Rezonansowe tworzenie molekuł mionowych helu i wodoru oraz ich rotacyjna deekscytacja
|
|
- Robert Borowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 zonanow twozn molkuł monowych hlu wodou oaz ch otacyjna dkcytacja Wlhlm Czaplńk Katda Zatoowań Fzyk ądowj w wpółpacy z N.Popovm W.Kamńkm
2 Itnj 6 odzajów molkuł monowych hlu wodou: 4 H µ p Hµ d Hµ t 4 H µ p Hµ d Hµ t 4 w kóc: Hµ h H H, 4 H h p, d, t
3 Układ tzch cał µ H ąda nuchom - zmnamy :. Aymptotyka : h H µ hd lczby kwantow atomu monu N, l, m E N Ztot N mµ y µ y Stany najnżj lżąc: µy 7.6 V.8 kv Z tot - jądo ltu,, - ozn. σ,, - ozn. pσ E -9 µy E -.5 µy
4 . Aymptotyka : a H h µ σ b hµ H pσ Enga monu dla dowolngo - tm molkulany E E N Z N tot E n Z n E [µy] E Hµ -4 E hµ - E Lµ -.5 E Lµ -9 µy [µu] 4
5 5 W op pzyblżonym układu - tylko dwa tany σ pσ:.,,, M V M E V ad - b. komplkowana potać V,,, p p µ σ σ µ σ σ χ χ ψ Φ Φ unkcj alow monu pzy nuchomych jądach σ pσ, układ ównań na unkcj jąd,, χ ] [ " ] [ " MV MV k MV MV k χ χ χ χ χ χ M - maa zdukowana jąd
6 V pozom kwaztacjonany pσ hµ hµ H H E kn - nga zonanowa σ zonan Fhbacha Hµ h ozpazan latyczn Hµ h Molkuły monow ą zonanam Fhbacha Hµ h σ Hµ h pσ τ ~ - Hµ h σ 6
7 Pzykład 4 Hµ d Hµ d 7
8 Stany otacyjno-wbacyjn molkuł ng wązana V pzykład dla molkuły H µ d V pσ V pσ V pσ
9 Enga wązana wzytkch molkuł V,ν Hµp Hµd Hµt 4 Hµp 4 Hµd 4 Hµt, ,., ,
10 ozpazan hµ H - n powadz do zadln tanu tacjonango V pσ n ma komu pzkazać ng wązana E? E E kn hµ H pσ ozwązan poblmu zdzn z ATOMEM hlu: * hµ H [ H h, nlm] µ uno E
11 Gaczna lutacja powtawana molkuł H µh nlm a hµ /a H. nlm hµ H * nlm pzjśc dpolow k H µh [H µh nlm]
12 Totyczny op pocu powtawana molkuły hµ H [ Hµ h, ] Pzkój czynny na akcję: Złota guła Fmgo -zaadaptowana do poblmu jdnotk atomow dσ π V M Ψ V tan. Ψ δ E E d k π V tan. d Ψ d, φ,, body, Φ, d - momnt dpolowy układu H -µ-h k H µ h Φ body,, χ, Φ pσ, -body µ pzyblżn adabatyczn H µ h
13 Obazy gaczn gętośc pawdopodobńtwa Tomaz Noga, paca nżynka 9. Φ µ pσ, Lµ H - po lwj. µau.5 µau µau H hµ. µau.5 µau.5 µau
14 po pzkztałcnach: σ 64π V k L d L L L kęt obtalny zdzających ę całkowty kęt obtalny molkuły hµ L H Q czynnk lktonowy zalży od początkowgo tanu atomu hlu d L µ a χ L d a χ χ L Φ p σ Φ µ χ p σ χ χ L - opuj uch jąd w molkul Hµ h - opuj ozpazan latyczn hµ a, a - tał zalżn od ma kładnków molkuły H d Dla jdyn możlwych tanów otacyjnych,, : σ σ 64π V k 64π V k d d Q d σ Q 64π V k d d Q 4
15 Funkcja adalna χ L opuj ozpazan latyczn hµ H χ" L pσ [ k MV ] χ L L pµ H tµ H dµ H pµ 4 H tµ 4 H dµ 4 H zonan dla L.Gonowk, W.Czaplńk, N.Popov Acta Phy. Polon. A ε 5 V ε 7.58 V χ L Funkcj muzą mć dużą ampltudę w otocznu ng zonanowj, 5
16 4 ozpazan latyczn pµ H dla al L V pσ au χ L ε 7.58 V au -5. 6
17 4 ozpazan latyczn pµ H dla al L V pσ au χ L ε 5 V au -5. 7
