DRGANIA PASMA PŁYTOWEGO Z UMIARKOWANIE DU YMI UGI CIAMI NA PODŁO U SPR YSTYM

Wielkość: px
Rozpocząć pokaz od strony:

Download "DRGANIA PASMA PŁYTOWEGO Z UMIARKOWANIE DU YMI UGI CIAMI NA PODŁO U SPR YSTYM"

Transkrypt

1 Magdalena ATAMAN Wacław SZCZNIAK DRGANIA PASMA PŁYTOWGO Z UMIARKOWANI DUYMI UGICIAMI NA PODŁOU SPRYSTYM Strescenie W artykule predstawiono rowianie nieliniowego adania dynamiki dotyccego pasma płytowego Von Kármána spocywajcego na jednokierunkowym trójparametrowym inercyjnym podłou Własowa-Leontiewa. W osernym wstpie podano podstawowy teoretycne agadnienia. W prykładie oliceniowym pokaano rowianie równania ruchu w prypadku ocienia harmonicnego w kstałcie górki sinusoidalnej. WSTP Zagadnienia statyki i dynamiki płyt umiarkowanie duymi lu duymi ugiciami nie s nowe i sigaj historycnie do połowy diewitnastego wieku a wic w ogóle do poctków prac akresu teorii płyt []. Równania Von Kármána yły i s predmiotem licnych opracowa pulikacji monoafii i prac pregldowych [-3]. Znane s poycje Wolmira Chia Kajuka Sathyamoorthy ego Leissy Sceniaka i innych. Wydana w roku monoafia serii Mechanika Technicna VIII pod redakcj Woniaka jest równie iorem rónych teorii i opracowa równie akresu dynamiki płyt [9]. W referacie podano rowianie adania dynamiki płyty cienkiej spocywajcej na inercyjnym jednokierunkowym podłou Własowa-Leotiewa pod inercyjnym ocieniem ruchomym.. RÓWNANIA RUCU PASMA PŁYTOWGO NA TRÓJPARAM- TROWYM INRCYJNYM PODŁOU WŁASOWA-LONTIWA Zgodnie onaceniami na rysunku ropatrujemy spryste pasmo płytowe oparte na preguowo niepresuwnych podporach o stywnoci pasma na ginanie uoci płyty ropitoci wykonane materiału reologicnego Kelwina-Voigta casem retardacji. Zakładamy e całkowite podstawowe naprenie w pamie jest sum napre napre ginajcych i napre od duej siły rocigajcej:. ()

2 W opracowaniu pominiemy jawisko sprenia drga gitych i podłunych traktujc te ostatnie jako pomijalnie małe w stosunku do maksymalnych amplitud ugi poprecnych płyty. Pry takich ałoeniach równania ruchu pasma płytowego i podłoa s nastpujce: () ( ) ( ) p( ( ) ( ) w t w t p t kw t c + m. t Po podstawieniu () do () otrymujemy ostatecnie nastpujce nieliniowe równanie ruchu pasma na podłou: (3) w c. Rys.. Schemat dynamicny rowaanego adania Jako ałoenie w modelu podłoa Własowa-Leontiewa pryjmujemy ponise alenoci kinematycne: w podłou pod pasmem płytowym ( l l ): u ( w( Φ( ) u w (4) y w podłou poa pasmem płytowym ( < l > l ): ( y w( Φ( ) ϕ( ). u u w y (5) y

3 We worach (4) i (5) ( ) natomiast funkcja ( y) Φ jest funkcj opisujc premiescenia na uoci warstwy ϕ opisuje odsadk w prekroju prostopadłym do osi pasma płytowego. Składowe stanu naprenia w podłou ale od premiescenia pionowego w i wyraaj si worami: σ σ y ν σ ν ν τ y τ y ( + ν ) w w y τ τ τ y τ y ( + ν ). w (6) Model podłoa inercyjnego Własowa w prypadku płyty ginanej dwukierunkowo opisuje nastpujce równanie p ( y k w( y c w( y w którym k c i m s parametrami podłoa. ( y w + m (7) t W prypadku agadnienia liniowego (elka pasmo płytowe) wyraenia (4) i (7) redukuj si do postaci p ( k w( ( w( w c + m. (8) t We worach (7) i (8) współcynnik k odpowiada współcynnikowi sprystoci wystpujcemu w modelu Winklera c uwgldnia cinanie w warstwie sprystej natomiast m uwgldnia inercj podłoa. W prypadku elki o serokoci spocywajcej na warstwie podłoa o uoci współcynniki te okrelone s worami: gdie: s r k ~ c m 4 m ν Φ ( + ν ) s ν Φ ( ) ν ν ν d r ~ γ m g Φ ( ) d. ( ) d (9) () We worach (9 i () pryjto nastpujce onacenia: moduł Younga untu ν lica Poissona untu ~m gsto untu γ ciar właciwy untu.

