Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej"

Transkrypt

1 ezonanse w deekscytacj moekuł monowych ozpaszane eastyczne atomów monowych heu Whem Czapńsk Kateda Zastosowań Fzyk Jądowej

2 . ezonanse w deekscytacj moekuł monowych µ He ++ h ++ Heµ h J ν h p d t otacyjna J oscyacyjna ν

3 Powstawane moekuły λ ~ -8 s - HD: ++ + dµ s + He [ Hedµ J ν e] + e V J E dµs pσ - 8.eV Q 6.85keV dµ s He ozpad po czase - s E Heµ s sσ Heµ s d ++ + [ Hedµ J e] Heµ s + d + e Heµ + d +γ s ub Heµ s + d

4 eakcje syntezy w moekułach monowych Z eacj neoznaczonośc E jąde ~ kev Heµ d + + J ++ He + p + µ 5 ++ µ MeV MeV Teoa: λ J.9 5 s.8 6 s λ J 6.5 s λ λ J J 6 Ekspeyment: exp λ s 5 λ exp β λ J + β λ J β + β

5 Moekuła powstaje w stane J synteza ze stanu J! Mus stneć pzejśce! Możwy poces: V µ dp < d > Heµ d J + D Heµ h J + d + e d + e + e e e He µ d d mo V mo H e V mon + V dp

6 + Ω Ψ Ψ + M k e dp d k d k d E E V J V d π π π δ π σ Złota eguła Femego achunk w pełn kwantowe metoda DWBA pawe anatyczne e k e e mo ± ± Φ Ψ φ φ ˆ ˆ k P k e e k + ± ± χ φ δ µ e d e mo ˆ ˆ ± ± Ψ Ψ + + mon mo e E V H T

7 9 8 e e k k G k dk V k d + + π σ mutpoowe ownece e e dp d V + d k k G e χ χ

8 ˆ ˆ ˆ + e e m dp e W a d V J gdze + m m m m m m m m m e e Y Y Y C e W ˆ ˆ ˆ 8 ˆ ˆ ˆ ρ π

9 .E-7 8.E-8 Pzejśce Heµd ++ - D coss secton cm 6.E-8.E-8 czne ezonansy.e-8.e coson enegy ev

10 .E-6.E-6 Pzejśce Heµp ++ - H.E-6 coss secton cm 8.E-7 6.E-7.E-7.E-7.E coson enegy ev

11 Jaka jest natua tych ezonansów? G e χ χ k k d + -pzyjmuje badzo duże watośc da pewnych χ - mus meć badzo dużą amptudę w obszaze dzałana potencjału

12 .E-6.E-6 5 Heµp ++ - H.E-6 coss secton cm 8.E-7 6.E-7.E-7.E E coson enegy ev

13 .E Heµp ++ - H 5 coss secton cm.e-.e E E coson enegy ev

14 6 E. ev a.u. -

15 6 E. ev a.u. -

16 6 E.5 ev a.u. -

17 6 E.6 ev a.u. -

18 6 E.7 ev a.u. -

19 6 E.8 ev a.u. -

20 6 E. ev a.u. -

21 6 E. ev a.u. -

22 6 5 E. ev a.u. -

23 6 5 E.88 ev a.u. -

24 6 5 E.89 ev a.u. -

25 6 5 E.895 ev a.u. -

26 6 5 E.9 ev a.u. -

27 6 5 E.9 ev a.u. -

28 6 5 E.9 ev a.u. -

29 6 5 E.9 ev a.u. -

30 6 5 E.9 ev a.u. -

31 V d d Pzybżene adabatyczne: e + + k M E pσ + Vad. co + ] χ [ V pozom kwazstacjonany ezonans E E k M unted atom stan moekuany pσ H s Z seyczne. kwantowe eektonu Nm pσ

32 .5E-6.E-6.5E-6 Heµp ++ - H adabatc. appox. B-O coss secton cm.e-6.5e-6.e E-7.E coson enegy ev

33 .E Heµp ++ - H adabatc appox. 5 coss secton cm.e-.e-5.e B-O. mev.e-7. mev coson enegy ev

34 Asymptotyka unkcj adanej χ : d [ d d + k + V ] χ da [ + k ] χ d -. oscyatoa π χ ~ sn k + δ E E k M pzesunęce azowe ~ e k π k π δ e e{ S eement macezowy macezy ozpaszana WKW stnena ezonansu kształtu - ÓWNOWAŻNE. Aptuda a >> w studn potencjału. W otoczenu E δ E zmena sę szybko o ok. π dδ E. Opóźnene czasowe τ E ma oste maksmum w E de

