E 2 E = 2. Zjawisko Mössbauera. Spoczywające jądro doznaje przejścia e-m z emisją fotonu γ. Zastosujmy zasadę zachowania energii i pędu:

Wielkość: px
Rozpocząć pokaz od strony:

Download "E 2 E = 2. Zjawisko Mössbauera. Spoczywające jądro doznaje przejścia e-m z emisją fotonu γ. Zastosujmy zasadę zachowania energii i pędu:"

Transkrypt

1 Zjawisko Mössbauera Spoczywające jądro doznaje przejścia e-m z emisją fotonu γ. Zastosujmy zasadę zachowania energii i pędu: E = E + E + T = p + p i f γ R 0 γ R E = E E γ T = E T Energia fotonu: jest więc mniejsza od różnicy energii i f R R stanów jądrowych o energię odrzutu jądra. Eγ pγ = = c p R T R pr = M T R E = Mc γ E E = E γ E γ E (dla E γ Mc ) Mc Mc emisja Podobnie, gdy chcemy wzbudzić spoczywające jądro, to musimy użyć fotonu o energii zwiększonej o energię odrzutu jądra: E γ E E + absorpcja Mc Energia odrzutu jest bardzo mała i prawie zawsze jest całkowicie pomijana. Tydzień 10 57

2 Przykład : Emisja γ o energii 41 kev przez 198 Hg Średni czas życia stanu wzbudzonego w 198 Hg: a więc naturalna szerokość linii: Energia odrzutu: T R Poszerzenie dopplerowskie związane z ruchem termicznym: kt = ln Eγ Mc = 0.36 ev (dla T = 93 K) τ = 3 ps Γ = ħ τ = MeV s 3 ps = 5 =.1 10 ev E ( 0.41 MeV) γ = = = 0.46 ev Mc MeV Foton wyemitowany przez jądro 198 Hg praktycznie nie może wzbudzić innego jądra 198 Hg Tydzień 10 58

3 W 1958 roku R. Mössbauer odkrył, że jeśli atom znajduje się w sieci krystalicznej, to emisja (i absorpcja) fotonu przez jądro może zajść bez odrzutu! Pęd fotonu zostaje przejęty przez cały kryształ, co sprawia, że energia odrzutu jest zaniedbywalna. Mössbauer badał przejście γ o energii 19 kev w 191 Ir (wytwarzanym w rozpadzie 191 Os). Naturalna szerokość linii wynosiła Γ = ev W przypadku swobodnych atomów energia odrzutu byłaby: T R ( 0.19 MeV) Eγ = = = ev Mc MeV Jeśli odrzutu nie ma, fotony γ z 191 Ir mogą wzbudzać inne jądra 191 Ir, czyli możliwa jest rezonansowa absorpcja promieniowania γ. Tydzień 10 59

4 Żeby sprawdzić, że zachodzi absorpcja rezonansowa, można zepsuć warunek rezonansu zmieniając energię fotonów przy pomocy efektu Dopplera. Efekt Dopplera: υ E γ = Eγ 1+ c υ Eγ = c E γ Atomy w sieci krystalicznej mają też znacznie mniejsze termiczne poszerzenie dopplerowskie niż atomy swobodne. Aby wyjść poza rezonans, należy przesunąć energię Γ o. 6 Γ 6 10 ev E γ 19 kev υ = = = c υ = 1.4 cm s Za to odkrycie Mössbauer dostał nagrodę Nobla z fizyki w 1961 roku. Tydzień 10 60

5 Zjawisko Mössbauera pozwala mierzyć energię fotonów γ z ogromną dokładnością. Wygodnym i często wykorzystywanym źródłem jest 57 Co/ 57 Fe, emitujący fotony o energii 14.4 kev z naturalną szerokością linii ok ev. Dokładność pomiaru energii: E E γ γ 8 10 ev 10 1 = 14.4 kev Przykład 1 : 57 Fe w polu magnetycznym Stan podstawowy i wzbudzony rozszczepiają się na poziomy o różnej orientacji momentu magnetycznego względem pola zewnętrznego (jądrowy efekt Zeemana). Efekt Mössbauera pozwala to uwidocznić i zmierzyć spiny oraz momenty magnetyczne stanów. Tydzień 10 61

6 Przykład : Badanie hemoglobiny Hemoglobina szczura, 4 K Cząsteczki hemoglobiny zawierają żelazo, można więc je badać metodą Mössbauera. Kształt i położenie linii zależą od otoczenia chemicznego. Utleniona h-a szczura, 77 K Ludzka h-a w CO, 77 K Ludzka h-a w N, 77 K Ludzka h-a w CO, 77 K Tydzień 10 6