18 L pojawa ę pzy powtawanu molkuły σ 64π d d Q V k tutaj dz unkcja χ L d 4 Hµp µ a χ χ L d a χ χ L Φ pσ Φ - w tan otacyjnym µ pσ d.8.8 au.6 d obza ng popawn zbadany do tj poy d ε V.4.. Znaczący wzot pzkoju czynngo na twozn molkuły w otocznu ng zonanowj podobn dla wzytkch molkuł w tanach, 8
19 Wyk z pacy L.I.Ponomav, M.I.Fajman Zh.Exp.To.Fz
20 Funkcja adalna χ najwękzj molkuły monowj 4 Hµt w tan ocylacyjno-otacyjnym, ν nga wązana. V..5 χ. -.5 Pzyblżn dpolow za mało dokładn w potncjal: V Z c H µ mol c H, µ, h c - tzba uwzględnć człony kwadupolow oktupolow paca w toku µau <> 5 µau / H
21 Pzjśca otacyjn w wynku konwj lktonowj na pzykładz molkuły H µd [ H µ d, nlm] H µ d nlm - k H µd [ H µd nlm]
22 Matmatyczny op dkcytacj otacyjnj molkuły,,,, mol φ Φ Ψ ˆ ˆ ˆ L L kl L lm nl k P Z L Y Z C δ L φ φ unkcj kulombowk Ψ Ψ M M k d E E d d, π δ π λ zybkość dkcytacj - po pzkztałcnach:, 4 L Lnl Z Z L l L d k λ gdz, d Z Z Z Z nl kl Lnl całka lczona numyczn H d µ
23 Szybkośc pzjśca w układz [ H µd nl] - tanton at / l n
24 Szybkośc pzjść uśdnon po l avag tanton at / 9 dcay poc: H µd Hµ d 9 λ dcay pncpal quantum numb 8 4
25 Dzękuję za uwagę 5
Rezonanse w deekscytacji molekuł mionowych i rozpraszanie elastyczne atomów mionowych helu. Wilhelm Czapliński Katedra Zastosowań Fizyki Jądrowej
ezonanse w deekscytacj moekuł monowych ozpaszane eastyczne atomów monowych heu Whem Czapńsk Kateda Zastosowań Fzyk Jądowej . ezonanse w deekscytacj moekuł monowych µ He ++ h ++ Heµ h J ν h p d t otacyjna
Podsumowanie W2: V V c + V nc. Przybliżenie Pola Centralnego: H = H free +V = H 0 +V nc
Podsumowan W: Pzyblżn Pola Cntalngo: H H f +V H 0 +V nc V K Z + K > j V V c + V nc j H 0 h E E nl pozomy ng. Σ E nl (+ popawk) koljność zapłnana powłok lktonowych mpyczna guła Madlunga: nga gdy n+l Wojcch
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Podsumowanie W3: χ A singlet. χ S tryplet. 1s,nl. Hel (bez spinu): H 0 = H 1 +H 2 H. diagonalizacja H daje: E = J±K U ( u + u ) E= E n +J±K
Poduowan W: H (bz pnu): H Z Z K K + H 0 H +H H w H o, dg.wynna ta aa n. wł. do tanów wł. u ϕ () ϕ (), u ϕ () ϕ () dagonazaa H da: E J±K U ( u + u ) E E n +J±K,n oa zaady Paugo (t podt. H: tyko U ) ab U
3. Siła bezwładności występująca podczas ruchu ciała w układzie obracającym się siła Coriolisa
3. Sła bezwładnośc występująca podczas uchu cała w układze obacającym sę sła Coolsa ω ω ω v a co wdz obsewato w układze necjalnym co wdz obsewato w układze nenecjalnym tajemncze pzyspeszene: to właśne
Opis kwantowy cząsteczki jest bardziej skomplikowany niż atomu. Hamiltonian przy zaniedbaniu oddziaływań związanych ze spinem ma następującą postać:
Cząsteczki. Kwantowy opis stanów enegetycznych cząsteczki. Funkcje falowe i enegia ektonów 3. Ruchy jąde oscylacje i otacje 4. Wzbudzenia cząsteczek Opis kwantowy cząsteczki jest badziej skomplikowany
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,
Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
TEORIA GRUP - ZASTOSOWANIA
TOIA GUP - ZASTOSOWANIA Problem oblicania całek Ψdτ Aby ta całka była różna od era to Ψ msi się transformować jak rereentacja ełnosymetrycna lb msi awierać składową ełnosymetrycną. Ψ * Ψ d τ Aby ta całka
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
Oddziaływanie atomu z kwantowym polem E-M: C.D.
Oddziaływanie atomu z kwantowym polem E-M: C.D. 1 atom jakoźródło 1 fotonu. Emisja spontaniczna wg. złotej reguły Fermiego. Absorpcja i emisja kolektywna ˆ E( x,t)=i λ Powtórzenie d 3 ω k k 2ǫ(2π) 3 e
T = Z t T t T t T t T t T : Z N (s i ) n i=1 n n S S = {(s i ) n i=1 N n : s j + j s k + k ( n), n N}. 1 j k n (s 1, s 2,..., s n ) s 1 s 2... s n m = s 1 s 2... s n m s i m i = 1,..., n S m S m = {(s
Procedura wymiarowania mimośrodowo ściskanego słupa żelbetowego wg PN-EN-1992:2008
Poua wymiaowaia mimośoowo śikago łupa żlbtowgo wg P-E-99:8. Utalamy zy łup jt mukły zy kępy a) wyzazamy ługość obliziową i mukłość łupa (5.8.3.) 3 bh I I i (jżli watość ϕ i jt zaa, moża pzyjąć,7) +,ϕ S
Zespół Szkół Technicznych. Badanie wyświetlaczy LCD
Zespół Szkół Technicznych Badanie wyświetlaczy LCD WYŚWIETLACZE LCD CZĘSC TEORETYCZNA ZALETY: ) mały pobór mocy, 2) ekonomiczność pod względem zużycia energii (pobór prądu przy 5V mniejszy niż 2mA), 3)
EXAFS lokalna sonda strukturalna. Wg. Agnieszka Witkowska i J. Rybicki
EXAFS lokalna sonda strukturalna Wg. Agneszka Wtkowska J. Rybck EXAFS trochę hstor EXAFS - Extended X-ray Absorpton Fne Structure - odkryce: Frcke 190, Hertz 190; - zależność od temperatury: Hanawelt 1931;
KOMPUTEROWE SYMULACJE CIECZY
KOMPUTEROWE SYMULACJE CIECZY Najwcześnejsze eksperymenty (ruchy Browna) Współczesne metody (rozpraszane neutronów) Teoretyczne modele ceczy Struktura ceczy dynamka cząsteczek Symulacje komputerowe 1 Ponad
Dyrektor oraz pracownicy Miejsko - Gminnego Ośrodka Kultury w Kowalewie Pomorskim
Wszystkim Nauczycielom i pracownikom oświaty z okazji Dnia Edukacji Narodowej moc najserdeczniejszych życzeń, spełnienia najskrytszych marzeń oraz byście mogli w pełni realizować swoje plany życiowe i
Tryb Matematyczny w L A TEX-u
Tryb Matematyczny w L A TEX-u Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 2 Tekst w trybie matematycznym Ściąga z symboli 3 Jak nie pisać pracy magisterskiej
Atom ze spinem i jądrem
Atom ze spinem i jądrem Powtórzenie E 3s 2s 3p 2p 3d Ruch w polu ekranowym znosi degenracje ze wzgledu na l 1s Li l Powtórzenie 5 2 P 3/2 F=I+J 5P F= I-J 5 2 P 1/2 struktura subtelna struktura nadsubtelna
Podstawy fizyki subatomowej
Podstawy fizyki subatomowej Wykład 6 Zenon Janas 11 kwietnia 018. Współzędne sfeyczne położenie punktu: (, θ, ϕ) Z sin θ ( 0, ) θ ( 0, π ) ϕ ( 0, π ) cosθθ X ϕ θ Y (, θ, ϕ) ( x, y, z) x sinθcosϕ y sinθsinϕ
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz
Johann Wolfgang Goethe Def.