4 W literature ostatnich trydiestu lat mona nale licne prace w których autory wprowadaj pewne modyfikacje do modelu Własowa-Leontiewa majce na celu racjonalne okrelenie współcynnika γ anikania premiesce pionowych w warstwie podłoa. Funkcj ( ) Φ mona okreli analiujc elk ocion statycnie. Schemat tak oci- onego pasma płytowego o serokoci l module sprystoci i momencie ewładnoci prekroju poprecnego J spocywajcej na warstwie podłoa Własowa predstawia rysunek. W celu wyprowadenia równania modelu podłoa akładamy płaski stan odkstałcenia w warstwie sprystej o uoci module Younga i licie Poissona ν. Pasmo o niepresuwnych podporach preguowych ma prekrój prostoktny h. Całkowita energia sprysta ocionego układu pasmo-warstwa podłoa wra prac sił ewntrnych V U + L jest okrelona w nastpujcy sposó ( ) V l / l / J d w~ d d + l / ( σ ) ( ) ~ ε + σ ε + τ γ d d. q w d () l / W równaniu () σ σ τ ε ε γ s napreniami i odpowiadajcymi im odkstałceniami jednostkowymi warstwy podłoa w ~ jest ugiciem pasma q ( ) jest ocieniem rołoonym na pamie. Niech u i w onacaj premiescenia dowolnego punktu ( ) lecego w warstwie podłoa. Fiycne równania konstytutywne w PSO apisujemy w klasycnej formie σ σ τ ( ν ) ( + ν )( ν ) ν / ν ν / ν u / / w. u / + w / ν ( ν ) / () W prypadku modelu warstwy Własowa e wgldów praktycnych mona wykaa e premiescenie poiome u jest nacnie mniejse od pionowego premiescenia w. Mo- emy atem pryj nastpujce ałoenia: ( ) w( ) w~ ( ) Φ( ) Φ( ) Φ( ) w( ) w~ ( ). u (3) Po uwgldnieniu równa (6) i wików () energia V opisana alenoci () wyra- a si worem V l / l / J + d w~ d ( + ν ) g r g r d + ~ dw Φ d ν ( + ν )( ν ) d d g r l / q l / g r g r ( ) w ~ d. w~ dφ d + (4)

5 . PRZYKŁAD OBLICZNIOWY PASMA PŁYTOWGO NA TRÓJPARAMTROWYM INRCYJNYM PODŁOU WŁASOWA-LONTIWA Zakładajc rowianie równania (3) w postaci tw. górki sinusoidalnej e wgldu na mienn prestrenn ora dowolny preieg ocienia w casie opisany funkcj pry pominiciu parametrów podłoa mamy:. (5) Równanie ruchu w prypadku pominicia współcynników podłoa ma nastpujc posta: gdie (6) onaca csto drga swoodnych elki wynacon pry małych ugiciach. Równanie (6) scałkowano i aproamowano na komputere a wyniki w formie wykresów aficnych pokaano na rysunkach i 3. Zastosowano procedur całkowania Zienkiewica SS e współcynnikami Stosowane kroki całkowania. Ocienie o kstałcie górki sinusoidalnej jest harmonicne i wynosi. poa tym pryjto:. Zadanie ostało rowiane pry erowych warunkach poctkowych. W prykładie mona akłada i rowia adanie pry rónych ocieniach w odniesieniu do ich preiegu w casie na prykład: prostokt trójkt trape paraola itp. Natomiast e wgldu na mienn prestrenn na serokoci pasma die górka sinusoidalna. Błdy wynikajce e scałkowania nieliniowego równania ruchu łd amplitudy i łd presunicia faowego diki astosowaniu procedury SS nie istniej. Prykład moe posłuy i y wykorystany w prypadku projektowania nawierchni drogowo-lotniskowej lu kolejowej. Dalsym elementem wymagajcym olice komputerowych jest dokładna analia wpływu parametrów inercyjnego podłoa na ugicia dynamicne pasma co die predmiotem adania w nastpnych pracach i referatach. Proponowany schemat dynamicny adania moe y równie wykorystany pry sprawdeniu płyty lodowej na dopuscenie ruchu w scególnych warunkach na prykład pry eksploatacji łó metali i ropy naftowej w rejonach arktycnych w prypadku diała wojennych itp. Woda moe y amodelowana podłoem Własowa.