7 Przykład 3 : Grawitacyjne przesunięcie do czerwieni (redshift) Zgodnie z Ogólna Teorią Względności, energia fotonu (jego częstość) zmienia się gdy porusza się on wzdłuż linii pola grawitacyjnego. Ich energia maleje, a długość fali rośnie (w kierunku czerwieni), gdy poruszają się w stronę słabszego pola. W jednorodnym polu o przyspieszeniu g, względna zmiana energii dla różnicy wysokości H wynosi: E E γ γ gh = c W polu grawitacyjnym Ziemi, dla H = 0 m: gh c 10 m/s 0 m = = 8 ( 3 10 m/s) Takie przesunięcie udało się zmierzyć przy pomocy efektu Mössbauera ze źródłem 57 Fe. Dokonali tego Pound i Rebka na Uniwersytecie Harvarda w 1960 r. Jest to jeden z najdokładniejszych testów OTW. R.V. Pound, G.A. Rebka Phys. Rev. Lett. 4 (1960) 337 Tydzień 10 63

8 Przemiany promieniotwórcze jąder atomowych Emisja p Emisja p Emisja Rozszczepienie liczba protonów Z Z = 0 Z = 8 ZX Z- Y + p Przemiana β + Z = 50 p n + e + + ν e N = 50 ZX Z-1 Y + p Przemiana β - N = 8 Z = 8 ZX N Z- Y N- + Emisja klastra ( 14 C) ZX N Z-6 Y N C N = 16 ZX N Y + Z Przewidywany obszar nuklidów związanych nuklid trwały β + / WE β - Z = 8 Z = N = 0 N = 8 n p + e - + ν e rozszczepienie p, p N = N = 8 Tydzień 10 liczba neutronów N 64

9 Promieniotwórczość Jądro atomowe może spontanicznie wyrzucić cząstkę : X Bilans energii: Y + A A 4 Z N Z N M X c = M Yc + M 4 c + T He Y + T Energia rozpadu: ( 4 ) Q M c M c M c = T + T X Y He Y Warunek energetyczny na przemianę : Q > 0 Gdy jądro początkowe spoczywa: Emisja p 4 Y p M py = p TY = = = M M M M 4 He 4 A Q = T 1+ T 1+ = T MY A 4 A 4 T ZX N Z- Y N- + Y Y Y jest energią kinetyczną cząstki mierzoną w laboratorium. He T Energie kinetyczne emitowanych cząstek mieszczą się w przedziale od 4 do 10 MeV. Okresy półrozpadu różnią się jednak dramatycznie! Tydzień 10 65

10 Przykład : Dwa skrajne przypadki: Th: Q = 4.08 MeV, T = lat Th: Q = 9.85 MeV, T = s Dwukrotny wzrost energii rozpadu prowadzi do skrócenia okresu półrozpadu o 4 rzędy wielkości! Dramatyczna zależność czasu życia od energii rozpadu została zauważona bardzo wcześnie przez Geigera i Nuttalla (1911). We współczesnym sformułowaniu: 3 90 Th (prawo Geigera Nuttalla) log Z T1 = a + b Q gdzie a i b są stałymi Th Tydzień 10 66

11 Obserwowana zależność (parcjalnego) półokresu rozpadu w zależności od energii rozpadu: Tydzień 10 67

12 Rozważmy potencjał oddziaływania pomiędzy cząstką i jądrem. Na zewnątrz jest to potencjał kulombowski, wewnątrz mamy jamę potencjału dzięki siłom jądrowym. ( ) V r 1 r Zbadajmy energię odpychania elektrostatycznego na przykładzie 3 Th r B Przykład : badamy przemianę: Th Ra + ; = 4.08 MeV Q Energia kulombowska w punkcie zetknięcia jąder końcowych: V C e Z Z MeV 4πε R + R 9. 1 = = 0 1 = 7.5 MeV Dla jakiego promienia energia kulombowska równa się Q? r B e Z Z 88 = = 1.44 fm 4πε Q ( ) rnuc = R1 + R = fm = 9. fm = 6.1 fm (patrz W0/48-49) Tydzień 10 68

13 Cząstka by wydostać się z jądra musi pokonać (przetunelować przez) barierę potencjału. Jest to proces kwantowy, niemożliwy w mechanice klasycznej. Prawdopodobieństwo transmisji cząstki o masie m i energii T przez jednowymiarową, prostokątną barierę o wysokości V (V > T) i grubości d ( elementarne kwanty ): 1 Ptr exp( Kd ), K = m( V T ), Kd 1 ħ Jeśli bariera ma inny kształt, to możemy przedstawić ją jako sumę cienkich barier prostokątnych i wtedy: r B Ptr exp m( V ( r) T ) dr ħ R V r B d T Tydzień 10 69

