t/a sinli l^+u^ cosh X 2 x+f/ 4 sinh A 2 x, (6a) Dla e-1 i. 2 ] 0 l Q! oo v=ea. X(x, a)=a 1 cosh vx+a 2 vx sinh vx+a 3 sinh vx+a i \'x coshvx, (6b) wrzeszcie dla Q < 1 X{x, o-)=b 1 cosh cp x x cos cp 3 x + B 2 cosh cpjjc sinfpi.x+b 3 sinh cp x x cos cpa^+ fi3y sinh cp x x sin cp 2 x (6c) Zauważmy* że między cp i I zachodzi zależność T*
5 92 W. Nowacki i St Turski Arch. Mech. Stos. Powierzchnię odkształcenia pasma płytowego o szerokości a złożymy z dwóch, części, z powierzchni wp powstałej od obciążenia liniowego P(y) oraz z powierzchni WM powstałej wskutek działania momentów podporowych M'(y), M"(y), w=wp + WM + WM" Wyznaczmy najpierw powierzchnię w M powstałą pod wpływem momentu M' Hu) M' M'[y) = n m\a) cos ay da, działającego wzdłuż brzegu x 0 pasma płytowego swobodnie podpartego na podporach x=0 x a. Rys. 2 W tym wypadku mamy do czynienia z jednorodnym równaniem różniczkowym (4). Warunki brzegowe tego zadania są następujące: dla x = dla x=a w M '{a,y)=0 = 0, Prowadzą one do wyznaczenia (dla Q>1) wielkości U L,,..., C/4 2 = f/ x ctgh? tl a, U i =U 1 ctgh A 2 a. (8) Łatwo obliczyć stałe całkowania w przypadkach Znajomość stałych f/ l5.., C/ 4 pozwoli już na wyznaczenie nachylenia stycznej do linii odkształcenia w przekroju y = const. 3* = m{u) ( P(a) cos r/y c/a, A=O xd x J dw M ' l óx (a) cos ay da. (9)
6 Tom III 1951 Zastosowanie całki Fouriera 93 gdzie (v 1 ctgh.v 1 -V a ctgliv a )! O (v ^- v ^\ sinhv 2, Vj=} tl a, v 2 =A 2 a. (10) Dla g<l uzyskamy przy użyciu zależności Xi. 2 =q) 1 ±tcp a następujące funkcje parametru: A/ \ a l'a coslii 'i sinh tyi i >i cos \ > 2 sim > 2 p! \ ) a (sinh 2»[)!+sin 2 i ) 2 ) w/ \ % cosh I J, sin i ' 2 H'a sinh ipj cos l' ^a) =! il^łl'2 (sinh 2 %+sin 2 1^) (11) Wreszcie dla Q=l uzyskamy przy przejściu do granic (^x->-va = ii; v > 2 -K)) następujące funkcje parametru a: _,. cosh11 sinh ii i] sinh 2 ii U7 x _ 11cosh i] sinh i] sinh 2 n (12) Następnym zadaniem pomocniczym będzie wyznaczenie powierzchni w P pasma płytowego swobodnie podpartego (rys. 3). Pasmo płytowe traktować będziemy jako dwie płyty (I i I') rozdzielone przekrojem x='t. Obciążenie P{y) jest symetryczne względem osi x i wyraża się całką P^y co 2 r n J P^ C S Uy da ' Rys- 3 ' o Równanie różniczkowe powierzchni odkształcenia płyty przyjmuje postać dy"- : = 0 dla płyty I (13a)
7 94 W. Nowacki i St Turski Arch. Mech. Stos. oraz ^ ^ +, ^ = dla płyty I' (15b) s 0 3/ Dla Q > 1 przyjmujemy jako rozważanie równania (13a) całkę 2 f 1 ti)p (U 9 sinh?hx+ UA sinh tax)cos ay du, KJ a 2 0 a dla równania (13b) całkę '2 r i. Wp'= [U 2 sinh X 1 x'-\-u i sinh hx') cos ay c?a. jtj a a 0 Funkcje parametru a, U u Z7 4, t/ l5 f/ 4, wyznaczymy z dwóch warunków geometrycznych ciągłości płyty w przekroju x = o x oraz z dwróch warunków statycznych 8 X (14a) 9x 2 3x' 2 ' " 3x 3 3x' Pierwszy z warunków (14b) określa równość momentów zginających M x, drugi wyraża, że obciążenie P(y) równa się różnicy sił tnących na lewo i prawo od przekroju x=t. Z powyższych warunków brzegowych otrzymamy dla Q < 1, _ p(a)q 3 sinh X.. _. p{a)a 2 sinh \ [ D^i (J.! 2 - A 2 2) sinh Vj ' * ~ Z). X. 2 IV 2^ V) sinh v a ' < 77 sinh ^ J 4 u s.,...7> u 2 U-2.,. ;; smh A, 2 1 smh A x Łatwo obliczyć stałe całkowania w przypadkach y<l i 6 = 1.