35 Opóźnene czasowe: - obsza oddzaływana o.o. Ψ t d dt T π - czas pzebywana w o.o. V Ψ t d dt T π - czas pzebywana w o.o. V [ ] Ψ Ψ t t d dt T T π τ [ ] Ψ Ψ t t d dt π Ψ... E E de τ E de E d E τ δ τ po uśednowanu po : Ψ E E de τ τ

36 π / π 8.. π δ τ 6. π/ E ev

37 9. δ 8. π / π τ 5 6 τ 7. π 6. π/ 5. δ E ev

38 Czasy życa ezonansów: σ π + k E Γ E + Γ Γ Γ 5. 8 Płaszczyzna zespoonego wektoa aowego - beguny macez S Imk 9 k s s Zea macezy S odpowadające stanom wtuanym antyzwązanym dδ E > de odpowadają m beguny macezy S 678 ezonanse stany zwązane dδ de dδ de E < > E ek 5

39 . ozpaszane eastyczne atomów monowych heu s J ν ] dµ + He [ Hedµ e e Heµ + d Heµ d s s + V J V J E dµs pσ dµ s He ++ E dµs pσ dµ s He ++ E kn E kn E Heµ + s + Heµ s d E Heµ s + Heµ s d ezonans Feshbach a sσ sσ

40

41 Dzękuję za uwagę

Rezonansowe tworzenie molekuł mionowych helu i wodoru oraz ich rotacyjna deekscytacja

Rezonansowe tworzenie molekuł mionowych helu i wodoru oraz ich rotacyjna deekscytacja zonanow twozn molkuł monowych hlu wodou oaz ch otacyjna dkcytacja Wlhlm Czaplńk Katda Zatoowań Fzyk ądowj w wpółpacy z N.Popovm W.Kamńkm Itnj 6 odzajów molkuł monowych hlu wodou: 4 H µ p Hµ d Hµ t 4 H

Bardziej szczegółowo

v = v i e i v 1 ] T v =

v = v i e i v 1 ] T v = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq

Bardziej szczegółowo

Nośniki swobodne w półprzewodnikach

Nośniki swobodne w półprzewodnikach Nośniki swobodne w półpzewodnikach Półpzewodniki Masa elektonu Masa efektywna swobodnego * m m Opócz wkładu swobodnych nośników musimy uwzględnić inne mechanizmy np. wkład do polayzaci od elektonów związanych

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,

Bardziej szczegółowo

Opis kwantowy cząsteczki jest bardziej skomplikowany niż atomu. Hamiltonian przy zaniedbaniu oddziaływań związanych ze spinem ma następującą postać:

Opis kwantowy cząsteczki jest bardziej skomplikowany niż atomu. Hamiltonian przy zaniedbaniu oddziaływań związanych ze spinem ma następującą postać: Cząsteczki. Kwantowy opis stanów enegetycznych cząsteczki. Funkcje falowe i enegia ektonów 3. Ruchy jąde oscylacje i otacje 4. Wzbudzenia cząsteczek Opis kwantowy cząsteczki jest badziej skomplikowany

Bardziej szczegółowo

Kolokwium z mechaniki gruntów

Kolokwium z mechaniki gruntów Zestaw 1 Zadanie 1. (6 pkt.) Narysować wykres i obliczyć wypadkowe parcia czynnego wywieranego na idealnie gładką i sztywną ściankę. 30 kpa γ=17,5 kn/m 3 Zadanie 2. (6 pkt.) Obliczyć ile wynosi obciążenie

Bardziej szczegółowo

O RELACJACH KOMUTACJI I NIEOZNACZONOŚCI W TEORII KWANTOWEJ

O RELACJACH KOMUTACJI I NIEOZNACZONOŚCI W TEORII KWANTOWEJ O RELACJACH KOMUTACJI I NIEOZNACZONOŚCI W TEORII KWANTOWEJ Andrzej Herdegen Instytut Fizyki UJ 3 grudnia 2015 Przypomnę matematyczne i fizyczne tło tytułowych zagadnień. Pokażę dlaczego spacer przez algebrę

Bardziej szczegółowo

Dyrektor oraz pracownicy Miejsko - Gminnego Ośrodka Kultury w Kowalewie Pomorskim

Dyrektor oraz pracownicy Miejsko - Gminnego Ośrodka Kultury w Kowalewie Pomorskim Wszystkim Nauczycielom i pracownikom oświaty z okazji Dnia Edukacji Narodowej moc najserdeczniejszych życzeń, spełnienia najskrytszych marzeń oraz byście mogli w pełni realizować swoje plany życiowe i

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±

Bardziej szczegółowo

OGÓLNE PODSTAWY SPEKTROSKOPII

OGÓLNE PODSTAWY SPEKTROSKOPII WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/