6 Rys.. Wykres ugicia rodka elki pry harmonicnym ocieniu w kstałcie górki sinusoidalnej Rys. 3. Wykres ugicia rodka elki pry harmonicnym ocieniu w kstałcie górki sinusoidalnej. Ocienie harmonicne tutaj wynosi

7 PODSUMOWANI W artykule rowiano dwa adania płaskich struktur preguowych ocionych impulsem siły ora jedn struktur o włach stywnych. Struktury spocywaj poiomo na idealnie gładkim stywnym podłou. Zastosowanie klasycnej teorii uderenia rachunku impulsów i równa godnoci prdkoci premiesce wiami doprowada do układu 3-stu równa niewiadomymi kinematycnymi prdkoci rodków prtów prdkoci ktowych prtów ora wewntrnych impulsów sił. Wynacono a kadym raem równie energi kinetycn układu tu po dereniu. Podano oserny wstp odnonie do trech teorii uderenia. BIBLIOGRAFIA. Jemielita G.: Meandry teorii płyt. Prace Naukowe PW Budownictwo. 7 Warsawa 99.. Wol mir A.S.: Ustoiciwost defomirujemych sistem. Nauka Moskwa Wol mir A.S.: Nieliniejnaja dynamika płastinok i oołocek. Moskwa Wol mir A.S.: Gikije płastinki i oołocki. G.I.T.-T.L. Moskwa Chia Chuen-Yuan.: Nonlinear analysis of plates. McGraw-ill New York Kajuk Ja.F.: Geometriceskije nieliniejnyje adacy teorii płastin i oołocek. Naukowa Dumka. Kijew Sathyamoorthy M. Pandalai K.A.V.: Large amplitude fleural viration of certain deformale oies. Patr. II: Plates and Shells. J. Aeronaut. Soc. India 5 97 pp Sathyamoorthy M.: Nonlinear viration of plates a review. The Shock and Virations Digest pp Sathyamoorthy M.: Recent research in nonlinear plate virations. The Shock and Virations Digest pp Sceniak W.: Drgania płyty Kirchhoffa wywołane inercyjnym cigłym ocieniem ruchomym. Prace Naukowe PW Budownictwo. 9 Warsawa 98 str Leissa A.W.: Nonlinear analysis of plate and Shell virations. Proceed. -nd Int. Conf. on Rec. Adv. Struct. Dyn. Southampton 984 pp Leissa A.W.: Viration of plates. 969 NASA Washington D.C. 3. Leissa A.W.: Recent research In plate virations.classical theory. The Shock and Virations Digest pp Leissa A.W.: Recent research In plate virations classical theory. The Shock and Virations Digest 978. pp Leissa A.W.: Plate viration research The Shock and Virations Digest pp Leissa A.W.: The plate and shell viration monoaphs. Appl. Mech. Rev. 5- R9- R8. 7. Sceniak W.: Inercyjne ocienia ruchome na elkach i płytach. Pregld podstawowych poycji literatury. Prace Naukowe PW Budownictwo. OWPW Warsawa 99 str Sceniak W.: Drgania płyty o redniej uoci spocywajcej na dwuparametrowym uogólnionym podłou sprystym Winklera wywołane ruchomym ocieniem cigłym. Prace Naukowe PW Budownictwo. 9 OWPW Warsawa 99 str Woniak C (red.).: Mechanika Technicna VIII. Mechanika sprystych płyt i powłok. Warsawa PWN.. Sceniak W.: Wyrane agadnienia dynamiki płyt. OWPW Warsawa 99.. Sceniak W.: Drgania swoodne i wymusone elki duymi ugiciami. Roprawy In- ynierskie

8 . Sceniak W.: Drgania pasma płytowego duymi premiesceniami. VIII Konferencja MKwMK Jadwisin maj 987 str Koemiakina I.F. Morgajewski A.B.: Ucet inercji wrascenija i sdwiga pri issledowanii nieliniejnych koleanii płastin pod diejstwiem podwinoj nauki. P.M.M. t. XXII no. 4. str Ataman M.: Drgania elek i płyt poprecnie niejednorodnych na podłoach odkstałcalnych wymusone ocieniami ruchomymi. OWPW Warsawa. VIBRATIONS OF STRIP WIT MODRATLY LARG DFLCTIONS RSTING ON LASTIC FOUNDATION Astract The solution of nonlinear dynamic prolem of Von Kármán's thin strip resting on a unidirectional three-parameter inertial Vlasov-Leontiev foundation is presented in the paper. Bases of theory of the prolem in the comprehensive introduction are presented. Solution of equation of motion in case of inertial harmonic load in the form of half sine wave is shown in the numerical eample. Autory: dr in. Magdalena Ataman Politechnika Warsawska Wydiał Inynierii Ldowej -637 Warsawa Al. Armii Ludowej 6 m.ataman@.il.pw.edu.pl prof. w. dr ha. in. Wacław Sceniak Politechnika Warsawska Wydiał Inynierii Ldowej -637 Warsawa Al. Armii Ludowej 6 w.scesniak@.il.pw.edu.pl Niniejsa praca jest współfinansowana pre Uni uropejsk w ramach uropejskiego Fundusu Społecnego projekt Proam Rowojowy Politechniki Warsawskiej realiowany pre Centrum Studiów Zaawansowanych.