"Maemac ą ja Facuz: coolwe m ę powe od azu pzeładają o a wój wła jęz wówcza aje ę o czmś zupełe m." Joha Wola Goehe Weźm : m m Jeżel zdeujem ucje pomoccze j : j dla j = m o = m dze = Czl wacz pzeaalzowad
podsumowanie (E) E l Eds 0 V jds
e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego Jan Królikowski Fizyka IBC 1 Przekrój czynny Jan Królikowski Fizyka IBC Zderzenia Oddziaływania dwóch (lub więcej)
O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego
O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego Jan Ligęza Instytut Matematyki Wisła Letnia Szkoła Instytutu Matematyki wrzesień 2010 r. [1] S. Łojasiewicz, J. Wloka, Z. Zieleżny; Über eine
Elektrostatyka. + (proton) - (elektron)
lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością
d dz d dy e r d dx ψ = ψ(r, Θ, ϕ) = R n (r) Y l,m (Θ,ϕ) = ψ n,l,m E n 2 n NAJPROSTSZA CZĄSTECZKA - MOLEKUŁA H 2 Przypomnienie: atom wodoru
NAJPROSTSZA CZĄSTECZKA - MOLEKUŁA H Przomnienie: atom wodoru m d d d d d dz e r Ψ r EΨ r rz rzejściu do wółrzędnch fercznch r, Θ, ϕ ψ ψr, Θ, ϕ R n r Y l,m Θ,ϕ ψ n,l,m liczb kwantowe: n, l, m... l 0,...,n-,
Funkcje i charakterystyki zmiennych losowych
Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych
Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe
Pzygotowanie do Egzaminu Potwiedzającego Kwalifikacje Zawodowe Powtózenie mateiału Opacował: mg inż. Macin Wieczoek Jednostki podstawowe i uzupełniające układu SI. Jednostki podstawowe Wielkość fizyczna
Mechanika kwantowa. Mechanika kwantowa. dx dy dz. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Równanie Schrödingera. zasada zachowania energii
Mecnik kwntow Jk opisć tom wodou? Jk opisć inne cąstecki? Mecnik kwntow Równnie Scödinge Ĥ E ψ H ˆψ = Eψ opeto óżnickow Hmilton enegi funkcj flow d d d + + m d d d opeto enegii kinetcn enegi kinetcn elektonu
29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste
9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea
STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ
I. Metoda Klasyczna. Podstawy Elektrotechniki - Stany nieustalone. Zadanie k.1 Wyznaczyć prąd i w na wyłączniku. R RI E