Bardziej szczegółowo

TEORIA GRUP - ZASTOSOWANIA

TEORIA GRUP - ZASTOSOWANIA TOIA GUP - ZASTOSOWANIA Problem oblicania całek Ψdτ Aby ta całka była różna od era to Ψ msi się transformować jak rereentacja ełnosymetrycna lb msi awierać składową ełnosymetrycną. Ψ * Ψ d τ Aby ta całka

Bardziej szczegółowo

EXAFS lokalna sonda strukturalna. Wg. Agnieszka Witkowska i J. Rybicki

EXAFS lokalna sonda strukturalna. Wg. Agnieszka Witkowska i J. Rybicki EXAFS lokalna sonda strukturalna Wg. Agneszka Wtkowska J. Rybck EXAFS trochę hstor EXAFS - Extended X-ray Absorpton Fne Structure - odkryce: Frcke 190, Hertz 190; - zależność od temperatury: Hanawelt 1931;

Bardziej szczegółowo

Rozdział 2. Model kwarków Systematyka cząstek w modelu kolorowych kwarków i gluonów Konstrukcja multipletów mezonowych i barionowych

Rozdział 2. Model kwarków Systematyka cząstek w modelu kolorowych kwarków i gluonów Konstrukcja multipletów mezonowych i barionowych Rozdział 2 Model kwarków Systematyka cząstek w modelu kolorowych kwarków i gluonów Konstrukcja multipletów mezonowych i barionowych Praca z propozycją istnienia kwarków została przyjęta do druku w Physics

Bardziej szczegółowo

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx

Bardziej szczegółowo

Oddziaływanie atomu z kwantowym polem E-M: C.D.

Oddziaływanie atomu z kwantowym polem E-M: C.D. Oddziaływanie atomu z kwantowym polem E-M: C.D. 1 atom jakoźródło 1 fotonu. Emisja spontaniczna wg. złotej reguły Fermiego. Absorpcja i emisja kolektywna ˆ E( x,t)=i λ Powtórzenie d 3 ω k k 2ǫ(2π) 3 e

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze

Bardziej szczegółowo

Przejścia optyczne w cząsteczkach

Przejścia optyczne w cząsteczkach -4-8 Pzejścia optycze w cząsteczkac Pzybliżeie Boa Oppeeimea acek.szczytko@fuw.edu.pl ttp://www.fuw.edu.pl/~szczytko/t ttp://www.sciececatoosplus.com/ Podziękowaia za pomoc w pzygotowaiu zajęć: Pof. d

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie

Bardziej szczegółowo

Równanie Schrödingera dla elektronu w atomie wodoru

Równanie Schrödingera dla elektronu w atomie wodoru Równanie Schödingea dla elektonu w atomie wodou m 1 d dp l( l + ) P = P sinθ Równanie funkcji kąta biegunowego P(θ) 1 sin θ sinθ dθ ma ozwiązania w postaci stowazyszonych funkcji Legende a P lm ( θ ) =

Bardziej szczegółowo

Jądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu

Jądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu Jąda atomowe jako obiekty kwantowe Wpowadzenie Potencjał jądowy Spin i moment magnetyczny Stany enegetyczne nukleonów w jądze Pawo ozpadu Jąda atomowe jako obiekty kwantowe Magnetyczny Rezonans Jądowy

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

POLITECHNIKA LUBELSKA KARTA MODUŁU (SYLABUS)

POLITECHNIKA LUBELSKA KARTA MODUŁU (SYLABUS) STOPIEŃ STUDIÓW: RODZAJ STUDIÓW: KIERUNEK STUDIÓW: KARTA MODUŁU (SYLABUS) Studia I stopnia (inżynierskie) studia stacjonarne MECHATRONIKA (MT) PRZEDMIOT: ROK STUDIÓW: SEMESTR: RODZAJ ZAJĘĆ I LICZBA GODZIN:

Bardziej szczegółowo

Przekroje efektywne wyboczenia lokalnego 61,88 28,4 0,81 4 =1,34>0,673. = 28,4 ε k. ρ,, = λ 0,22 λ = 1,34 0,22 1,34 =0,62. = =59,39,

Przekroje efektywne wyboczenia lokalnego 61,88 28,4 0,81 4 =1,34>0,673. = 28,4 ε k. ρ,, = λ 0,22 λ = 1,34 0,22 1,34 =0,62. = =59,39, Przekrój efektywny stalweg dźwigara z zastępczymi płytami rttrpwymi klasy 4 W bustrnnie sztywn umcwanym dźwigarze skrzynkwym długści 15,0 m ze stali S355 usztywnin pasy i śrdniki żebrami pdłużnymi (rys.