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane

Bardziej szczegółowo

2. ELEMENTY TEORII PRĘTÓW SILNIE ZAKRZYWIONYCH (Opracowano na podstawie [9, 11, 13, 34, 51])

2. ELEMENTY TEORII PRĘTÓW SILNIE ZAKRZYWIONYCH (Opracowano na podstawie [9, 11, 13, 34, 51]) P Litewka Efektywny eement skońcony o dżej krywiźnie ELEENTY TEOII PĘTÓW SILNIE ZKZYWIONYCH (Opracowano na podstawie [9,, 3, 34, 5]) Premiescenia i odkstałcenia osiowe Pre pręty sinie akrywione romie się

Bardziej szczegółowo

Zginanie Proste Równomierne Belki

Zginanie Proste Równomierne Belki Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie

Bardziej szczegółowo

PROGNOZA OSIADANIA BUDYNKU W ZWIĄZKU ZE ZMIANĄ SPOSOBU POSADOWIENIA THE PROGNOSIS OF BUILDING SETTLEMENT DUE TO CHANGES OF FOUNDATION

PROGNOZA OSIADANIA BUDYNKU W ZWIĄZKU ZE ZMIANĄ SPOSOBU POSADOWIENIA THE PROGNOSIS OF BUILDING SETTLEMENT DUE TO CHANGES OF FOUNDATION XXVI Konferencja awarie budowlane 213 Naukowo-Technicna ZYGMUNT MEYER, meyer@ut.edu.pl Zachodniopomorski Uniwersytet Technologicny w cecinie, Katedra Geotechniki MARIUZ KOWALÓW, m.kowalow@gco-consult.com

Bardziej szczegółowo

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH MES W ANALIZIE SPRĘŻYS UKŁADÓW PRĘOWYCH Prykłady obliceń Belki Lidia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice 7r. 6-4 Lidia Fedorowic, Jan Fedorowic, Magdalena Mroek, Dawid Mroek

Bardziej szczegółowo

>> ω z, (4.122) Przybliżona teoria żyroskopu

>> ω z, (4.122) Przybliżona teoria żyroskopu Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y

Bardziej szczegółowo

Statyczna próba skrcania

Statyczna próba skrcania Laboratorium z Wytrzymałoci Materiałów Statyczna próba skrcania Instrukcja uzupełniajca Opracował: Łukasz Blacha Politechnika Opolska Katedra Mechaniki i PKM Opole, 2011 2 Wprowadzenie Do celów wiczenia

Bardziej szczegółowo

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści S032a-PL-EU Informacje uupełniające: Wybocenie płascyny układu w ramach portalowych Ten dokument wyjaśnia ogólną metodę (predstawioną w 6.3.4 E1993-1-1 sprawdania nośności na wybocenie płascyny układu

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

MIESZANY PROBLEM POCZĄTKOWO-BRZEGOWY W TEORII TERMOKONSOLIDACJI. ZAGADNIENIE POCZĄTKOWE

MIESZANY PROBLEM POCZĄTKOWO-BRZEGOWY W TEORII TERMOKONSOLIDACJI. ZAGADNIENIE POCZĄTKOWE Górnictwo i Geoinżynieria ok 33 Zesyt 1 9 Jan Gasyński* MIESZANY POBLEM POCZĄKOWO-BZEGOWY W EOII EMOKONSOLIDACJI. ZAGADNIENIE POCZĄKOWE 1. Wstęp Analia stanów naprężenia i odkstałcenia w gruncie poostaje

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR IMT - Wkład Nr 0 Złożon stan naprężeń - wtężenie materiału stan krtcn materiału pojęcie wtężenia cel stosowania hipote wtężeniowch naprężenie redukowane pregląd hipote

Bardziej szczegółowo

ANALIZA WYTRZYMAŁOŚCIOWA STROPU BĘDĄCEGO W KONTAKCIE DWUPARAMETROWYM Z POKŁADEM PRZY EKSPLOATACJI NA ZAWAŁ

ANALIZA WYTRZYMAŁOŚCIOWA STROPU BĘDĄCEGO W KONTAKCIE DWUPARAMETROWYM Z POKŁADEM PRZY EKSPLOATACJI NA ZAWAŁ Górnictwo i Geoinżynieria Rok 3 Zesyt 008 Marian Paluch*, Antoni Tajduś* ANALIZA WYTRZYMAŁOŚCIOWA STROPU BĘDĄCEGO W KONTAKCIE DWUPARAMETROWYM Z POKŁADEM PRZY EKSPLOATACJI NA ZAWAŁ. Wstęp Zajmować będiemy