Podsawy lkohnk - Sany nsalon. Moda Klasyzna Zadan k. Wyznazyć pąd w na wyłąznk. w? kładay ównana na podsaw sha. ównan haakysyzn: w d d w w d d d d d d p p p w Zadan k. Znalźć aką hwlę zas x aby spłnony
Nadawanie uprawnieo i logowanie
Nadawanie uprawnieo i logowanie Rejestracja Każdy kierownik jednostki posiada wcześniej założone konto konta zakładane są przez pracownika Działu Informacji Naukowej BG osoba odpowiedzialna: Zofia Kukurowska,
Symbole Numer Nazwa Opis Znaczenie Wygląd. Latin small "f" with hook (function, florin) Greek capital letter "alpha"
Symbole Numer Nazwa Opis Znaczenie Wygląd ƒ Litery greckie ƒ Latin small "f" with hook (function, florin) Łacińskie małe "f" z "haczykiem" (funkcja, floren) Α Α "alpha" Grecka wielka litera "alfa" Α Β
N j=1 (η M η j ) Û Ö η 1... η N Ö
Ù ÔØ Ð ØÝ ÌÓÔÓÐÓ Ð ØÛ Ø Ñ ÖÑ ÓÒ ÖÓÑ Ù Ò Ô ØÖ Ð ÔÖÓ ØÓÖ Ý ÃÖÞÝ ÞØÓ Ë ÙØ Ò ÖÑ ÒÝ ÆÁ Ñ Å Û Þ ÍÒ Ú Ö ØÝ ÈÓÞÒ ÈÓÐ Ò ÓÐÐ ÓÖ Ø ÓÒ Û Ø Ò Ö Ê ÑÓ Ð Ò Ã ÖÐ Â Ò Ò Ä ÌÌÁ ¾¼½ ½» ¾ ÁÒØÖÓ ÙØ ÓÒ ÌÓÔÓÐÓ Ð ÒÓØ Ö Ð Ò Ò Ø
Przejścia międzypasmowe
Pzjścia iędzypasow Funcja diltyczna Pzjścia iędzypasow związan są z polayzacją cuy ltonowj wwnątz dzni atoowyc - są odpowidzialn za część funcji diltycznj ε Wóćy do foalizu funcji diltycznj: ε las N (
Fizyka, technologia oraz modelowanie wzrostu kryształów
Fizyka, technologia oraz modelowanie wzrotu kryztałów Staniław Krukowki i Michał Lezczyńki Intytut Wyokich Ciśnień PAN 01-14 Warzawa, ul Sokołowka 9/37 tel: 88 80 44 e-mail: tach@unipre.waw.pl, mike@unipre.waw.pl
1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.
Literatura P. Billingsley, Miara i prawdopodobieństwo, PWN, Warszawa 1997, P. R. Halmos, Measure theory, Springer-Verlag, 1994, W, Kołodziej, naliza matematyczna, PWN, Warszawa 1978, S. Łojasiewicz, Wstęp
ć ć ć Ś ć Ż
Ę ć ć ć Ś ć Ż Ę Ś ŚĆ Ś ć ć ć Ś ć ć ć ć ć ć Ś Ć ć ć ć ć ć ć ć ć ć ć ć ć Ś ć Ś Ż Ś Ę ć ć Ż ŚĆ ć ć ć ć ć Ż ć ć ć ć ć ć ć ź ć Ż ć ć ć ć ź ć ć ć ć ć ć ć Ć ć ć Ę ć ź ć ć ć ć ć ć ć Ę ź Ę ć ć ć ć ć ć ć ć ć ć ć
= 2 42EI 41EI EI 2 P=15 M=10 M=10 3EI. q=5. Pret s-p. Pret s-p. Pret s-p. Pret s-p. Pret s-l.