Bardziej szczegółowo

Atom dwupoziomowy w niezerowej temperaturze

Atom dwupoziomowy w niezerowej temperaturze Seminarium CFT p. 1/24 Atom dwupoziomowy w niezerowej temperaturze Tomasz Sowiński 1 paździenika 2008 Seminarium CFT p. 2/24 Atom dwupoziomowy Hamiltonian Ĥ = Ĥ0 + ĤI Ĥ 0 = mσ z + 0 dk k a (k)a(k), Ĥ I

Bardziej szczegółowo

POLITECHNIKA LUBELSKA KARTA MODUŁU (SYLABUS)

POLITECHNIKA LUBELSKA KARTA MODUŁU (SYLABUS) STOPIEŃ STUDIÓW: RODZAJ STUDIÓW: KIERUNEK STUDIÓW: KARTA MODUŁU (SYLABUS) Studia I stopnia (inżynierskie) studia stacjonarne MECHATRONIKA (MT) PRZEDMIOT: ROK STUDIÓW: SEMESTR: RODZAJ ZAJĘĆ I LICZBA GODZIN:

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera. W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z)

v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z) v U = e i,..., e n ) v = n v i e i i= e i i U = {X i } i=,n v T v = = v v n v n U x y z T X,Y,Z) v v v = 2 T A, ) b = 3 4 T B, ) c = + b b d = b c c d d 2 + 3b e b c = 5 3 T b d = 5 T c c = 34 d = 26 d

Bardziej szczegółowo

Tryb Matematyczny w L A TEX-u

Tryb Matematyczny w L A TEX-u Tryb Matematyczny w L A TEX-u Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 2 Tekst w trybie matematycznym Ściąga z symboli 3 Jak nie pisać pracy magisterskiej

Bardziej szczegółowo

Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze

Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze projekt_pmsm_v.xmcd 01-04-1 Projekt silnika bezszczotkowego prądu przemiennego 1. Wstęp Projekt silnika bezszczotkowego prądu przemiennego - z sinusoidalnym rozkładem indukcji w szczelinie powietrznej.

Bardziej szczegółowo

Zderzenia relatywistyczne

Zderzenia relatywistyczne Zderzenia relatywistyczne Fizyka I (B+C) Wykład XIX: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak

Bardziej szczegółowo

Rozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS)

Rozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS) Rozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS) Kilka interesujących faktów Każdy człowiek wysyła dziennie

Bardziej szczegółowo

ver teoria względności

ver teoria względności ver-7.11.11 teoria względności interferometr Michelsona eter? Albert Michelson 1852 Strzelno, Kujawy 1931 Pasadena, Kalifornia Nobel - 1907 http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/mmexpt6.htm

Bardziej szczegółowo

Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG

Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa dr inż. Sebastian Bielski Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa Zakres materiału (wstępnie przewidywany) 1. Bezpieczeństwo pracy z laserem 2. Własności

Bardziej szczegółowo

Fizyka 1(mechanika) AF14. Wykład 1

Fizyka 1(mechanika) AF14. Wykład 1 Fizyka 1(mechanika) 1100-1AF14 Wykład 1 Jerzy Łusakowski 03.10.2016 Plan wykładu Informacje o wykładzie Przedmiot i metodologia fizyki Fizyka a matematyka Układ jednostek SI, rzędy wielkości Pomiary fizyczne

Bardziej szczegółowo

Zadania z mechaniki kwantowej

Zadania z mechaniki kwantowej Zadania z mechaniki kwantowej Gabriel Wlazłowski 13 maja 2016 Rachunek zaburzeń bez czasu 1. Metodą rachunku zaburzeń obliczyć pierwszą i drugą poprawkę dla poziomów energetycznych oscylatora harmonicznego

Bardziej szczegółowo

Spektroskopia mionów w badaniach wybranych materiałów magnetycznych. Piotr M. Zieliński NZ35 IFJ PAN

Spektroskopia mionów w badaniach wybranych materiałów magnetycznych. Piotr M. Zieliński NZ35 IFJ PAN Spektroskopia mionów w badaniach wybranych materiałów magnetycznych Piotr M. Zieliński NZ35 IFJ PAN 1. Fundamenty spektroskopii mionów. Typowy eksperyment 3. Cel i obiekty badań 4. Przykłady otrzymanych

Bardziej szczegółowo

Zespół Szkół Technicznych. Badanie wyświetlaczy LCD

Zespół Szkół Technicznych. Badanie wyświetlaczy LCD Zespół Szkół Technicznych Badanie wyświetlaczy LCD WYŚWIETLACZE LCD CZĘSC TEORETYCZNA ZALETY: ) mały pobór mocy, 2) ekonomiczność pod względem zużycia energii (pobór prądu przy 5V mniejszy niż 2mA), 3)