14 Rozważamy bardzo prosty model emisji cząstki przez jądro o liczbach A i Z. Zakładamy, że jądro końcowe opisane jest prostokątną studnią potencjału o promieniu R, a poza tą studnią mamy tylko potencjał kulombowski. Sprowadzając problem do ruchu jednej cząstki bierzemy jej masę zredukowaną, a w miejsce jej energii kinetycznej energię rozpadu Q. Wtedy prawdopodobieństwo transmisji przez barierę: r B r B G Ptr = e, G = µ ( V ( r) Q ) dr ħ gdzie m M 4( A 4) µ R D = = m + M A D e z Z D V ( r) = VC ( r) =, z =, ZD = Z 4πε r ( A ) 1 3 R = fm 0 u r B e zz = 4πε Q 0 D Tydzień 10 70

15 Podstawiamy i przekształcamy: r B B e z Z D G = µ ( V ( r) Q ) dr = µ Q dr ħ ħ 4πε R R 0 r r = µ ħ 4πε 0 r r R e z ZD 1 1 r B B dr 1 1 = µ Q rb ħ r r R B r B dr Całkę daje się obliczyć: r B R pamiętając że 1 1 R R R π R dr = rb arccos 1 rb r rb rb rb rb rb r B π G = µ Q ħ r B R rb e z ZD ZD = =ħc 4πε Q Q 0 r B π = ħc µ c Q rb R rb R można przedstawić wynik jako: G µ c µ c R ZD = π ZD 8 Q ħc Tydzień 10 71

16 Postulujemy, że stałą rozpadu możemy wyrazić jako: ln λ = = f Ptr = T 1 f e G gdzie f jest częstością prób przejścia cząstki a przez barierę. Czynimy następne grube przybliżenie: f υin R 1 Q R µ Okres półrozpadu w naszym modelu jest zatem: T 1 = ln e G f = ln R c µ c Q e G A zatem: R µ c G logt1 = log ln + c Q ln10 log D T1 a b Q µ c µ c R ZD G = π ZD 8 Q ħc Z + czyli dostaliśmy postać prawa Geigera Nuttalla! Tydzień 10 7

17 Przewidywania modelu dla izotopów toru. Parzyste izotopy toru od masy A=18 do A=3 rozpadają się poprzez emisję. Emisja przez parzyste izotopy toru 3 90 Th Th eksperyment model Wyjaśnienie prawa Geigera Nuttalla, jako skutek tunelowania przez barierę jako pierwszy podał George Gamow już w 198 roku! Był to wielki triumf nowo odkrytej mechaniki kwantowej i jej pierwsze zastosowanie do układu innego niż atom. Gamow, Z. Phys. 51 (198) 04 Tydzień 10 73

18 Współczesne, zaawansowane modele promieniotwórczości także opierają się na tej samej podstawowej idei tunelowania przez barierę potencjału. W taki sam sposób opisuje się też spontaniczną emisję innych cząstek naładowanych przez jądra atomowe, takich jak promieniotwórczość protonowa, czy klastrowa. Dzięki barierze niezwiązana cząstka nie może opuścić jądra natychmiast. ln λ p = = S f P p T 1 tr V(r) 0 r Bardziej realistyczne modele biorą jeszcze pod uwagę czynnik spektroskopowy (S), opisujący prawdopodobieństwo, że emitowana cząstka znajduje się (jest uformowana) w jądrze w odpowiednim stanie. Prosty obraz tunelowania przez barierę jest też stosowany do szacowania czasu życia w przypadku promieniotwórczości dwuprotonowej, choć mechanizm tego zjawiska jest bardziej skomplikowany. Tydzień 10 74

19 Reguły wyboru w przejściach Spin i parzystość cząstki jest 0 +. W procesie emisji musi być zachowany moment pędu a także parzystość (oddziaływania silne!). Jeśli spiny i parzystości stanów początkowego i J π i J π f końcowego są odpowiednio i f i to: Ji J f l J i + J f i f ( ) π = π π = 1 l l orbitalny moment pędu unoszony przez cząstkę (A,Z) i J π i f J π f (A-4,Z-) W omawianym modelu pominęliśmy orbitalny moment pędu (założyliśmy l = 0). Gdy l > 0, do radialnej części potencjału dochodzi jeszcze człon centryfugalny, który powiększa barierę potencjału: ( ) ( ) ( ) V r = V r + V r + ħ N C ( + 1) l l µ r Prawdopodobieństwo tunelowania maleje ze wzrostem l. W przypadku, gdy możliwe są różne wartości liczby l, dominować będzie przemiana z najmniejszą możliwą wartością l. Tydzień 10 75