Dane wyjściowe do obliczeń kf=0 ks=20 3 EI 2 2EI EI P=5 M=0 3EI M=0 q=5 EI 5 6 8 2 Dobór układu podstawowego metody przemieszczeń n = 2 3 Pret s-p 2 Pret s-p Pret s-p Pret s-p Pret s-l Pret p-s 5 6 Wyznaczenie
RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w
RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej 1 Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126
Problem Dirichleta, proces Wienera Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 28 maja, 2012 Funkcje harmoniczne Niech będzie operatorem Laplace a w
Ś Ń ź Ś ź Ś Ś Ś Ś Ś Ś Ś Ą Ś Ż ż ż Ż ć ć ź ź ÓĆ ć Ż Ą ć Ż ż ć Ą Ł Ś Ń ć Ś Ą Ą ż Ż Ą ź Ą ź Ą ż Ś Ń Ł Ś Ś Ó Ą ż ż Ś Ń Ł Ś ż ź ź Ą ć ż ż ć ć ż ć ż Ą ż Ł ż ć ż ż Ż ż ż ż ć Ąć ż ż ż Ż Ż ż ż ć ż ć ż ż ż Ż ż ż
JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:
do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II
1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność
Prognozowalne kryterium całkowalności według A. N. Shiryaeva i A. S. Cherny ego Joanna Karłowska-Pik. Historia
1 Prognozowalne kryterium całkowalności według A. N. Shiryaeva i A. S. Cherny ego Joanna Karłowska-Pik Całka stochastyczna ( t ) H s dx s = H X. t Historia K. Itô (1944) konstrukcja całki stochastycznej
Przejścia optyczne w cząsteczkach
-4-8 Pzejścia optycze w cząsteczkac Pzybliżeie Boa Oppeeimea acek.szczytko@fuw.edu.pl ttp://www.fuw.edu.pl/~szczytko/t ttp://www.sciececatoosplus.com/ Podziękowaia za pomoc w pzygotowaiu zajęć: Pof. d
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
( Shibata and Uchida 1986)
10 40 (http://home.hiroshima-u.ac.jp/hasc/news/3c279/index.html, Shibata and Uchida 1986) aaacs3ichve9txtbeb0ukdgocsy0kwiswja0swzrgg0vuireaqm2sa6x7s4lofm+dle2bcf+ah+agipifkjp8w9o+amupe0alnkr0ldw9mwupxcyj82+3zn35s2efbporjivx4wh4xmph2uez59mpn02lzt+xo+dtmtlmh24qbrtmbf0hv/wlkncur1g0vqsv25z7fc6v9wvuewe/qbad+woz+75zq5jmwpxqe4vrdskhhrypcqttqgqpepghoxaaajc1gefovqr1w+ad5ezuz+qqhvcbctdzq7arwywquq1ekvfblhaki+icl7offabhqss5m7oa7ugb0paq2mfzwxyir3ja0ccuwm7aggipsinzwulwxa7qjko0fbaihs4nya3ps5am07zejq3hu8pn8dxfm59vuqvfmo3i7wsven72cdudbgybe4dvdj4/v+wh13rpz+sf3pwenry6twb9zc90vpya3734li/sbw+l8zzkf+e/898zreywo/+sntvux5cwfya+1fojwb1halgoqi+laysdn9fhmbpjb3ge5dohdaoqjx0/urf6dv9mn4zdcmywonsy2zimag/luhdavznne4=
Wyznaczenie współczynników q1=1,0. Wyznaczyć częstości drgań własnych oraz amplitudy drgań wymuszonych dla następującej belki:
Wyznaczyć częośc dgań włanych oaz aludy dgań wyuzonych dla naęującej bel: 4. Sfoułowane zez wółczynn acezy zywnośc. a dgana włane Dane: N 5 g 8 N Hz π 88,496 ad/, J Soeń wobody dynacznej SSD Uład odawowy
α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,
Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -
Naprężenia styczne i kąty obrotu
Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia
POLITECHNIKA LUBELSKA KARTA MODUŁU (SYLABUS)
STOPIEŃ STUDIÓW: RODZAJ STUDIÓW: KIERUNEK STUDIÓW: KARTA MODUŁU (SYLABUS) Studia I stopnia (inżynierskie) studia stacjonarne MECHATRONIKA (MT) PRZEDMIOT: ROK STUDIÓW: SEMESTR: RODZAJ ZAJĘĆ I LICZBA GODZIN:
Kolokwium z mechaniki gruntów
Zestaw 1 Zadanie 1. (6 pkt.) Narysować wykres i obliczyć wypadkowe parcia czynnego wywieranego na idealnie gładką i sztywną ściankę. 30 kpa γ=17,5 kn/m 3 Zadanie 2. (6 pkt.) Obliczyć ile wynosi obciążenie
Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki.
Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.
3. Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II - Mówimy, że i) ciąg miar probabilistycznych µ n zbiega słabo do miary probabilistycznej µ (ozn. µ n µ), jeśli fdµ n fdµ dla dowolnej funkcji ciągłej ograniczonej
Seria 1. Zbieżność rozkładów
Seria Zbieżność rozkładów We wszystkich poniższych zadaniach (E, ρ) jest przestrzenią metryczną Wykazać, że dla dowolnych x, x n, δ xn δ x wtedy i tylko wtedy, gdy x n x Sprawdzić, że n nk= δ k n λ, gdzie
OGÓLNE PODSTAWY SPEKTROSKOPII
WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/
KONSTRUKCJE METALOWE 1 Przykład 4 Projektowanie prętów ściskanych
KONSTRUKCJE METALOWE Przykład 4 Projektowanie prętów ściskanych 4.Projektowanie prętów ściskanych Siły ściskające w prętach kratownicy przyjęto z tablicy, przykładu oraz na rysunku 3a. 4. Projektowanie
v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±
13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW Materiały pomocnicze do wykładu (Inżynieria Środowiska) PWSZ w Elblągu dr hab. inż. Cezary Orlikowski Instytut Politechniczny MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW MECHANIKA
POLITECHNIKA LUBELSKA KARTA MODUŁU (SYLABUS)
STOPIEŃ STUDIÓW: RODZAJ STUDIÓW: KIERUNEK STUDIÓW: KARTA MODUŁU (SYLABUS) Studia I stopnia (inżynierskie) studia stacjonarne MECHATRONIKA (MT) PRZEDMIOT: ROK STUDIÓW: SEMESTR: RODZAJ ZAJĘĆ I LICZBA GODZIN:
O RELACJACH KOMUTACJI I NIEOZNACZONOŚCI W TEORII KWANTOWEJ
O RELACJACH KOMUTACJI I NIEOZNACZONOŚCI W TEORII KWANTOWEJ Andrzej Herdegen Instytut Fizyki UJ 3 grudnia 2015 Przypomnę matematyczne i fizyczne tło tytułowych zagadnień. Pokażę dlaczego spacer przez algebrę
4. Prąd stały Prąd i prawo Ohma. C s. i = i = t. i S. j = V u prędkość unoszenia ładunków. r r
4. Pąd sały. 4.. Pąd pawo Ohma. l U - + u u pędkość unoszena ładunków S j o ds gdze j jes gęsoścą pądu: j S j S A s A m W pzewodnku o objęośc S l znajduje sę ładunek n e S l m lczbą elekonów w jednosce
Redukcja wariancji w metodach Monte-Carlo
14.02.2006 Seminarium szkoleniowe 14 lutego 2006 Plan prezentacji Wprowadzenie Metoda losowania warstwowego Metoda próbkowania ważonego Metoda zmiennych kontrolnych Metoda zmiennych antytetycznych Metoda
Masywne neutrina w teorii i praktyce
Instytut Fizyki Teoretycznej Uniwersytet Wrocławski Wrocław, 20 czerwca 2008 1 Wstęp 2 3 4 Gdzie znikają neutrina słoneczne (elektronowe)? 4p 4 2He + 2e + + 2ν e 100 miliardów neutrin przez paznokieć kciuka
( ) MECHANIKA BUDOWLI WZORY
CHNIK BUDOLI ZORY Uwgi: zor ujęt w rmki powinn bć opnown pmięciowo (więkzość z nich wmg jni zrozumini b j zpmiętć )! Pozotł wzor, jżi bęą potrzbn w trkci kookwium bęą pon rzm z trścią zni; jnk nż zwrócić
Energia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut