Fizyka 1(mechanika) AF14. Wykład 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fizyka 1(mechanika) AF14. Wykład 1"

Transkrypt

1 Fizyka 1(mechanika) AF14 Wykład 1 Jerzy Łusakowski

2 Plan wykładu Informacje o wykładzie Przedmiot i metodologia fizyki Fizyka a matematyka Układ jednostek SI, rzędy wielkości Pomiary fizyczne i niepewności pomiarowe Kartezjański układ współrzędnych Rachunek wektorowy Podstawowe pojęcia kinematyki

3 Informacje o wykładzie Przydatne odnośniki Organizacja roku akademickiego: Terminarz kolokwiów i egzaminów(nie jest jeszcze zatwierdzony: ppw/ipz/?m=exams Strona przedmiotu: action=katalog2 /przedmioty/pokazprzedmiot&prz kod=1100-1af14 Strona wykładu: jlusakowski/ /WykladMechanika html Zadania domowe nie są obowiązkowe, ale należy je rozwiązywać!

4 Przedmiot i metodologia fizyki Cotojestfizyka? Fizyka nauka przyrodnicza nauka podstawowa nauka zajmująca się badaniem oddziaływań odpowiedzialnych za postać Wszechświata Acotojestnauka? Pytanie nie tylko filozoficzne...

5 Przedmiot i metodologia fizyki Metodologia fizyki Przede wszystkim: fizyka jest nauką eksperymentalną, tzn. opartą na obserwacjach i kontrolowanych doświadczeniach, które stanowią ostateczną weryfikację poglądów, modeli i teorii. Inaczej mówiąc:(wszech)świat nas sprawdza i zmusza do korekty poglądów!

6 Przedmiot i metodologia fizyki Jak to wygląda w praktyce? PrzeprowadzamydoświadczenieiuzyskujemyZADZIWIAJĄCYWYNIK(np.,wahadło sięwaha). Powtarzamypomiarytakwielerazy,ażprzekonamysię,żeZADZIWIAJĄCYWYNIK jest prawdziwy(waha się zawsze, gdy jest wytrącone z położenia równowagi). Powtarzamypomiaryzmieniającrozmaiteparametryidowiadujemysię,jak ZADZIWIAJĄCY WYNIK od nich zależy(odkrywamy zależność okresu wahań T od długości linki L i niezależność od masy kulki). Staramysięopisaćotrzymanązależnośćwzoremmatematycznym(przekonujemysię, żezależność T Lsprawdzasięświetnie). Wołamynapomocspecjalistówodteorii,którzy zpierwszychzasad (wtymprzypadku -zasadymechanikinewtona+teoriagrawitacji)wyprowadzajązależność T = 2π L/g. Wtymmomenciemamyhipotezęteorii,któraopisujezjawiskoiktóraWYMAGA POTWIERDZENIA. Zadaniemteoriijestopisaćistniejącefaktyiprzewidziećkolejne. Opisjestpoprawny,cozprzewidywaniami?Dobrzebyłobyzmienić g! WysyłamyochotnikównaKsiężyc,MarsaiwinnerejonyWszechświatainiecierpliwie czekamy na wynik. Wszyscypotwierdzająsłusznośćzależności T = 2π L/g. HipotezateoriiawansujenaTEORIĘ,aleniepoprzestajemywdrążeniusprawy: może coś przeoczyliśmy(siła Coriolisa, zależność okresu od amplitudy). ZabieramysiędoinnegodoświadczeniawceluuzyskaniakolejnegoZADZIWIAJĄCEGO WYNIKU!

7 Fizyka a matematyka Znaczenie matematyki w fizyce Mówisię,żematematykajestjęzykiemfizyki,ijestto, oczywiście, prawda. Ale problem jest znacznie głębszy: Wszechświat odkrywa swoje tajemnice tylko wtedy, gdy zadajemy pytanie sformułowane w języku matematyki. A przecież matematyka mogłaby istnieć w oderwaniu od Wszechświata! Dlaczego tak jest, tzn., dlaczego Wszechświat jest matematyczny?, pozostaje WIELKIM PYTANIEM filozofii. Faktem jest, że odkrywanie mechanizmów rządzących Wszechświatem rozpoczęło się wtedy, gdy zaczęto przeprowadzać doświadczenia i analizować je metodami matematycznymi.

8 Fizyka a matematyka Matematyka a Wszechświat W znacznym stopniu, koncepcje matematyczne istnieją w oderwaniu od rzeczywistości fizycznej. Struktury, o których mówi matematyka, mogą(ale nie muszą) być interpretowane przez odniesienie do świata fizycznego. Uogólnienia pojęć matematycznych wytworzonych w związku z odkryciami fizyki pozwalają na głębsze wniknięcie w strukturę świata fizycznego. Doświadczenie Teoria(matematyczna) Uogólnienie teorii na gruncie matematyki Odkrycie nowych aspektów świata fizycznego. Zainteresowanych tematyką Matematyka, fizyka i Wszechświat odsyłam do książek prof. Michała Hellera, jednego z najwybitniejszych współczesnych kosmologów i filozofów nauki.

9 Fizyka a matematyka Mechanizmy rozwoju fizyki Mechanizmy są dwa, silnie ze sobą sprzężone: Odkrywanie nowych zjawisk poprzez eksperymenty i budowanie na ich podstawie teorii(np. powstanie mechaniki kwantowej). Tworzenie nowych teorii przez wgląd w istotę rzeczy i weryfikacja eksperymentalna(np. powstanie ogólnej teorii względności). Tak, czy inaczej: EKSPERYMENT(czyli POMIAR) JEST ARGUMENTEM OSTATECZNYM

10 Układ jednostek SI, rzędy wielkości Jednostki podstawowe Będziemy posługiwać się układem SI, w którym jednostkami podstawowymi są: kilogram-masa metr-długość sekunda-czas amper- natężenie prądu elektrycznego kandela- światłość kelwin- temperatura mol-ilośćsubstancji Jednostki pochodne: wszystkie pozostałe jednostki wielkości fizycznych(np.niuton,dżul,m/s 2 ).

11 Układ jednostek SI, rzędy wielkości Przedrostki eksa E peta P tera T giga G mega M kilo k hekto h deka da decy d ,1 centy c ,01 mili m ,001 mikro µ , nano n , piko p , femto f , atto a ,

12 Układ jednostek SI, rzędy wielkości Alfabet grecki Alfa α A Beta β B Gamma γ Γ Delta δ Epsilon ǫ E Dzeta ζ Z Eta η H Theta θ Θ Jota ι I Kappa κ K Lambda λ Λ My µ M Ni ν N Ksi ξ Ξ Omikron o O Pi π Π Rho ρ P Sigma σ Σ Tau τ T Ipsylon υ Υ Phi φ Φ Chi χ X Psi ψ Ψ Omega ω Ω

13 Pomiary fizyczne i niepewności pomiarowe Pomiary i ich dokładność Każdy pomiar można wykonać tylko z określoną dokładnością(nie istnieją pomiary o nieskończenie wielkiej precyzji) Na niepewność otrzymanego wyniku wpływa kilka czynników: Dokładnośćprzyrządu Statystyczny(przypadkowy)charakterbadanegozjawiska Niekontrolowany(izwykletrudnydooszacowania)wpływ czynników zewnętrznych

14 Pomiary fizyczne i niepewności pomiarowe Wpływ przypadkowych zaburzeń na pomiar- deska Galtona Sir Francis Galton( ). Brytyjski podróżnik, antropolog, pionier badań nad ludzką inteligencją. Źródło: Wikipedia. Deska Galtona- wskutek przypadkowych rozproszeń, kuleczki układają się w kształt zwany krzywą Gaussa lub rozkładem normalnym.