20 Przykład: Przejścia ze stanów wzbudzonych 16 O Przemiana β 16 N prowadzi do stanów wzbudzonych w 16 O. W szczególności populowane są stany 1 i, z których może być wyemitowana cząstka prowadząc do stanu podstawowego 1 C o spinie i parzystości 0 + Przejście 1 ze stanu 1 (i obserwowane) dla l = 1 jest możliwe N Przejście ze stanu jest jednak wzbronione ze względu na zachowanie parzystości! Jedyna możliwa wartość l to 1 C Przejście to jest faktycznie bardzo silnie stłumione. Udało się je zobserwować, ponieważ wskutek oddziaływań słabych parzystość stanów jądrowych 16 8 O nie jest czysta. Oszacowano, że domieszka parzystości dodatniej do stanu jest rzędu Tydzień 10 76

21 Promieniotwórczość β W wyniku oddziaływań słabych, neutron wewnątrz jądra atomowego (a także neutron swobodny) może zamienić się w proton: X Bilans energii: Y + e + ν (przemiana β ) A A Z N Z + 1 N 1 e M c = M c + m c + T + T + E ν + X Y e Y e M c Y ( ) Posługujemy się tu masami nuklidów, czyli obojętnych atomów! Energia przemiany: Q M c M c T T E ν X β Y = Y + e + Warunek energetyczny na przemianę β : Q β > 0 Energia i pęd dzielone są statystycznie pomiędzy 3 ciała! Widmo energetyczne elektronów (i neutrin) jest zatem ciągłe! Q β Jeśli zaniedbamy energię odrzutu, to jest maksymalną energią kinetyczną elektronu (i całkowitą neutrina). n Przemiana β - n p + e - + ν e e n p + e + ν e rozpad beta neutronu ν e p Tydzień 10 77

22 Wewnątrz jądra atomowego możliwy jest też proces odwrotny, czyli przemiana protonu w neutron: Przemiana β + X Y + e + ν (przemiana β + ) A A + Z N Z 1 N + 1 e Bilans energii: M c = M c + m c + T + T + E ν X Y e Y e p n + e + + ν e Jądro końcowe ma o jeden elektron za dużo M c = M c + m c + T + T + E ν Energia przemiany: X Y e Y e ( ) Q M X c M Yc mec TY Te E ν β + = + + Warunek energetyczny na przemianę β + : Q β + > 0 Czyli: M c M c > m c X Y e Ten pozornie paradoksalny warunek wynika z tego, że zapisujemy bilans używając mas obojętnych atomów. p e + + p n + e + ν e rozpad beta protonu ν e n Tydzień 10 78

23 Proton w jądrze może też pochwycić jeden z elektronów orbitalnych (atomowych) i przemienić się w neutron: Wychwyt e X Bilans energii: + e Y + ν (wychwyt elektronu) A A * Z N Z 1 N + 1 e A Z 1Y N + 1 M c = M c + T + E ν * X Y Y Zaraz po przemianie atom końcowy jest obojętny ale wzbudzony: B n M c M c + B * Y Y n gdzie jest energią wiązania wychwyconego elektronu w atomie końcowym. Wzbudzony atom przechodzi później do stanu podstawowego emitując promieniowanie X. Energia przemiany: ( ) Q M c M c = B + T + E ν EC X Y n Y Q Warunek energetyczny: EC Elektron może być wychwycony z dowolnej powłoki, lecz > najbardziej prawdopodobny jest z wychwyt z powłoki K (wychwyt K). B Przemiana jest dwuciałowa, więc energia neutrina jest ściśle określona! n X e - + p n + ν e e + p n + ν e wychwyt elektronu Tydzień p e ν e n

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 3 Promieniotwórczość naturalna

Elementy Fizyki Jądrowej. Wykład 3 Promieniotwórczość naturalna Elementy Fizyki Jądrowej Wykład 3 Promieniotwórczość naturalna laboratorium Curie troje noblistów 1903 PC, MSC 1911 MSC 1935 FJ, IJC Przemiany jądrowe He X X 4 2 4 2 A Z A Z e _ 1 e X X A Z A Z e 1 e

Bardziej szczegółowo

Rozpad gamma. Przez konwersję wewnętrzną (emisję wirtualnego kwantu gamma, który przekazuje swą energię elektronom z powłoki atomowej)

Rozpad gamma. Przez konwersję wewnętrzną (emisję wirtualnego kwantu gamma, który przekazuje swą energię elektronom z powłoki atomowej) Rozpad gamma Deekscytacja jądra atomowego (przejście ze stanu wzbudzonego o energii do niższego stanu o energii ) może zachodzić dzięki oddziaływaniu elektromagnetycznemu przez tzw. rozpad gamma Przejście

Bardziej szczegółowo

Rozpad alfa. albo od stanów wzbudzonych (np. po rozpadzie beta) są to tzw. długozasięgowe cząstki alfa

Rozpad alfa. albo od stanów wzbudzonych (np. po rozpadzie beta) są to tzw. długozasięgowe cząstki alfa Rozpad alfa Samorzutny rozpad jądra (Z,A) na cząstkę α i jądro (Z-2,A-4) tj. rozpad 2-ciałowy, stąd Widmo cząstek α jest dyskretne bo przejścia zachodzą między określonymi stanami jądra początkowego i

Bardziej szczegółowo

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na

Bardziej szczegółowo

Rozpady promieniotwórcze

Rozpady promieniotwórcze Rozpady promieniotwórcze Przez rozpady promieniotwórcze rozumie się spontaniczne procesy, w których niestabilne jądra atomowe przekształcają się w inne jądra atomowe i emitują specyficzne promieniowanie

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze

Bardziej szczegółowo

Rozpady promieniotwórcze

Rozpady promieniotwórcze Rozpady promieniotwórcze Przez rozpady promieniotwórcze rozumie się spontaniczne procesy, w których niestabilne jądra atomowe przekształcają się w inne jądra atomowe i emitują specyficzne promieniowanie

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 8 Rozszczepienie jąder i fizyka neutronów

Elementy Fizyki Jądrowej. Wykład 8 Rozszczepienie jąder i fizyka neutronów Elementy Fizyki Jądrowej Wykład 8 Rozszczepienie jąder i fizyka neutronów Rozszczepienie lata 30 XX w. poszukiwanie nowych nuklidów n + 238 92U 239 92U + reakcja przez jądro złożone 239 92 U 239 93Np +

Bardziej szczegółowo

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) 1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie

Bardziej szczegółowo

Atomowa budowa materii

Atomowa budowa materii Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól

Bardziej szczegółowo

Jądra dalekie od stabilności

Jądra dalekie od stabilności Jądra dalekie od stabilności 1. Model kroplowy jądra atomowego. Ścieżka stabilności b 3. Granice Świata nuklidów 4. Rozpady z emisją ciężkich cząstek naładowanych a) rozpad a b) rozpad protonowy c) rozpad

Bardziej szczegółowo

Dwie lub więcej cząstek poza zamkniętą powłoką

Dwie lub więcej cząstek poza zamkniętą powłoką Dwie lub więcej cząstek poza zamkniętą powłoką Rozważmy dwa (takie same) nukleony (lub dwie dziury) na orbitalu j poza zamkniętymi powłokami. Te dwie cząstki mogą sprzęgać się do momentu pędu J = j + j,

Bardziej szczegółowo

O egzotycznych nuklidach i ich promieniotwórczości

O egzotycznych nuklidach i ich promieniotwórczości O egzotycznych nuklidach i ich promieniotwórczości Marek Pfützner Instytut Fizyki Doświadczalnej Uniwersytet Warszawski Tydzień Kultury w VIII LO im. Władysława IV, 13 XII 2005 Instytut Radowy w Paryżu

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r.

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. 1 Budowa jądra atomowego Liczba atomowa =Z+N Liczba masowa Liczba neutronów Izotopy Jądra o jednakowej liczbie protonów, różniące się liczbą

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

Oddziaływanie promieniowania jonizującego z materią

Oddziaływanie promieniowania jonizującego z materią Oddziaływanie promieniowania jonizującego z materią Plan Promieniowanie ( particle radiation ) Źródła (szybkich) elektronów Ciężkie cząstki naładowane Promieniowanie elektromagnetyczne (fotony) Neutrony

Bardziej szczegółowo

Poziom nieco zaawansowany Wykład 2

Poziom nieco zaawansowany Wykład 2 W2Z Poziom nieco zaawansowany Wykład 2 Witold Bekas SGGW Promieniotwórczość Henri Becquerel - 1896, Paryż, Sorbona badania nad solami uranu, odkrycie promieniotwórczości Maria Skłodowska-Curie, Piotr Curie

Bardziej szczegółowo

Autorzy: Zbigniew Kąkol, Piotr Morawski

Autorzy: Zbigniew Kąkol, Piotr Morawski Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie

Bardziej szczegółowo

Własności jąder w stanie podstawowym

Własności jąder w stanie podstawowym Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów

Bardziej szczegółowo

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna Model atomu Bohra SPIS TREŚCI: 1. Modele budowy atomu Thomsona, Rutherforda i Bohra 2. Budowa atomu 3. Liczba atomowa a liczba

Bardziej szczegółowo

Seminarium. -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne. Konrad Tudyka

Seminarium. -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne. Konrad Tudyka Seminarium -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne Konrad Tudyka 1 W 1908r. Rutheford zatopił niewielka ilość 86 Rn w szklanym naczyniu o ciękich sciankach (przenikliwych

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Atomy mają moment pędu

Atomy mają moment pędu Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny

Bardziej szczegółowo

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 Budowa jądra atomowego każde jądro atomowe składa się z dwóch rodzajów nukleonów: protonów

Bardziej szczegółowo

Wykład 41 Liczby magiczne. Model powłokowy jąder

Wykład 41 Liczby magiczne. Model powłokowy jąder Wykład 4 Liczby magiczne Model powłokowy jąder Na podstawie modelu kroplowego można prawidłowo ocenić masy, energii wiązania jąder, wyznaczyć energetyczne warunki rozpadu jąder, zbudować jakościową teorie

Bardziej szczegółowo

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów Włodzimierz Wolczyński 40 FIZYKA JĄDROWA A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów O nazwie pierwiastka decyduje liczba porządkowa Z, a więc ilość

Bardziej szczegółowo

Jądra dalekie od stabilności

Jądra dalekie od stabilności Jądra dalekie od stabilności 1. Model kroplowy jądra atomowego. Ścieżka stabilności b 3. Granice Świata nuklidów 4. Rozpady z emisją ciężkich cząstek naładowanych a) rozpad a b) rozpad protonowy c) rozpad

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 15 Janusz Andrzejewski Janusz Andrzejewski 2 Egzamin z fizyki I termin 31 stycznia2014 piątek II termin 13 luty2014 czwartek Oba egzaminy odbywać się będą: sala 301 budynek D1 Janusz Andrzejewski

Bardziej szczegółowo

V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania

V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Słowniczek pojęć fizyki jądrowej

Słowniczek pojęć fizyki jądrowej Słowniczek pojęć fizyki jądrowej atom - najmniejsza ilość pierwiastka jaka może istnieć. Atomy składają się z małego, gęstego jądra, zbudowanego z protonów i neutronów (nazywanych inaczej nukleonami),

Bardziej szczegółowo

Fizyka jądrowa. Podstawowe pojęcia. Izotopy. budowa jądra atomowego przemiany promieniotwórcze reakcje jądrowe. jądra atomowe (nuklidy) dzielimy na:

Fizyka jądrowa. Podstawowe pojęcia. Izotopy. budowa jądra atomowego przemiany promieniotwórcze reakcje jądrowe. jądra atomowe (nuklidy) dzielimy na: Fizyka jądrowa budowa jądra atomowego przemiany promieniotwórcze reakcje jądrowe Podstawowe pojęcia jądra atomowe (nuklidy) dzielimy na: trwałe (stabilne) nietrwałe (promieniotwórcze) jądro składa się

Bardziej szczegółowo

Reakcje rozpadu jądra atomowego

Reakcje rozpadu jądra atomowego Reakcje rozpadu jądra atomowego O P R A C O W A N I E : P A W E Ł Z A B O R O W S K I K O N S U L T A C J A M E R Y T O R Y C Z N A : M A Ł G O R Z A T A L E C H Trwałość izotopów Czynnikiem decydującym

Bardziej szczegółowo

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość OCHRONA RADIOLOGICZNA PACJENTA Promieniotwórczość PROMIENIOTWÓRCZOŚĆ (radioaktywność) zjawisko samorzutnego rozpadu jąder atomowych niektórych izotopów, któremu towarzyszy wysyłanie promieniowania α, β,

Bardziej szczegółowo

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α Zadanie: 1 (2 pkt) Określ liczbę atomową pierwiastka powstającego w wyniku rozpadów promieniotwórczych izotopu radu 223 88Ra, w czasie których emitowane są 4 cząstki α i 2 cząstki β. Podaj symbol tego

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 3 Ogólne własności jąder atomowych (masy ładunki, izotopy, izobary, izotony izomery). 2 Liczba atomowa i masowa Liczba nukleonów (protonów

Bardziej szczegółowo

Theory Polish (Poland)

Theory Polish (Poland) Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU UWAGA: Tekst poniżej,

Bardziej szczegółowo

WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)

WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU) WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:

Bardziej szczegółowo

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się

Bardziej szczegółowo

Pψ ψ ψ. r p r p. r r, θ π θ, ϕ π + ϕ. , 1 l m

Pψ ψ ψ. r p r p. r r, θ π θ, ϕ π + ϕ. , 1 l m Parzystość Operacja inwersji przestrzennej (parzystości) zmienia znak każdego prawdziwego (polarnego) wektora: P r r p P p ale znak pseudowektora (wektora osiowego) się nie zmienia, np: Jeśli funkcja falowa

Bardziej szczegółowo

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy

Bardziej szczegółowo

Podstawy Fizyki Jądrowej

Podstawy Fizyki Jądrowej Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej

Bardziej szczegółowo

I ,11-1, 1, C, , 1, C

I ,11-1, 1, C, , 1, C Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 8 lutego 07 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Model atomu. Promieniowanie atomów 8.II.07 EJ - Wykład / r

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św. Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą

Bardziej szczegółowo

Spektroskopia. mössbauerowska

Spektroskopia. mössbauerowska Spektroskopia Spektroskopia Mӧssbauerowska mössbauerowska Adrianna Rokosa Maria Dawiec 1. Zarys historyczny 2. Podstawy teoretyczne 3. Efekt Mössbauera 4. Spektroskopia mössbauerowska 5. Zastosowanie w

Bardziej szczegółowo

Wykład Budowa atomu 2

Wykład Budowa atomu 2 Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

Model uogólniony jądra atomowego

Model uogólniony jądra atomowego Model uogólniony jądra atomowego Jądro traktowane jako chmura nukleonów krążąca w średnim potencjale Średni potencjał może być sferyczny ale także trwale zdeformowany lub może zależeć od czasu (wibracje)

Bardziej szczegółowo

Podstawy fizyki subatomowej. 3 kwietnia 2019 r.

Podstawy fizyki subatomowej. 3 kwietnia 2019 r. Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

W2. Struktura jądra atomowego

W2. Struktura jądra atomowego W2. Struktura jądra atomowego Doświadczenie Rutherforda - badanie odchylania wiązki cząstek alfa w cienkiej folii metalicznej Hans Geiger, Ernest Marsden, Ernest Rutherford ( 1911r.) detektor pierwiastek

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

Fizyka cząstek elementarnych i oddziaływań podstawowych

Fizyka cząstek elementarnych i oddziaływań podstawowych Fizyka cząstek elementarnych i oddziaływań podstawowych Wykład 1 Wstęp Jerzy Kraśkiewicz Krótka historia Odkrycie promieniotwórczości 1895 Roentgen odkrycie promieni X 1896 Becquerel promieniotwórczość

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa

Bardziej szczegółowo

W-28 (Jaroszewicz) 36 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Fizyka jądrowa cz. 1. budowa jądra atomowego przemiany promieniotwórcze

W-28 (Jaroszewicz) 36 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Fizyka jądrowa cz. 1. budowa jądra atomowego przemiany promieniotwórcze W-28 (Jaroszewicz) 36 slajdy Na podstawie prezentacji prof. J. Rutkowskiego Fizyka jądrowa cz. 1 budowa jądra atomowego przemiany promieniotwórcze 3/35-W28 Podstawowe pojęcia jądra atomowe (nuklidy) dzielimy

Bardziej szczegółowo

Doświadczenie Rutherforda. Budowa jądra atomowego.

Doświadczenie Rutherforda. Budowa jądra atomowego. Doświadczenie Rutherforda. Budowa jądra atomowego. Rozwój poglądów na budowę atomu Model atomu Thomsona - zwany także modelem "'ciasta z rodzynkami". Został zaproponowany przez brytyjskiego fizyka J. J.

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Wybrane zagadnienia fizyki subatomowej

Wybrane zagadnienia fizyki subatomowej Wybrane zagadnienia fizyki subatomowej Zenon Janas 6 stycznia 015 r. Fizyka subatomowa Fizyka subatomowa zajmuje się badaniem własności i oddziaływań obiektów o rozmiarach mniejszych niż rozmiary atomów.

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Fizyka jądrowa cz. 2. Reakcje jądrowe. Teraz stałem się Śmiercią, niszczycielem światów. Robert Oppenheimer

Fizyka jądrowa cz. 2. Reakcje jądrowe. Teraz stałem się Śmiercią, niszczycielem światów. Robert Oppenheimer Barcelona, Espania, May 204 W-29 (Jaroszewicz) 24 slajdy Na podstawie prezentacji prof. J. Rutkowskiego Reakcje jądrowe Fizyka jądrowa cz. 2 Teraz stałem się Śmiercią, niszczycielem światów Robert Oppenheimer

Bardziej szczegółowo

Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów.

Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów. Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów. prof. dr hab. Marta Kicińska-Habior Wydział Fizyki UW Zakład Fizyki Jądra Atomowego e-mail: Marta.Kicinska-Habior@fuw.edu.pl

Bardziej szczegółowo

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe

Bardziej szczegółowo

Teoria Fermiego rozpadu beta (1933)

Teoria Fermiego rozpadu beta (1933) Teoria Fermiego rozpadu beta (1933) Fermi zaproponował teorię, która wyjaśniała wszystkie znane fakty pozwoliła na klasyfikację rozpadów beta, która do tej pory ma zastosowanie Rozpad neutronu wg teorii

Bardziej szczegółowo

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2 Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie

Bardziej szczegółowo

Fizyka jądrowa. Podstawowe pojęcia

Fizyka jądrowa. Podstawowe pojęcia Fizyka jądrowa budowa jądra atomowego przemiany promieniotwórcze reakcje jądrowe Podstawowe pojęcia jądra atomowe (nuklidy) dzielimy na: trwałe (stabilne) nietrwałe (promieniotwórcze) jądro składa się

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

Jądra o wysokich energiach wzbudzenia

Jądra o wysokich energiach wzbudzenia Jądra o wysokich energiach wzbudzenia 1. Utworzenie i rozpad jądra złożonego a) model statystyczny 2. Gigantyczny rezonans dipolowy (GDR) a) w jądrach w stanie podstawowym b) w jądrach w stanie wzbudzonym

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 3 14 marca 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Henri Becquerel 1896 Promieniotwórczość 14.III.2017 EJ

Bardziej szczegółowo

Promieniotwórczość naturalna. Jądro atomu i jego budowa.

Promieniotwórczość naturalna. Jądro atomu i jego budowa. Promieniotwórczość naturalna. Jądro atomu i jego budowa. Doświadczenie Rutherforda (1909). Polegało na bombardowaniu złotej folii strumieniem cząstek alfa (jąder helu) i obserwacji odchyleń ich toru ruchu.

Bardziej szczegółowo

Matura z fizyki i astronomii 2012

Matura z fizyki i astronomii 2012 Matura z fizyki i astronomii 2012 Zadania przygotowawcze do matury na poziomie podstawowym 7 maja 2012 Arkusz A1 Czas rozwiązywania: 120 minut Liczba punktów do uzyskania: 50 Zadanie 1 (1 pkt) Dodatni

Bardziej szczegółowo

Energetyka jądrowa. Energetyka jądrowa

Energetyka jądrowa. Energetyka jądrowa Energetyka jądrowa Zasada zachowania energii i E=mc 2 Budowa jąder atomowych i ich energia wiązania Synteza: z gwiazd na Ziemię... Neutrony i rozszczepienie jąder atomowych Reaktory: klasyczne i akceleratorowe

Bardziej szczegółowo

Wyznaczanie współczynnika rozpraszania zwrotnego. promieniowania β.

Wyznaczanie współczynnika rozpraszania zwrotnego. promieniowania β. Wyznaczanie współczynnika rozpraszania otnego. Zagadnienia promieniowania β. 1. Promieniotwórczość β.. Oddziaływanie cząstek β z materią (w tym rozproszenie otne w wyniku zderzeń sprężystych). 3. Znajomość

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.2.

Wykład 21: Studnie i bariery cz.2. Wykład 21: Studnie i bariery cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Przykłady tunelowania: rozpad alfa, synteza

Bardziej szczegółowo

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Fizyka jądrowa Struktura jądra (stan podstawowy) Oznaczenia, terminologia Promienie jądrowe i kształt jąder Jądra stabilne; warunki stabilności; energia wiązania Jądrowe momenty magnetyczne Modele struktury

Bardziej szczegółowo

Wykłady z Chemii Ogólnej i Biochemii. Dr Sławomir Lis

Wykłady z Chemii Ogólnej i Biochemii. Dr Sławomir Lis Wykłady z Chemii Ogólnej i Biochemii Dr Sławomir Lis Chemia, jako nauka zajmuje się otrzymywaniem i wszechstronnym badaniem własności, struktury oraz reakcji chemicznych pierwiastków i ich połączeń. Chemia

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego -  - zadania z fizyki, wzory fizyczne, fizyka matura 14. Fizyka jądrowa zadania z arkusza I 14.10 14.1 14.2 14.11 14.3 14.12 14.4 14.5 14.6 14.13 14.7 14.8 14.14 14.9 14. Fizyka jądrowa - 1 - 14.15 14.23 14.16 14.17 14.24 14.18 14.25 14.19 14.26 14.27 14.20

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek

Bardziej szczegółowo

Jądro atomowe A 1/ cm r j. promienie jąder r j. = r o. promienie atomowe r at cm. masa jądra m j.

Jądro atomowe A 1/ cm r j. promienie jąder r j. = r o. promienie atomowe r at cm. masa jądra m j. Jądro atomowe promienie jąder r j 10-13 - 10-12 cm r j = r o A 1/3 promienie atomowe r at 10-8 cm masa jądra m j 10-24 - 10-22 g gęstość materii jądrowej 10 14 g cm -3 1 cm 3 materii jądrowej waŝyłby 130

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Reakcje jądrowe dr inż. Romuald Kędzierski

Reakcje jądrowe dr inż. Romuald Kędzierski Reakcje jądrowe dr inż. Romuald Kędzierski Wybuch bomby Ivy Mike (fot. National Nuclear Security Administration/Nevada Site Office, domena publiczna) Przemiany jądrowe 1. Spontaniczne (niewymuszone) związane

Bardziej szczegółowo

Zasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest:

Zasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Zasada nieoznaczoności Heisenberga Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Pewnych wielkości fizycznych nie moŝna zmierzyć równocześnie z dowolną dokładnością. Iloczyn

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

Liczby kwantowe elektronu w atomie wodoru

Liczby kwantowe elektronu w atomie wodoru Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

1.6. Ruch po okręgu. ω =

1.6. Ruch po okręgu. ω = 1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane

Bardziej szczegółowo