8 Tora III 1951 Zastosowanie całki Fouriera 95 Nachylenie stycznej do odkształconej w przekroju y=const wyrazimy wzorami gdzie 8W P dx 3 Wp' 3 x' Vl a 2 " a 2 r 2 p(a) /sinh A. 2 1' 2 2-v 2 1sinh v p(a)0l" cos ay da, J 0 co r - p(a)0</ > ' cosay da, J 0 sinh ^ sinh Dla lp) należy we wzorze (16) wstawić w miejsce '. Dla Q<1 uzyskamy (15) (16) p{a) sinh Wreszcie dla Q = (17) 0(0, ; sinh (v coshv ' sinh TJ Tisinhv ) (18) Dla Q (p należy w powyższych wzorach wstawić 1 w miejsce ' i na odwrót. Po tak opracowanych dwóch zadaniach pomocniczych przystąpić możemy do ułożenia równań trójczłonowych dla płyty ciągłej nieskończenie długiej w kierunku y (rys. i). Niech w przęśle a r działa obciążenie P r {y), w przęśle a r+i obciążenie P r +i{y). Oznaczmy nieznane momenty podporowe wzdłuż linii r i, r, r+.l przez M r -\, M r, M r +\- Z warunku ciągłości płyty na podporze r (19) uzyskamy równanie trójczłonowe, stanowiące odpowiednik rów^na-
9 96 W. Nowacki i St. Turski Arch. Mech. Stos. nia trzech momentów belek ciągłych +a r+ł c, +,p r+ i8jfl +1-0 (20) r-1, , Rozwiązanie układu równań (20) daje wielkości m(n) a tym samym pozwoli na wyznaczenie momentów podporowych = I m(a) cos ayda. 0 Układ równań (20) pozostaje słusznym również dla płyty ciągłej nieskończenie długiej podpartej swobodnie wzdłuż osi x (rys. 4), Wypadek ten traktować można jako wynik antysymetrycznego obciążenia względem osi. x. Powierzchnia odkształcenia wyraża się w tym wypadku całką ii li. P(y) i I ' 1 1 i Rys. 4 'I w co _ 2 ri ~ a* -^(^, a ) sin ay da, o Rozwiązanie postawionego na wstępie zadania dopuszcza cały szereg wypadków szczególnych. Zwróćmy uwagę na jeden, specjalnie prosty, dotyczący pasma płytowego o szerokości a na obu brzegach utwierdzonego zupełnie i obciążonego siłą skupioną (rys- 5). Wypadek ten został na drodze odmiennej rozwiązany przez A. N a d a i 2 ). Dla obciążenia siłą P w punkcie (a/2,0) wynika z symetrii tego obciążenia m,(a)=m r+ i(a). 2 ) A. Nadai, Uber die Biegung der elastischen Platten durch Einzellasten. Der Bauingenieur 1921 H. 11 str
10 Tom III 1951 Zastosowanie całki Fouriera 97 Z równania (20) przy D x ^l 03 otrzymamy i Dla 0=1 znajdujemy: JC P,.,. Pa sinh i\/2 n?i(a) = m 2 (a) = '- 2 T) + smn i"i a M x (y) = M 2 (y) = cos uy da. 2KJ i] + smn v\ Rys. 5 Przedstawiony tu sposób rozwiązania da się z powodzeniem zastosować do nieskończenie długich płyt spoczywających na sprężystych podporach liniowych oraz do nieskończenie długich płyt wspornikowych. CoKpameHHe HMeHeHHe Hmerpana <t>ypbe B TeopHH optotponhbix nnacthh TeMOH paóotbi HBjiaeTca HcnoJib3OBaHHe Hmerpajia ^ nobepxhocth M3rH6a B HanpaB^eHHH OCH y, 6ecKOHeHHO optotporihoh nnacthhkm, noko5iuj,ehca Ha HenoAaTjiHBbix, napajijiejibhbix onophbix JIHHHHX (nept. 1). Ha nnacthhky flefictbyet jihhehhasi Harpy3Ka P(y), CHMMeTpHHHafl no OTHOLueHHio K OCH x. 3a HeH3BecTHbie nphhatbi BenHHHHbi onophbix MOMeHTOB m x ", flehctbyk)iij,hx BAO^lb OnOpHbIX ^HHHH. H3 yc^obhh HenpepwBHOCTH nnacthhkh Ha onopax nojiyneno Tpex- MJieHHoe ypabhehhe (20) cootbetctsyromee ypabherihk) Tpex MOMCHTOB B Hepa3pe3Hbix 6aiiKax. PeuaeHHe pacnpocipaheho Tanwe Ha TMn n/racthhkh c Harpy3KOH noka3ahhoh Ha nept. 4. (Praca wpłynęła do Redakcji dnia 9. X. 1950)
ARCHIWUM MECHANIKI STOSOWANEJ. Tom I. Zeszyt
ARCHIWUM MECHANIKI STOSOWANEJ Tom I. Zeszyt 1 1949 Tom 11949 Jednoczesne zginanie i ściskanie pewnego typu płyt 67 Jednoczesne zginanie i ściskanie pewnego typu płyt ciągłych 1 ) The bending of compressed
Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa
Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia
Pasmo płytowe ortotropowe
A R C H I W U M M E C H A N I K I S T O S O W A N E J ARCFTVES DE MÉCANIQUE APPLIQUÉE W. NOWACKI Pasmo płytowe ortotropowe Plaque en bande orthotrope y Odbitka z Archiwum Mechaniki Stosowanej" Tom III
Linie wpływu w belce statycznie niewyznaczalnej
Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też
Politechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1
Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
6. ZWIĄZKI FIZYCZNE Wstęp
6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe
Zginanie proste belek
Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach
Przykłady (twierdzenie A. Castigliano)
23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],
KSIĘGA JUBILEUSZOWA DLA UCZCZENIA ZASŁUC NAUKOWYCH PROF. DR INŻ. M. T. HUBERA Z OKAZJI
KSIĘGA JUBILEUSZOWA DLA UCZCZENIA ZASŁUC NAUKOWYCH PROF. DR INŻ. M. T. HUBERA Z OKAZJI 50-LÉCIA PRACY NAUKOWEJ KOMITET UCZCZENIA ZASŁUC NAUKOWYCH PROF. DR INŻ. MAKSYMILIANA T. HUBERA GDAŃSK POLITECHNIKA
13 Równanie struny drgającej. Równanie przewodnictwa ciepła.
Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu
Równanie przewodnictwa cieplnego (I)
Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca
5 Równania różniczkowe zwyczajne rzędu drugiego
5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =
Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:
adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Stropy TERIVA - Projektowanie i wykonywanie
Stropy TERIVA obciążone równomiernie sprawdza się przez porównanie obciążeń działających na strop z podanymi w tablicy 4. Jeżeli na strop działa inny układ obciążeń lub jeżeli strop pracuje w innym układzie
NAUKOWE OSIĄGNIĘCIA MECHANIKI W WALCE 0 POSTĘP W BUDOWNICTWIE
WYDAWNICTWO MINISTERSTWA BUDOWNICTWA Nr 37 NAUKOWE OSIĄGNIĘCIA MECHANIKI W WALCE 0 POSTĘP W BUDOWNICTWIE CZĘŚĆ III, ZESZYT I z materiałów nadesłanych na Zjazd Naukowy PZITB w Gdańsku 1 4 grudnia 1949 r.
2. Pręt skręcany o przekroju kołowym
2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo
Równanie przewodnictwa cieplnego (II)
Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego
WSTĘP DO TEORII PLASTYCZNOŚCI
13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają
1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych
Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci
Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie
Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej
Całka podwójna po prostokącie
Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i
Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są
PODPORY SPRĘŻYSTE Podpory sprężyste (podatne), mogą ulegać skróceniu lub wydłużeniu pod wpływem działających sił. Przemieszczenia występujące w tych podporach są wprost proporcjonalne do reakcji w nich
{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.
Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Rachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
Przykład Łuk ze ściągiem, obciążenie styczne. D A
Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład
Metoda Różnic Skończonych (MRS)
Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =
7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:
7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić
7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH
7. WYZNCZNIE SIŁ WEWNĘTRZNYCH W ELKCH Zadanie 7.1 Dla belki jak na rysunku 7.1.1 ułożyć równania sił wewnętrznych i sporządzić ich wykresy. Dane: q, a, M =. Rys.7.1.1 Rys.7.1. W zależności od rodzaju podpór
Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2)
Przykłady rozkładu naprężenia stycznego w przekrojach belki zginanej nierównomiernie (materiał uzupełniający do wykładu z wytrzymałości materiałów I, opr. Z. Więckowski, 11.2018) Wzór Żurawskiego τ xy
CAŁKI NIEOZNACZONE C R}.
CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko
Siły wewnętrzne - związki różniczkowe
Siły wewnętrzne - związki różniczkowe Weźmy dowolny fragment belki obciążony wzdłuż osi obciążeniem n(x) oraz poprzecznie obciążeniem q(x). Na powyższym rysunku zwroty obciążeń są zgodne z dodatnimi zwrotami
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,
MECHANIKA BUDOWLI LINIE WPŁYWU BELKI CIĄGŁEJ
Zadanie 6 1. Narysować linie wpływu wszystkich reakcji i momentów podporowych oraz momentu i siły tnącej w przekroju - dla belki. 2. Obliczyć rzędne na wszystkich liniach wpływu w czterech punktach: 1)
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą
Liczba godzin Liczba tygodni w tygodniu w semestrze
15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i
ZGINANIE PŁASKIE BELEK PROSTYCH
ZGINNIE PŁSKIE EEK PROSTYCH WYKRESY SIŁ POPRZECZNYCH I OENTÓW ZGINJĄCYCH Zginanie płaskie: wszystkie siły zewnętrzne czynne (obciążenia) i bierne (reakcje) leżą w jednej wspólnej płaszczyźnie przechodzącej
Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)
Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE Podstawy statyki budowli: Pojęcia podstawowe Model matematyczny, w odniesieniu do konstrukcji budowlanej, opisuje ją za pomocą zmiennych. Wartości zmiennych
ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),
ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j
ZAJĘCIA 3 DOBÓR SCHEMATU STATYCZNEGO PŁYTY STROPU OBLICZENIA STATYCZNE PŁYTY
DOBÓR SCHEMATU STATYCZNEGO PŁYTY STROPU OBLICZENIA STATYCZNE PŁYTY PRZYKŁADY OBLICZENIOWE WYMIAROWANIE PRZEKROJÓW ZGINANYCH PROSTOKĄTNYCH POJEDYNCZO ZBROJONYCH ZAJĘCIA 3 PODSTAWY PROJEKTOWANIA KONSTRUKCJI
Metody energetyczne. Metoda Maxwella Mohra Układy statycznie niewyznaczalne Metoda sił Zasada minimum energii
Metody energetyczne Metoda Maxwella Mohra Układy statycznie niewyznaczalne Metoda sił Zasada minimum energii dv 1 N dx Ndu EA dv dv S 1 M dx M sdϕ GI 1 M gdx M gdϑ EI S Energia sprężysta układu prętowego
6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH
Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy
Treść ćwiczenia T6: Wyznaczanie sił wewnętrznych w belkach
Instrukcja przygotowania i realizacji scenariusza dotyczącego ćwiczenia 6 z przedmiotu "Wytrzymałość materiałów", przeznaczona dla studentów II roku studiów stacjonarnych I stopnia w kierunku Energetyka
Elementy geometrii analitycznej w R 3
Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,
Twierdzenia o wzajemności
Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F
Przekształcenia wykresów funkcji
Przekształcenia wykresów funkcji Przekształcenia wykresów funkcji Jerzy Rutkowski Teoria Niech f : R R będzie dowolną funkcją i niech liczby a, k R spełniają warunki: a > 0 i k 0. Związek między funkcją
Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011
Wykład 5 Matematyka 3, semestr zimowy / 9 listopada W trakcie tego i następnych kilku wykładów zajmować się będziemy analizą zespoloną, czyli różniczkowaniem i całkowaniem funkcji argumentu zespolonego
3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1)
Temat 3 Metoda Fouriera da równań hiperboicznych 3.1 Zagadnienie brzegowo-początkowe da struny ograniczonej Rozważać będziemy następujące zagadnienie. Znaeźć funkcję u (x, t) spełniającą równanie wraz
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.
Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia
Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości
ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI
10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 1 10. 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 10.1. Zastosowanie funkcji Airy'ego =0 (10.1) Zakładamy, że istnieje funkcja F(x,y) spełniająca następujące
y(t) = y 0 + R sin t, t R. z(t) = h 2π t
SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1
SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,
Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
Wyprowadzenie wzoru na krzywą łańcuchową
Wyprowadzenie wzoru na krzywą łańcuchową Daniel Pęcak 16 sierpnia 9 1 Wstęp Być może zastanawiałeś się kiedyś drogi czytelniku nad kształtem, jaki kształt przyjmuje zwisający swobodnie łańcuch lub sznur
Funkcje wielu zmiennych
Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.
[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)
PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]
Mechanika teoretyczna
Siła skupiona Mechanika teoretyczna Wykłady nr 5 Obliczanie sił wewnętrznych w belkach przykłady 1 2 Moment skupiony Obciążenie ciągłe równomierne 3 4 Obciążenie ciągłe liniowo zmienne Obciążenie ciągłe
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY
Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym
ROZWIĄZANIA I ODPOWIEDZI
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=
Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej
Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
MECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Całki krzywoliniowe skierowane
Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział
Przekształcenia wykresów funkcji
Przekształcenia wykresów funkcji Przekształcenia wykresów funkcji Jerzy Rutkowski Teoria Niech f : R R będzie dowolną funkcją i niech liczby a, k R spełniają warunki: a > 0 i k 0 Związek między funkcją
Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy
Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi
- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.
4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Nieskończona jednowymiarowa studnia potencjału
Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
AERODYNAMIKA I WYKŁAD 3 TEORIA CIENKIEGO PROFILU LOTNICZEGO
WYKŁAD 3 TEORIA CIENKIEGO PROFILU LOTNICZEGO TEMATYKA I CEL WYKŁADU: Przedstawić koncepcję modelowania dwuwymiarowego przepływu potencjalnego płynu nieściśliwego bazującego na wykorzystaniu rozłożonych
Nieliniowości fizyczne Część 2 : Nieliniowość sprężysta. Teoria nośności granicznej
Wykład 6: Nieliniowości fizyczne Część 2 : Nieliniowość sprężysta. Teoria nośności anicznej Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.co Literatura: [] Timoschenko S. Goodier A.J.N., Theory of
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,
ZADANIA - POWTÓRKA
Część 5. ZADANIA - POWTÓRKA 5. 5. ZADANIA - POWTÓRKA Zadanie W ramie przedstawionej na rys 5. obliczyć kąt obrotu przekroju w punkcie K oraz obrót cięciwy RS. W obliczeniach można pominąć wpływ sił normalnych
Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki
PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH
1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA
Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.
Jarosław Wróblewski Analiza Matematyczna, lato 016/17 Kolokwium nr 10: wtorek 6.06.017, godz. 1:15-1:45, materiał zad. 1 40. Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.
3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE
Część. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE.. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Istotę metody przemieszczeń, najwygodniej jest przedstawić przez porównanie jej do metody sił, którą wcześniej już poznaliśmy
Lista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
Rachunek całkowy funkcji wielu zmiennych
Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1