15 Pomiary fizyczne i niepewności pomiarowe Rozkład normalny p(x) = 1 2πσ 2 exp( (x µ)2 /2σ 2 ) p(x)- gęstość prawdopodobieństwa p(x)dx- prawdopodobieństwo tego, że zmienna x przyjmnie wartośćmiędzy xax+dx σ- wariancja rozkładu- miara rozrzutu wartości x µ- wartość średnia rozkładu Rozkład normalny, jak każdy rozkład prawdopodobieństwa, jest unormowany: p(x)dx = 1.

16 Pomiary fizyczne i niepewności pomiarowe Pierwsza detekcja fal grawitacyjnych: LIGO: Laser Interferometer Gravitational Wave Observatory Two locations: Hanford(WA) i Livingston(LA)

17 Kartezjański układ współrzędnych Wektory Szkolne definiecje wektora: Obiekt posiadający kierunek, zwrot i długość. Uporządkowana para punktów. Odcinek ze strzałką. Definicje zbliżone do poprawności: Element unormowanej przestrzeni wektorowej. Tensor pierwszego rzędu, którego współrzędne transformują się w określony sposób przy obrocie układu współrzędnych. Potrzebne nam będzie intuicyjne rozumienie wektora(i przy tym pozostaniemy) oraz ścisłe posługiwanie się właściwościami tego obiektu.

18 Kartezjański układ współrzędnych Definicja układu współrzędnych prostokątnych Wersor osi Ox: wektor o długości jednostkowej, skierowany w kierunku dodatnim osi Ox. Na płaszczyźnie możemy wybrać dwa wzajemnie prostopadłe wersory definiujące osie Ox i Oy. Jak wybrać kierunek trzeciego wersora? Odpowiedź: korzystamy wyłącznie z prawoskrętnego układu współrzędnych. Jesttoukład,wktórymwersorosi Ozma kierunek ruchu śruby prawoskrętnej, zaczepionejdowersorów e x i e y,gdy wersorem e x kręcimywkierunku e y przez kąt π/2. X Z Y Dlaczego prawoskrętny? Jest to wyłącznie sprawa umowy,związanazorientacjąprzestrzeni R 3 i definicją iloczynu wektorowego patrz wykład z Analizy matematycznej.

19 Rachunek wektorowy Współrzędne i składowe Współrzędne punktu na osiach układu Oxyz określamy przez rzut prostokątny punktu na osie Ox, Oy, Oz. A z Z A = (A x,a y,a z ) A = A x + A y + A z A Współrzędną wektora na danej osi nazywamy liczbę, która jest równa różnicy współrzędnych końca i początku wektora natejosi. A x X A x A z Ay A y Y Składowąwektora A wzdłuż danej osi nazywamy wektor, który jest rzutem prostopadłym wektora Anatęoś.

20 Rachunek wektorowy Algebra wektorów Warto zajrzeć: E. Karaśkiewicz, Zarys teorii wektorów i tensorów. A+ B = B + A przemiennośćdodawania A+ 0 = A istniejewektorzerowy A+ A = 0 dlakażdegowektoraistniejewektorprzeciwny, A = A A+( B + C) = ( A+ B)+ C łącznośćdodawania a( A+ B) = a A+a B rozdzielczośćdodawaniawzględemmnożenia A B = ABcos( ( A, B)) iloczynskalarny-liczba A B = ABsin( ( A, B)) e iloczynwektorowy-wektor

21 Rachunek wektorowy Iloczyn skalarny Cosinuskątamiędzywektorami Ai Bjestrównyiloczynowi skalarnemuwersorówwkierunku Ai B: cos( ( A, B)) = e A e B Iloczyn skalarny wersorów wzajemnie prostopadłych: e x e x = e y e y = e z e z = 1; e x e y = e x e z = e y e z = 0. e i e j = δ ij. { 1 gdy i = j δ ij = 0 gdy i j Jeśli A = A x e x +A y e y +A z e z oraz B = B x e x +B y e y +B z e z,to: A B = A x B x +A y B y +A z B z = i=x,y,z A ib i = A i B j δ ij

22 Podstawowe pojęcia kinematyki Punkt materialny Punkt materialny- wygodna idealizacja(przybliżenie), gdy: - nie interesuje nas struktura wewnętrzna obserwowanego obiektu; - obserwowany obiekt jest mały w porównaniu z innymi obiektami; - punkty materialne bywają całkiem duże(w porównaniu z rozmarami człowieka)- np. pociąg relacji Warszawa- Gdańsk albo Ziemia krążąca wokół Słońca

23 Podstawowe pojęcia kinematyki Zmiana położenia w czasie Z r = r(t+ t) r(t) wektor przemieszczenia Tor r(t+ t) wektor położenia wchwili t+ t r(t); wektor położenia wchwili t Y X

24 Podstawowe pojęcia kinematyki Położenie, przemieszczenie, tor, droga Położenie- wektor łączący początek układu współrzędnych z punktem materialnym. UWAGA! O położeniu można mówić dopiero wtedy, gdy się zdefiniuje układ odniesienia. Przemieszczenie- wektor, który jest różnicą położenia końcowego i początkowego. Tor- krzywa w przestrzeni, którą zakreśla poruszający się punkt. Droga-długośćtoru.

25 Podstawowe pojęcia kinematyki Prędkość średnia i chwilowa Prędkość średnia: v sr = r t = x t e x + y t e y + z t e z Prędkość chwilowa: r v = lim t 0 t = ) ( x = lim t 0 t e x + y t e y + z t e z = υ x e x +υ y e y +υ z e z = d r dt

26 Podstawowe pojęcia kinematyki Pochodna wektora Pochodnawektora Ajestwektorem,któregowspółrzędnesą pochodnymiposzczególnychwspółrzędnychwektora A: A = A x e x +A y e y +A z e z d A dt = da x dt e x + da y dt e y + da z dt e z

27 Podstawowe pojęcia kinematyki Przyspieszenie średnie i chwilowe Przyspieszenie średnie: a sr = v t Przyspieszenie chwilowe: v a = lim t 0 t = d v dt = d2 r dt 2

Fizyka 1(mechanika) AF14. Wykład 1

Fizyka 1(mechanika) AF14. Wykład 1 Fizyka 1(mechanika) 1100-1AF14 Wykład 1 Jerzy Łusakowski 02.10.2017 Plan wykładu Informacje o wykładzie Przedmiot i metodologia fizyki Układ jednostek SI, rzędy wielkości Pomiary fizyczne i niepewności

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

I. Przedmiot i metodologia fizyki

I. Przedmiot i metodologia fizyki I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej

Bardziej szczegółowo

Wykłady z fizyki FIZYKA I

Wykłady z fizyki FIZYKA I POLITECHNIKA OPOLSKA WYDZIAŁ INŻYNIERII PRODUKCJI I LOGISTYKI Instytut Matematyki i Fizyki Katedra Fizyki Wykłady z fizyki FIZYKA I dr Barbara Klimesz Politechnika Opolska Opole University of Technology

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

!!! Teoria, która się tutaj znajduje też wchodzi w zakres kolokwium.!!!

!!! Teoria, która się tutaj znajduje też wchodzi w zakres kolokwium.!!! DB WMA(ns) semestr zimowy 2017 rozgrzewka przed kolokwium SPIS TREŚCI Teoria w niniejszym zbiorku została opracowana na podstawie książki: R. Murawski, K. Świrydowicz, Wstęp do teorii mnogości, Wyd. Naukowe

Bardziej szczegółowo

Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi.

Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi. Prawa fizyki i wielkości fizyczne Fizyka (z stgr. φύσις physis "natura") nauka o przyrodzie w najszerszym znaczeniu tego słowa. Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi. Prawa

Bardziej szczegółowo

Przedmiot i metodologia fizyki

Przedmiot i metodologia fizyki Przedmiot i metodologia fizyki Świat zjawisk fizycznych Oddziaływania fundamentalne i cząstki elementarne Wielkości fizyczne Układy jednostek Modele matematyczne w fizyce 10 30 Świat zjawisk fizycznych

Bardziej szczegółowo

Fizyka. w. 03. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015

Fizyka. w. 03. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015 Fizyka w. 03 Paweł Misiak IŚ+IB+IiGW UPWr 2014/2015 Jednostki miar SI Jednostki pochodne wielkość nazwa oznaczenie definicja czestotliwość herc Hz 1 Hz = 1 s 1 siła niuton N 1 N = 1 kgm 2 s 2 ciśnienie

Bardziej szczegółowo

Spis wszystkich symboli

Spis wszystkich symboli 1 Spis wszystkich symboli Symbole podstawowe - pojedyncze znaki, alfabet grecki α β γ Γ δ ξ η ε ϕ ν ρ τ θ Θ ψ Ψ φ Φ Ω Υ Σ -alfa -beta - gamma - gamma (duże) - delta (małe) - delta (duże) -ksi -eta - epsilon

Bardziej szczegółowo

Symbole Numer Nazwa Opis Znaczenie Wygląd. Latin small "f" with hook (function, florin) Greek capital letter "alpha"

Symbole Numer Nazwa Opis Znaczenie Wygląd. Latin small f with hook (function, florin) Greek capital letter alpha Symbole Numer Nazwa Opis Znaczenie Wygląd ƒ Litery greckie ƒ Latin small "f" with hook (function, florin) Łacińskie małe "f" z "haczykiem" (funkcja, floren) Α Α "alpha" Grecka wielka litera "alfa" Α Β

Bardziej szczegółowo

Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki.

Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki. Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.

Bardziej szczegółowo

POLITECHNIKA LUBELSKA KARTA MODUŁU (SYLABUS)

POLITECHNIKA LUBELSKA KARTA MODUŁU (SYLABUS) STOPIEŃ STUDIÓW: RODZAJ STUDIÓW: KIERUNEK STUDIÓW: KARTA MODUŁU (SYLABUS) Studia I stopnia (inżynierskie) studia stacjonarne MECHATRONIKA (MT) PRZEDMIOT: ROK STUDIÓW: SEMESTR: RODZAJ ZAJĘĆ I LICZBA GODZIN:

Bardziej szczegółowo

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp.

Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.

Bardziej szczegółowo

POLITECHNIKA LUBELSKA KARTA MODUŁU (SYLABUS)

POLITECHNIKA LUBELSKA KARTA MODUŁU (SYLABUS) STOPIEŃ STUDIÓW: RODZAJ STUDIÓW: KIERUNEK STUDIÓW: KARTA MODUŁU (SYLABUS) Studia I stopnia (inżynierskie) studia stacjonarne MECHATRONIKA (MT) PRZEDMIOT: ROK STUDIÓW: SEMESTR: RODZAJ ZAJĘĆ I LICZBA GODZIN:

Bardziej szczegółowo

Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu:

Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu: Wykład 2. Kinematyka. Aby prześledzić tok tego wykładu MUSISZ rozumieć pojęcie wektora, jego składowych w układzie kartezjańskim oraz w trakcie wykładu zrozumieć intuicyjnie pojęcie pochodnej funkcji jednej

Bardziej szczegółowo

Miernictwo elektroniczne

Miernictwo elektroniczne Miernictwo elektroniczne Policz to, co można policzyć, zmierz to co można zmierzyć, a to co jest niemierzalne, uczyń mierzalnym Galileo Galilei Dr inż. Zbigniew Świerczyński p. 112A bud. E-1 Wstęp Pomiar

Bardziej szczegółowo

Fizyka. w. 02. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015

Fizyka. w. 02. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015 Fizyka w. 02 Paweł Misiak IŚ+IB+IiGW UPWr 2014/2015 Wektory ujęcie analityczne Definicja Wektor = uporządkowana trójka liczb (współrzędnych kartezjańskich) a = a x a y a z długość wektora: a = a 2 x +

Bardziej szczegółowo

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Dr Kazimierz Sierański kazimierz.sieranski@pwr.edu.pl www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Forma zaliczenia kursu: egzamin końcowy Grupa kursów -warunkiem

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe

Bardziej szczegółowo

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

3. Podstawowe wiadomości z fizyki. Dr inż. Janusz Dębiński. Mechanika ogólna. Wykład 3. Podstawowe wiadomości z fizyki. Kalisz

3. Podstawowe wiadomości z fizyki. Dr inż. Janusz Dębiński. Mechanika ogólna. Wykład 3. Podstawowe wiadomości z fizyki. Kalisz Dr inż. Janusz Dębiński Mechanika ogólna Wykład 3 Podstawowe wiadomości z fizyki Kalisz Dr inż. Janusz Dębiński 1 Jednostki i układy jednostek Jednostką miary wielkości fizycznej nazywamy wybraną w sposób

Bardziej szczegółowo

MiBM sem. III Zakres materiału wykładu z fizyki

MiBM sem. III Zakres materiału wykładu z fizyki MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej

Bardziej szczegółowo

Tryb Matematyczny w L A TEX-u

Tryb Matematyczny w L A TEX-u Tryb Matematyczny w L A TEX-u Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 2 Tekst w trybie matematycznym Ściąga z symboli 3 Jak nie pisać pracy magisterskiej

Bardziej szczegółowo

Fizyka. Program Wykładu. Program Wykładu c.d. Literatura. Rok akademicki 2013/2014

Fizyka. Program Wykładu. Program Wykładu c.d. Literatura. Rok akademicki 2013/2014 Program Wykładu Fizyka Wydział Zarządzania i Ekonomii Rok akademicki 2013/2014 Mechanika Kinematyka i dynamika punktu materialnego Zasady zachowania energii, pędu i momentu pędu Podstawowe własności pola

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

KONSPEKT LEKCJI FIZYKI DLA KLASY I GIMNAZJUM

KONSPEKT LEKCJI FIZYKI DLA KLASY I GIMNAZJUM Anna Kierzkowska nauczyciel fizyki i chemii w Gimnazjum Nr 2 w Starachowicach KONSPEKT LEKCJI FIZYKI DLA KLASY I GIMNAZJUM Temat lekcji: Pomiary wielkości fizycznych. Międzynarodowy Układ Jednostek Miar

Bardziej szczegółowo

Pomiary fizyczne. Wykład II. Wstęp do Fizyki I (B+C) Rodzaje pomiarów. Układ jednostek SI Błedy pomiarowe Modele w fizyce

Pomiary fizyczne. Wykład II. Wstęp do Fizyki I (B+C) Rodzaje pomiarów. Układ jednostek SI Błedy pomiarowe Modele w fizyce Pomiary fizyczne Wykład II: Rodzaje pomiarów Wstęp do Fizyki I (B+C) Wykład II Układ jednostek SI Błedy pomiarowe Modele w fizyce Rodzaje pomiarów Zliczanie Przykłady: liczba grzybów w barszczu liczba

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami

Bardziej szczegółowo

Fizyka dla inżynierów I, II. Semestr zimowy 15 h wykładu Semestr letni - 15 h wykładu + laboratoria

Fizyka dla inżynierów I, II. Semestr zimowy 15 h wykładu Semestr letni - 15 h wykładu + laboratoria Fizyka dla inżynierów I, II Semestr zimowy 15 h wykładu Semestr letni - 15 h wykładu + laboratoria Wymagania wstępne w zakresie przedmiotu: - Ma wiedzę z zakresu fizyki oraz chemii na poziomie programu

Bardziej szczegółowo

Fizyka. Wykład 1. Mateusz Suchanek

Fizyka. Wykład 1. Mateusz Suchanek Fizyka Wykład 1 Mateusz Suchanek dr Mateusz Suchanek Al. Mickiewicza 21 pokój 313 m.suchanek@ur.krakow.pl http://matrix.ur.krakow.pl/~msuchanek/ Warunki zaliczenia: Egzamin ustny (materiał z wykładów)

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Nauka - technika 2 Metodologia Problem Hipoteza EKSPERYMENT JAKO NARZĘDZIE WERYFIKACJI 3 Fizyka wielkości fizyczne opisują właściwości obiektów i pozwalają również ilościowo porównać

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Fizyka 1(mechanika) AF14. Wykład 5

Fizyka 1(mechanika) AF14. Wykład 5 Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Jerzy Łusakowski 30.10.2017 Plan wykładu Ziemia jako układ nieinercjalny Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Dwaj obserwatorzy- związek między mierzonymi współrzędnymi

Bardziej szczegółowo

www.if.pw.edu.pl/~antonowi Fizyka. Repetytorium. Wzory i Prawa z Objaśnieniami Kazimierz Sierański, Piotr Sitarek, Krzysztof Jezierski Fizyka. Repetytorium. Zadania z Rozwiązaniami Krzysztof Jezierski,

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Wprowadzenie do przedmiotu

Podstawy Procesów i Konstrukcji Inżynierskich. Wprowadzenie do przedmiotu Podstawy Procesów i Konstrukcji Inżynierskich Wprowadzenie do przedmiotu Prowadzący: dr inż. Marta Kamińska Kierunek Wyróżniony przez PKA Wykładowcy Kierownik przedmiotu: prof. dr hab. Bogdan Walkowiak

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

Podstawowe umiejętności matematyczne - przypomnienie

Podstawowe umiejętności matematyczne - przypomnienie Podstawowe umiejętności matematyczne - przypomnienie. Podstawy działań na potęgach założenie:. założenie: założenie: a>0, n jest liczbą naturalną założenie: Uwaga:. Zapis dużych i małych wartości w postaci

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr ohdan ieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D. Resnick,

Bardziej szczegółowo

O ruchu. 10 m. Założenia kinematyki. Najprostsza obserwowana zmiana. Opis w kategoriach przestrzeni i czasu ( geometria fizyki ).

O ruchu. 10 m. Założenia kinematyki. Najprostsza obserwowana zmiana. Opis w kategoriach przestrzeni i czasu ( geometria fizyki ). O ruchu Założenia kinematyki Najprostsza obserwowana zmiana. Ignorujemy czynniki sprawcze ruchu, rozmiar, kształt, strukturę ciała (punkt materialny). Opis w kategoriach przestrzeni i czasu ( geometria

Bardziej szczegółowo

Analiza wymiarowa i równania różnicowe

Analiza wymiarowa i równania różnicowe Część 1: i równania różnicowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5 Plan Część 1: 1 Część 1: 2 Część 1: Układ SI (Système International d Unités) Siedem jednostek

Bardziej szczegółowo

Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =

Bardziej szczegółowo

Geometria Analityczna w Przestrzeni

Geometria Analityczna w Przestrzeni Algebra p. 1/25 Algebra Geometria Analityczna w Przestrzeni Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski

II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU Janusz Adamowski 1 1 Przestrzeń Hilberta Do opisu stanów kwantowych używamy przestrzeni Hilberta. Przestrzenią Hilberta H nazywamy przestrzeń wektorową

Bardziej szczegółowo

Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X

Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący

Bardziej szczegółowo

III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty.

III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. Newtonowskie absolutna przestrzeń i absolutny czas. Układy inercjalne Obroty Układów Współrzędnych Opis ruchu w UO obracających się względem

Bardziej szczegółowo

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego)

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego) Pierwsze kolokwium z Mechaniki i Przylełości dla nanostudentów (wykład prof. J. Majewskieo) Zadanie Dane są cztery wektory A, B, C oraz D. Wyrazić liczbę (A B) (C D), przez same iloczyny skalarne tych

Bardziej szczegółowo

Fizyka - opis przedmiotu

Fizyka - opis przedmiotu Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu 13.2-WI-INFP-F Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Informatyka / Sieciowe systemy informatyczne

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Mechanika. Wykład Nr 1 Statyka