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR - MiBM - Wkład Nr 5 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

Bardziej szczegółowo

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6 achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR -IA- Wkład Nr 9 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

PRZESTRZEŃ WEKTOROWA (LINIOWA)

PRZESTRZEŃ WEKTOROWA (LINIOWA) PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura

Bardziej szczegółowo

TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP)

TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP) TEORIA SPRĘŻYSTOŚCI I PLASTYCZNOŚCI (TSP) Wstęp. Podstawy matematyczne. Tensor naprężenia. Różniczkowe równania równowagi Zakład Mechaniki Budowli PP Materiały pomocnicze do TSP (studia niestacjonarne,

Bardziej szczegółowo

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................

Bardziej szczegółowo

CHEMAR Rurociągi Sp. z o.o. ul. Olszewskiego Kielce Polska

CHEMAR Rurociągi Sp. z o.o. ul. Olszewskiego Kielce Polska CHEMAR Rurociągi Sp. o.o. ul. Olsewskiego 6 25 953 Kielce Polska KATALOG ZAMOCOWAŃ RUROCIĄGÓW 2009 Predstawiamy Państwu nową edycję Katalogu Zamocowań Rurociągów 2009 opracowanego pre Diał Konstrukcyjny

Bardziej szczegółowo

3. WSPÓŁCZYNNIK ŚCINANIA (KOREKCYJNY)

3. WSPÓŁCZYNNIK ŚCINANIA (KOREKCYJNY) Cęść 1. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY) 1.. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY).1. Wstęp Współcynnik κ naywany współcynnikiem ścinania jest wielkością ewymiarową, ależną od kstałtu prekroju. Występuje

Bardziej szczegółowo

Wybrane stany nieustalone transformatora:

Wybrane stany nieustalone transformatora: Wybrane stany nieustalone transformatora: Założenia: - amplituda napięcia na aciskach pierwotnych ma wartość stałą nieależnie od jawisk achodących w transformatore - warcie występuje równoceśnie na wsystkich

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

ZASTOSOWANIE GRANICZNYCH ZAGADNIEŃ ODWROTNYCH DO OKREŚLANIA DOPUSZCZALNYCH STĘŻEŃ SUBSTANCJI CHEMICZNYCH NA POWIERZCHNI TERENU

ZASTOSOWANIE GRANICZNYCH ZAGADNIEŃ ODWROTNYCH DO OKREŚLANIA DOPUSZCZALNYCH STĘŻEŃ SUBSTANCJI CHEMICZNYCH NA POWIERZCHNI TERENU Zastosowanie granicnych agadnień INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS Nr 9/2008, POLSKA AKADEMIA NAUK, Oddiał w Krakowie, s. 217 226 Komisja Technicnej

Bardziej szczegółowo

ANALIZA RUCHU POJAZDU GSIENICOWEGO

ANALIZA RUCHU POJAZDU GSIENICOWEGO Szybkobiene Pojazdy Gsienicowe (42) nr 4, 2016 Stanisław TOMASZEWSKI ANALIZA RUCHU POJAZDU GSIENICOWEGO Streszczenie. W artykule opisano sposób modelowania ruchu pojazdu w rodowisku SolidWorks. Przedstawiono

Bardziej szczegółowo

DWUCZĘŚCIOWE ŁOŻYSKO POROWATE

DWUCZĘŚCIOWE ŁOŻYSKO POROWATE PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, 1 14 maja 1999 r. Karol Kremiński Politechnika Warsawska DWUCZĘŚCIOWE ŁOŻYSKO POROWATE SŁOWA KLUCZOWE: łożysko śligowe, tuleja porowata, prepuscalność

Bardziej szczegółowo

Przykład: Projektowanie poŝarowe nieosłoniętego słupa stalowego według standardowej krzywej temperatura-czas

Przykład: Projektowanie poŝarowe nieosłoniętego słupa stalowego według standardowej krzywej temperatura-czas Dokument Ref: SX043a-PL-EU Strona 1 5 Prykład: Projektowanie poŝarowe nieosłoniętego słupa stalowego według standardowej krywej temperatura-cas Wykonał Z. Sokol Data styceń 006 Sprawdił F. Wald Data styceń

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

Stan odkształcenia i jego parametry (1)

Stan odkształcenia i jego parametry (1) Wprowadzenie nr * do ćwiczeń z przedmiotu Wytrzymałość materiałów przeznaczone dla studentów II roku studiów dziennych I stopnia w kierunku nergetyka na wydz. nergetyki i Paliw, w semestrze zimowym /.

Bardziej szczegółowo

Część 1 2. PRACA SIŁ WEWNĘTRZNYCH 1 2. PRACA SIŁ WEWNĘTRZNYCH Wstęp

Część 1 2. PRACA SIŁ WEWNĘTRZNYCH 1 2. PRACA SIŁ WEWNĘTRZNYCH Wstęp Cęść 1. PRC SIŁ WEWNĘTRZNYCH 1.. PRC SIŁ WEWNĘTRZNYCH.1. Wstęp Na wstępie prpomnijm, że gd premiescenie danego eementu jest funkcją diałającej nań sił Δ = f(p), to praca sił na tm premiesceniu jest równa:

Bardziej szczegółowo

Twierdzenia ekstremalne teorii plastycznoci

Twierdzenia ekstremalne teorii plastycznoci Twierdzenia ekstremalne teorii plastycznoci Oprócz nonoci przekroju (sprystej i plastycznej) uywane jest take pojcie nonoci granicznej konstrukcji, czyli najwikszego obcienia przenoszonego przez konstrukcj

Bardziej szczegółowo

MODEL ZAWIESZENIA MAGNETOREOLOGICZNEGO Z ODZYSKIEM ENERGII

MODEL ZAWIESZENIA MAGNETOREOLOGICZNEGO Z ODZYSKIEM ENERGII MODELOWANIE INŻYNIERSKIE ISSN 896-77X 4, s. -, Gliwice MODEL ZAWIESZENIA MAGNETOREOLOGICZNEGO Z ODZYSKIEM ENERGII ŁUKASZ JASTRZĘBSKI, MARCIN WĘGRZYNOWSKI AGH Akademia Górnico-Hutnica, Katedra Automatyacji

Bardziej szczegółowo

I. ELEMENTY TEORII MODELOWANIA

I. ELEMENTY TEORII MODELOWANIA I. ELEMENTY TEORII MODELOWANIA 1. WSTP Słowo "model" powstało łaciskiego słowa "modus" - "modulus", co nacy: miara, obra, sposób. Jego pierwotne nacenie było wiane budownictwem i uywano go dla onacenia

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Analiza płyt i powłok MES

Analiza płyt i powłok MES Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy

Bardziej szczegółowo

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski Katedra Geotechniki i Budownictwa Drogowego WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Maurski Mechanika Gruntów dr inż. Ireneus Dyka http://pracownicy.uwm.edu.pl/i.dyka e-mail: i.dyka@uwm.edu.pl

Bardziej szczegółowo

STATYCZNA PRÓBA SKRĘCANIA

STATYCZNA PRÓBA SKRĘCANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku

Bardziej szczegółowo

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Wstęp do rachunku prawdopodobieństwa i statystyki matematycnej MAP037 wykład dr hab. A. Jurlewic WPPT Fiyka, Fiyka Technicna, I rok, II semestr Prykłady - Lista nr : Prestreń probabilistycna. Prawdopodobieństwo

Bardziej szczegółowo

2. Pręt skręcany o przekroju kołowym

2. Pręt skręcany o przekroju kołowym 2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo

Bardziej szczegółowo

OGNIWO PALIWOWE W UKŁADACH ZASILANIA POTRZEB WŁASNYCH

OGNIWO PALIWOWE W UKŁADACH ZASILANIA POTRZEB WŁASNYCH Antoni DMOWSKI, Politechnika Warszawska, Instytut Elektroenergetyki Bartłomiej KRAS, APS Energia OGNIWO PALIWOWE W UKŁADACH ZASILANIA POTRZEB WŁASNYCH 1. Wstp Obecne rozwizania podtrzymania zasilania obwodów

Bardziej szczegółowo

Integralność konstrukcji w eksploatacji

Integralność konstrukcji w eksploatacji 1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji

Bardziej szczegółowo

SYMULACJA UKŁADU REDUKCJI DRGAŃ Z TŁUMIKIEM MAGNETOREOLOGICZNYM I ELEKTROMAGNETYCZNYM PRZETWORNIKIEM ENERGII

SYMULACJA UKŁADU REDUKCJI DRGAŃ Z TŁUMIKIEM MAGNETOREOLOGICZNYM I ELEKTROMAGNETYCZNYM PRZETWORNIKIEM ENERGII MODELOWANIE INŻYNIERSKIE ISSN 9-77X 39, s. 77-, Gliwice SYMULACJA UKŁADU REDUKCJI DRGAŃ Z TŁUMIKIEM MAGNETOREOLOGICZNYM I ELEKTROMAGNETYCZNYM PRZETWORNIKIEM ENERGII BOGDAN SAPIŃSKI, PAWEŁ MARTYNOWICZ,

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 1.

Ekoenergetyka Matematyka 1. Wykład 1. Ekoenergetyka Matematyka 1. Wykład 1. Literatura do wykładu M. Gewert, Z. Skocylas, Analia matematycna 1; T. Jurlewic, Z. Skocylas, Algebra liniowa 1; Stankiewic, Zadania matematyki wyżsej dla wyżsych

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd

Bardziej szczegółowo

1. Wnikanie ciepła podczas wrzenia pęcherzykowego na zewnętrznej powierzchni rur W (1.1)

1. Wnikanie ciepła podczas wrzenia pęcherzykowego na zewnętrznej powierzchni rur W (1.1) nikanie_ciepla Wnikanie ciepła 1. Wnikanie ciepła podcas renia pęcherykoego na enętrnej poierchni rur Zależność Rohsenoa q 1/ g c pt W r (1.1) n C rr s m n = 1,0 dla ody n = 1,7 dla innych ciecy 3 Współcynnik

Bardziej szczegółowo

Empiryczny model osiadania gruntów sypkich

Empiryczny model osiadania gruntów sypkich mpirycny model osiadania gruntów sypkich prof. dr hab. inż. Zygmunt Meyer, Zachodniopomorski Uniwersytet Technologicny w cecinie, Katedra Geotechniki, al. Piastów 5, 7-3 cecin dr hab. Marek Tarnawski,

Bardziej szczegółowo

UWAGI O ZASTOSOWANIU POWIERZCHNI ŚRUBOWYCH W BUDOWNICTWIE

UWAGI O ZASTOSOWANIU POWIERZCHNI ŚRUBOWYCH W BUDOWNICTWIE Biuletyn Polskiego Towarzystwa Geometrii i Grafiki Inżynierskiej 10 Zeszyt 12 (2001), str. 10 14 UWAGI O ZASTOSOWANIU POWIERZCHNI ŚRUBOWYCH W BUDOWNICTWIE Paweł KAPROŃ Politechnika Częstochowska, ul.akademicka

Bardziej szczegółowo

W siła działająca na bryłę zredukowana do środka masy ( = 0

W siła działająca na bryłę zredukowana do środka masy ( = 0 Popęd i popęd bryły Bryła w ruchu posępowym. Zasada pędu i popędu ma posać: p p S gdie: p m v pęd bryły w ruchu posępowym S c W d popęd siły diałającej na bryłę w ruchu posępowym aś: v c prędkość środka

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8 Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji

Bardziej szczegółowo

Nazwa przedmiotu: Techniki symulacji. Kod przedmiotu: EZ1C Numer ćwiczenia: Ocena wrażliwości i tolerancji układu

Nazwa przedmiotu: Techniki symulacji. Kod przedmiotu: EZ1C Numer ćwiczenia: Ocena wrażliwości i tolerancji układu P o l i t e c h n i k a B i a ł o s t o c k a W y d i a ł E l e k t r y c n y Nawa predmiotu: Techniki symulacji Kierunek: elektrotechnika Kod predmiotu: EZ1C400 053 Numer ćwicenia: Temat ćwicenia: E47

Bardziej szczegółowo

STEROWANIE ADAPTACYJNE RUCHEM ROBOTA PODWODNEGO W PŁ ASZCZYŹ NIE PIONOWEJ

STEROWANIE ADAPTACYJNE RUCHEM ROBOTA PODWODNEGO W PŁ ASZCZYŹ NIE PIONOWEJ ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVII NR 4 (167) 2006 Jery Garus Akademia Marynarki Wojennej STEROWANIE ADAPTACYJNE RUCHEM ROBOTA PODWODNEGO W PŁ ASZCZYŹ NIE PIONOWEJ STRESZCZENIE W artykule

Bardziej szczegółowo

Ćwiczenie 13. Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla. Cel ćwiczenia

Ćwiczenie 13. Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla. Cel ćwiczenia Ćwicenie 13 Wynacanie ruchliwości i koncentracji nośników prądu w półprewodnikach metodą efektu alla Cel ćwicenia Celem ćwicenia jest aponanie się e jawiskiem alla, stałoprądowa metoda badania efektu alla,

Bardziej szczegółowo

TRAJEKTORIE WARTOŚCI WŁASNYCH PÓL SIŁ WEWNĘTRZNYCH W TARCZACH I PŁYTACH ANIZOTROPOWYCH

TRAJEKTORIE WARTOŚCI WŁASNYCH PÓL SIŁ WEWNĘTRZNYCH W TARCZACH I PŁYTACH ANIZOTROPOWYCH TRAJEKTORIE WARTOŚCI WŁASNYCH PÓL SIŁ WEWNĘTRZNYCH W TARCZACH I PŁYTACH ANIZOTROPOWYCH Aleksander SZWED, Stanisław JEMIOŁO, Marcin GAJEWSKI Instytut Mechaniki Konstrukcji Inżynierskich PW. WSTĘP W przypadku