Bardziej szczegółowo

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania

V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs

Bardziej szczegółowo

Fizyka gwiazd. 1 Budowa gwiazd. 19 maja Stosunek r g R = 2GM

Fizyka gwiazd. 1 Budowa gwiazd. 19 maja Stosunek r g R = 2GM Fizyka gwiazd 19 maja 2004 1 Budowa gwiazd Stosunek r g R = 2GM c 2 R (gdzie M, R jest masa i promieniem gwiazdy) daje nam informację konieczności uwzględnienia poprawek relatywistycznych. 0-0 Rysunek

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

Pręt nr 0 - Element drewniany wg PN-EN 1995:2010

Pręt nr 0 - Element drewniany wg PN-EN 1995:2010 Pręt nr 0 - Element drewniany wg PN-EN 1995:010 Informacje o elemencie Nazwa/Opis: element nr 0 (belka) - Brak opisu elementu. Węzły: 0 (x0.000m, y-0.000m); 1 (x4.000m, y-0.000m) Profil: Pr 150x50 (C 0)

Bardziej szczegółowo

Podstawy fizyki subatomowej

Podstawy fizyki subatomowej Podstawy fizyki subatomowej Wykład 6 Zenon Janas 11 kwietnia 018. Współzędne sfeyczne położenie punktu: (, θ, ϕ) Z sin θ ( 0, ) θ ( 0, π ) ϕ ( 0, π ) cosθθ X ϕ θ Y (, θ, ϕ) ( x, y, z) x sinθcosϕ y sinθsinϕ

Bardziej szczegółowo

Rzadkie gazy bozonów

Rzadkie gazy bozonów Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni

Bardziej szczegółowo

Numeryczne aproksymacje prawdopodobieństwa ruiny

Numeryczne aproksymacje prawdopodobieństwa ruiny Numeryczne aproksymacje prawdopodobieństwa ruiny Krzysztof Burnecki Aleksander Weron Centrum Metod Stochastycznych im. Hugona Steinhausa Instytut Matematyki i Informatyki Politechnika Wrocławska www.im.pwr.wroc.pl/

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Cząstki elementarne i ich oddziaływania III

Cząstki elementarne i ich oddziaływania III Cząstki elementarne i ich oddziaływania III 1. Przekrój czynny. 2. Strumień cząstek. 3. Prawdopodobieństwo procesu. 4. Szybkość reakcji. 5. Złota Reguła Fermiego 1 Oddziaływania w eksperymencie Oddziaływania

Bardziej szczegółowo

termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi

termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow

Bardziej szczegółowo

Projekt silnika bezszczotkowego z magnesami trwałymi

Projekt silnika bezszczotkowego z magnesami trwałymi Projekt silnika bezszczotkowego z magnesami trwałymi dr inż. Michał Michna michna@pg.gda.pl 01-10-16 1. Dane znamionowe moc znamionowa P n : 10kW napięcie znamionowe U n : 400V prędkość znamionowa n n

Bardziej szczegółowo

1) Cechy geometryczne: bez współpracy przekroju belki (rys. 3.9) i szyny Pole przekroju:

1) Cechy geometryczne: bez współpracy przekroju belki (rys. 3.9) i szyny Pole przekroju: .. Pład licbo Ocenić nośność i stność beli podsunicoej jednopęsłoej o peoju popecnm monosmetcnm spaanm blach: pas gón 00 x 0 pas doln 00 x 0 śodni 0 x 5 sna 50 x 0 połącona pasem gónm ołącnie. Długość

Bardziej szczegółowo

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste 9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea

Bardziej szczegółowo

Interesujące fazy ewolucji masywnej gwiazdy:

Interesujące fazy ewolucji masywnej gwiazdy: 1/26 Asymetria ν ν w widmie pre-supernowej A. Odrzywołek Asymetria ν ν w (termicznym) widmie pre-supernowej IDEA: Przewidzieć wybuch supernowej opierając się na detekcji neutrin z pre-supernowej Interesujące

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

Symbole Numer Nazwa Opis Znaczenie Wygląd. Latin small "f" with hook (function, florin) Greek capital letter "alpha"

Symbole Numer Nazwa Opis Znaczenie Wygląd. Latin small f with hook (function, florin) Greek capital letter alpha Symbole Numer Nazwa Opis Znaczenie Wygląd ƒ Litery greckie ƒ Latin small "f" with hook (function, florin) Łacińskie małe "f" z "haczykiem" (funkcja, floren) Α Α "alpha" Grecka wielka litera "alfa" Α Β

Bardziej szczegółowo

Atom ze spinem i jądrem

Atom ze spinem i jądrem Atom ze spinem i jądrem Powtórzenie E 3s 2s 3p 2p 3d Ruch w polu ekranowym znosi degenracje ze wzgledu na l 1s Li l Powtórzenie 5 2 P 3/2 F=I+J 5P F= I-J 5 2 P 1/2 struktura subtelna struktura nadsubtelna

Bardziej szczegółowo

Doświadczenie Sterna-Gerlacha

Doświadczenie Sterna-Gerlacha Doświadczenie Sterna-Gerlacha skolimowana (szczeliny) wiązka at. Ag w próżni (st. podst.: 5s S /, l=) obserwacja obrazu wiązki na okienku aparatury d!! w niejednor. polu mgt. oddz. z dipolem mgt.: V= µ

Bardziej szczegółowo

Wydajność konwersji energii słonecznej:

Wydajność konwersji energii słonecznej: Wykład II E we Wydajność konwersji energii słonecznej: η = E wy E we η całkowite = η absorpcja η kreacja η dryft/dyf η separ η zbierania E wy Jednostki fotometryczne i energetyczne promieniowania elektromagnetycznego

Bardziej szczegółowo

Neutrina z supernowych. Elementy kosmologii

Neutrina z supernowych. Elementy kosmologii Neutrina z supernowych Obserwacja neutrin z SN1987A Kolaps grawitacyjny Własności neutrin z kolapsu grawitacyjnego Elementy kosmologii Rozszerzający się Wszechświat Wielki Wybuch (Big Bang) Nukleosynteza

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

E 2 E = 2. Zjawisko Mössbauera. Spoczywające jądro doznaje przejścia e-m z emisją fotonu γ. Zastosujmy zasadę zachowania energii i pędu:

E 2 E = 2. Zjawisko Mössbauera. Spoczywające jądro doznaje przejścia e-m z emisją fotonu γ. Zastosujmy zasadę zachowania energii i pędu: Zjawisko Mössbauera Spoczywające jądro doznaje przejścia e-m z emisją fotonu γ. Zastosujmy zasadę zachowania energii i pędu: E = E + E + T = p + p i f γ R 0 γ R E = E E γ T = E T Energia fotonu: jest więc

Bardziej szczegółowo

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 )

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 ) 5 Z N p ) a a + b)! b ) a!b! a a! b a b)!b! p n n k nn k) n ) n k) d n d n [n sin ] n nn k) sin ) n) k n nn ) n k + ) sin + lπ ) k d n d n [n sin ] n k ) n n ) n k) sin ) k) k n k ) n nn ) n k + ) sin

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ

Bardziej szczegółowo

Wybrane zagadnienia z elektryczności

Wybrane zagadnienia z elektryczności Wybane zaganienia z elektyczności Pomia łaunku elektycznego oświaczenie Millikana atomize płaszczyzna (+) bateia kople oleju mikoskop F el F g płaszczyzna (-) F g F el mg mg e.6 0 9 C Łaunek elektyczny

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 10 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

9 Elementy analizy wielowymiarowej

9 Elementy analizy wielowymiarowej Marek Beśka, Statystyka matematyczna, wykład 9 3 9 Elementy analizy wielowymiarowej 9. Wielowymiarowy rozkład normalny Definicja 9. Wektor losowy X = X,..., X k ) określony na przestrzeni probabilistycznej

Bardziej szczegółowo

Neutrina i ich oscylacje. Neutrina we Wszechświecie Oscylacje neutrin Masy neutrin

Neutrina i ich oscylacje. Neutrina we Wszechświecie Oscylacje neutrin Masy neutrin Neutrina i ich oscylacje Neutrina we Wszechświecie Oscylacje neutrin Masy neutrin Neutrina wokół nas n n n γ ν ν 410 cm 340 cm 10 10 nbaryon 3 3 Pozostałe z wielkiego wybuchu: Słoneczne Już obserwowano

Bardziej szczegółowo

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe Numeryczne metody optymalizacji Optymalizacja w kierunku informacje dodatkowe Numeryczne metody optymalizacji x F x = min x D x F(x) Problemy analityczne: 1. Nieliniowa złożona funkcja celu F i ograniczeń

Bardziej szczegółowo

Fizykaatmosfergwiazdowych

Fizykaatmosfergwiazdowych Krzysztof Gęsicki Fizykaatmosfergwiazdowych Wykład kursowy dla studentów astronomii 2 stopnia wykład 6 atom trójpoziomowy itp. pamiętamy z poprzedniego wykładu: Bliżej powierzchni gwiazdy fotony mogą przez

Bardziej szczegółowo

0,04x0,6x1m 1,4kN/m 3 0,034 1,35 0,05

0,04x0,6x1m 1,4kN/m 3 0,034 1,35 0,05 ' 1 2 3 4 Zestawienie obciążeń stałych oddziałujących na mb belki Lp Nazwa Wymiary Cięzar jednostko wy Obciążenia charakterystycz ne stałe kn/mb Współczyn nik bezpieczeń stwa γ Obciążenia obliczeniowe

Bardziej szczegółowo

ostawa. Fizyka powierzchni i nanostruktury 4

ostawa. Fizyka powierzchni i nanostruktury 4 Obrazy dyfrakcyjne elektronów Jak badać strukturę powierzchni? Własności: Dyfrakcja elektronowa cd. Dyfrakcja zachowuje symetrię. Duże odległości w obrazie dyfrakcyjnym oznaczają małe odległości na powierzchni.

Bardziej szczegółowo

17 Naturalne jednostki w fizyce atomowej

17 Naturalne jednostki w fizyce atomowej 7 Naturalne jednostki w fizyce atomowej W systemie CGS wszystkie wielkości fizyczne wyrażane są jako potęgi trzech fundamentalnych jednostek:. długości (l) cm,. masy (m) g, 3. czasu (t) s. Wymiary innych

Bardziej szczegółowo

Światło widzialne a widmo elektromagnetyczne

Światło widzialne a widmo elektromagnetyczne Światło widzialne a widmo elektromagnetyczne 10 3 λ [nm] λ 10 6 10 12 fale radiowe 1 mm 10 9 10 12 10 9 10 6 mikrofale 100 µm 10 µm 10 15 10 18 10 21 10 3 1 10 3 widmo optyczne prom. X promienie gamma

Bardziej szczegółowo

Równania Maxwella i równanie falowe

Równania Maxwella i równanie falowe Równania Maxwella i równanie falowe Prezentacja zawiera kopie folii omawianch na wkładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wkorzstanie niekomercjne dozwolone pod warunkiem podania

Bardziej szczegółowo

Funkcje i charakterystyki zmiennych losowych

Funkcje i charakterystyki zmiennych losowych Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych

Bardziej szczegółowo

Metamorfozy neutrin. Katarzyna Grzelak. Sympozjum IFD Zakład Czastek i Oddziaływań Fundamentalnych IFD UW. K.Grzelak (UW ZCiOF) 1 / 23

Metamorfozy neutrin. Katarzyna Grzelak. Sympozjum IFD Zakład Czastek i Oddziaływań Fundamentalnych IFD UW. K.Grzelak (UW ZCiOF) 1 / 23 Metamorfozy neutrin Katarzyna Grzelak Zakład Czastek i Oddziaływań Fundamentalnych IFD UW Sympozjum IFD 2008 6.12.2008 K.Grzelak (UW ZCiOF) 1 / 23 PLAN Wprowadzenie Oscylacje neutrin Eksperyment MINOS

Bardziej szczegółowo

28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 Problem Dirichleta, proces Wienera Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 28 maja, 2012 Funkcje harmoniczne Niech będzie operatorem Laplace a w

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW

MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW Materiały pomocnicze do wykładu (Inżynieria Środowiska) PWSZ w Elblągu dr hab. inż. Cezary Orlikowski Instytut Politechniczny MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW MECHANIKA

Bardziej szczegółowo

Masywne neutrina w teorii i praktyce

Masywne neutrina w teorii i praktyce Instytut Fizyki Teoretycznej Uniwersytet Wrocławski Wrocław, 20 czerwca 2008 1 Wstęp 2 3 4 Gdzie znikają neutrina słoneczne (elektronowe)? 4p 4 2He + 2e + + 2ν e 100 miliardów neutrin przez paznokieć kciuka

Bardziej szczegółowo

Podsumowanie W2: V V c + V nc. Przybliżenie Pola Centralnego: H = H free +V = H 0 +V nc

Podsumowanie W2: V V c + V nc. Przybliżenie Pola Centralnego: H = H free +V = H 0 +V nc Podsumowan W: Pzyblżn Pola Cntalngo: H H f +V H 0 +V nc V K Z + K > j V V c + V nc j H 0 h E E nl pozomy ng. Σ E nl (+ popawk) koljność zapłnana powłok lktonowych mpyczna guła Madlunga: nga gdy n+l Wojcch

Bardziej szczegółowo

Subdyfuzja w układach membranowych

Subdyfuzja w układach membranowych Subdyfuzja w układach membranowych Tadeusz Kosztołowicz Institute of Physics, Jan Kochanowski University, ul. Świȩtokrzyska 15, 25-406 Kielce, Poland, tadeusz.kosztolowicz@ujk.edu.pl Między teorią a zastosowaniami

Bardziej szczegółowo

!!! Teoria, która się tutaj znajduje też wchodzi w zakres kolokwium.!!!

!!! Teoria, która się tutaj znajduje też wchodzi w zakres kolokwium.!!! DB WMA(ns) semestr zimowy 2017 rozgrzewka przed kolokwium SPIS TREŚCI Teoria w niniejszym zbiorku została opracowana na podstawie książki: R. Murawski, K. Świrydowicz, Wstęp do teorii mnogości, Wyd. Naukowe

Bardziej szczegółowo

ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB

ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB pro. dr hb. Stisłw Biłs ZADANIA Z ANALIZY MATEMATYCZNEJ I roku kieruku iormtyk WSZiB I. ELEMENTARNE WŁASNOŚCI FUNKCJI. Wyzczyć dziedzię ukcji: 5 7 log[ log 5 6. b c ] d. Wyzczyć przeciwdziedzię ukcji:

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 08/9 Zarządzanie e-mail: www: konsultacje: rafal.kucharski@ue.katowice.pl http://web.ue.katowice.pl/rkucharski/ Piątki, 5:0-6:0,

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)

Bardziej szczegółowo

Zastosowanie techniki μsr w badaniach własności magnetyków molekularnych. Piotr M. Zieliński NZ35 IFJ PAN

Zastosowanie techniki μsr w badaniach własności magnetyków molekularnych. Piotr M. Zieliński NZ35 IFJ PAN Zastosowanie techniki μsr w badaniach własności magnetyków molekularnych. Piotr M. Zieliński NZ35 IFJ PAN 1. Fundamenty spektroskopii mionów. Typowy eksperyment 3. Zjawiska krytyczne i SR 4. Przykłady

Bardziej szczegółowo

λ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o

λ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o W 1916r. Einstein rozszerzył swoją koncepcję kwantów światła, przypisując im pęd. Fotonowi o energii ħω odpowiada pęd p ħω/c /λ Efekt Comptona 193r. - rozpraszanie promieni X 1keV- kilka MeV na elektronac

Bardziej szczegółowo

Nadawanie uprawnieo i logowanie

Nadawanie uprawnieo i logowanie Nadawanie uprawnieo i logowanie Rejestracja Każdy kierownik jednostki posiada wcześniej założone konto konta zakładane są przez pracownika Działu Informacji Naukowej BG osoba odpowiedzialna: Zofia Kukurowska,

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

Uklady modelowe III - rotator, atom wodoru

Uklady modelowe III - rotator, atom wodoru Wyk lad 5 Uklady modelowe III - rotator, atom wodoru Model Separacja ruchu środka masy R = m 1r 1 + m 2 r 2 m 1 + m 2 Ĥ = Ĥ tr (R) + Ĥ rot (r) Ĥ tr 2 (R) = 2(m 1 + m 2 ) R [ Ψ E tr (R; t) = exp i (k R

Bardziej szczegółowo

LNL Legnaro, IFIC Valencia, GSI, ZFJA. Ernest Grodner Weryfikacja hipotezy udziału kolektywnych bozonów w rozpadzie beta 62 Ga

LNL Legnaro, IFIC Valencia, GSI, ZFJA. Ernest Grodner Weryfikacja hipotezy udziału kolektywnych bozonów w rozpadzie beta 62 Ga LNL Legnaro, IFIC Valencia, GSI, ZFJA Ernest Grodner 13.01.2010 Weryfikacja hipotezy udziału kolektywnych bozonów w rozpadzie beta Ga Ge 9% Symetrie PRZYKŁAD: symetria obrotowa Stany własne ruchu obrotowego

Bardziej szczegółowo

Sprawdzenie stanów granicznych użytkowalności.

Sprawdzenie stanów granicznych użytkowalności. MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=

Bardziej szczegółowo

LITERATURA Resnick R., Holliday O., Acosta V., Cowan C. L., Graham B. J., Wróblewski A. K., Zakrzewski J. A., Kleszczewski Z., Zastawny A.

LITERATURA Resnick R., Holliday O., Acosta V., Cowan C. L., Graham B. J., Wróblewski A. K., Zakrzewski J. A., Kleszczewski Z., Zastawny A. LITERATURA. Resnick R., Holliday O., Fizyka, Tom i, lub nowe wydanie 5-tomowe. Acosta V., Cowan C. L., Gaham B. J., Podstawy Fizyki Współczesnej, 98,PWN. 3. Wóblewski A. K., Zakzewski J. A., Wstęp Do Fizyki,

Bardziej szczegółowo