Mechanika. Wykład Nr 1 Statyka 1 Mechanika Wykład Nr 1 Statyka literatura, pojęcia podstawowe, wielkości fizyczne, działania na wektorach, rodzaje obciążeń, więzy i reakcje, aksjomaty statyki, środkowy układ sił redukcja i warunek równowagi,

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 9

Fizyka 1 (mechanika) AF14. Wykład 9 Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało

Bardziej szczegółowo

Mechanika i wytrzymałość materiałów

Mechanika i wytrzymałość materiałów Mechanika i wytrzymałość materiałów IB - Wykład Nr 1 Pojęcia podstawowe, Statyka Znaczenie mechaniki i wytrzymałości materiałów w Inżynierii Biomedycznej, literatura, pojęcia podstawowe, wielkości fizyczne,

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 1 6.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 1 6.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 1 6.X.2016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Streszczenie Materiał wykładu Kinematyka punktu materialnego

Bardziej szczegółowo

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) 2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA Wprowadzenie W robotyce przez pojęcie manipulacji rozumiemy przemieszczanie w przestrzeni przedmiotów i narzędzi za pomocą specjalnego mechanizmu. W związku z tym pojawia

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

1. Matematyka Fizyki Kwantowej: Część Pierwsza

1. Matematyka Fizyki Kwantowej: Część Pierwsza 1. Matematyka Fizyki Kwantowej: Część Pierwsza Notatki Piotra Szańkowskiego SŁOWO WSTĘPNE Mechanika kwantowa, w przeciwieństwie do klasycznych teorii fizycznych, wydaję się być zagmatwana, nieintuicyjna

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Konspekt lekcji z fizyki w klasie I LO

Konspekt lekcji z fizyki w klasie I LO mgr Sylwia Rybarczyk esryba@poczta.onet.pl nauczyciel fizyki i matematyki XLIV LO w Łodzi Konspekt lekcji z fizyki w klasie I LO TEMAT: Zjawisko fizyczne, wielkość fizyczna, jednostki - utrwalenie zdobytych

Bardziej szczegółowo

KINEMATYKA czyli opis ruchu. Marian Talar

KINEMATYKA czyli opis ruchu. Marian Talar KINEMATYKA czyli opis ruchu 1 października 2006 2 Kinematyka czyli opis ruchu 1 Podstawowe pojęcia Kinematyka jest działem fizyki, który zajmuje się tylko opisem ruchu ciał. W ruchu postępowym ciało zastępuje

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

Postulaty mechaniki kwantowej

Postulaty mechaniki kwantowej 3.10.2004 11. Postulaty mechaniki kwantowej 120 Rozdział 11 Postulaty mechaniki kwantowej Mechanika kwantowa, jak zresztą każda teoria fizyczna, bazuje na kilku postulatach, które przyjmujemy "na wiarę".

Bardziej szczegółowo

Iloczyn wektorowy. Autorzy: Michał Góra

Iloczyn wektorowy. Autorzy: Michał Góra Iloczyn wektorowy Autorzy: Michał Góra 019 Iloczyn wektorowy Autor: Michał Góra DEFINICJA Definicja 1: Iloczyn wektorowy Iloczynem wektorowym wektorów v = ( v x, v y, v z ) R 3 oraz w = ( w x, w y, w z

Bardziej szczegółowo

Rozkłady prawdopodobieństwa

Rozkłady prawdopodobieństwa Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład

Bardziej szczegółowo

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni. Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozpatrywania

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ

Bardziej szczegółowo

ZASADY ZALICZANIA PRZEDMIOTU:

ZASADY ZALICZANIA PRZEDMIOTU: WYKŁADOWCA: dr hab. inż. Katarzyna ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, paw. C-1, p. 317, III p. tel. 617 29 01, tel. kom. 0 601 51 33 35 zak@agh.edu.pl http://home.agh.edu.pl/~zak 2012/2013, zima

Bardziej szczegółowo

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub

Bardziej szczegółowo