Bardziej szczegółowo

MODELOWANIE ILO CIOWYCH CHARAKTERYSTYK SYSTEMÓW KOMPUTEROWYCH W STRATEGII INFORMATYZACJI ORGANIZACJI

MODELOWANIE ILO CIOWYCH CHARAKTERYSTYK SYSTEMÓW KOMPUTEROWYCH W STRATEGII INFORMATYZACJI ORGANIZACJI ODELOWANIE ILOCIOWYCH CHARAKTERYSTYK SYSTEÓW KOPUTEROWYCH W STRATEGII INFORATYZACJI ORGANIZACJI JAROSŁAW WTRÓBSKI Instytut Systemów Informatycnych Politechnika Sceciska Strescenie W artykule predstawiono

Bardziej szczegółowo

Planowanie badań eksperymentalnych na doświadczalnym ustroju nośnym dźwignicy

Planowanie badań eksperymentalnych na doświadczalnym ustroju nośnym dźwignicy Bi u l e t y n WAT Vo l. LXI, Nr 3, 01 Planowanie badań eksperymentalnych na doświadcalnym ustroju nośnym dźwignicy Marcin Jasiński Politechnika Wrocławska, Wydiał Mechanicny, Instytut Konstrukcji i Eksploatacji

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

Bardziej szczegółowo

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie 3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy

Bardziej szczegółowo

UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NARZĘDZIEM JEDNOOSTRZOWYM

UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NARZĘDZIEM JEDNOOSTRZOWYM MODELOWANIE INŻYNIESKIE ISSN 896-77X 40, s. 7-78, Gliwice 00 UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NAZĘDZIEM JEDNOOSTZOWYM PIOT FĄCKOWIAK Instytut Technologii Mechanicnej, Politechnika

Bardziej szczegółowo

KONCEPCJA AKTYWNEJ ELIMINACJI DRGAŃ W PROCESIE FREZOWANIA

KONCEPCJA AKTYWNEJ ELIMINACJI DRGAŃ W PROCESIE FREZOWANIA KONCEPCJA AKTYWNEJ ELIMINACJI DRGAŃ W PROCESIE FREZOWANIA Andrej WEREMCZUK, Rafał RUSINEK, Jery WARMIŃSKI 3. WSTĘP Obróbka skrawaniem jest jedną najbardiej ropowsechnionych metod kstałtowania cęści masyn.

Bardziej szczegółowo

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze

Bardziej szczegółowo

ANALIZA WPŁYWU NACISKU OSIOWEGO NA ZUŻYCIE UZBROJENIA ŚWIDRÓW GRYZOWYCH AXIAL THRUST EFFECT ON DRILLING BITS EQUIPMENT WEAR ANALYSIS

ANALIZA WPŁYWU NACISKU OSIOWEGO NA ZUŻYCIE UZBROJENIA ŚWIDRÓW GRYZOWYCH AXIAL THRUST EFFECT ON DRILLING BITS EQUIPMENT WEAR ANALYSIS Miron CZERNIEC Piotr JAREMEK ANALIZA WPŁYWU NACISKU OSIOWEGO NA ZUŻYCIE UZBROJENIA ŚWIDRÓW GRYZOWYCH AXIAL THRUST EFFECT ON DRILLING BITS EQUIPMENT WEAR ANALYSIS Przedstawiono wyniki badań zużycia uzbrojenia

Bardziej szczegółowo

Mechanika techniczna z wytrzymałoci materiałów I

Mechanika techniczna z wytrzymałoci materiałów I Mechanika techniczna z wytrzymałoci materiałów I WM Zarzdzanie i Inynieria Produkcji Studia stacjonarne pierwszego stopnia o profilu: ogólnoakademickim A X P Przedmiot: Mechanika techniczna z wytrzymałoci

Bardziej szczegółowo

Politechnika lska w Gliwicach Instytut Maszyn i Urzdze Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych

Politechnika lska w Gliwicach Instytut Maszyn i Urzdze Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych Politechnika lska w Gliwicach Instytut Maszyn i Urzdze Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych wiczenie laboratoryjne z wytrzymałoci materiałów Temat wiczenia: Wyznaczanie

Bardziej szczegółowo

1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz

1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz 1 Charakterystyka ustrojów powierzchniowych Anna Stankiewicz e-mail: astankiewicz@l5.pk.edu.pl Tematyka zajęć Przykłady konstrukcji inżynierskich Klasyfikacja ustrojów powierzchniowych Podstawowe pojęcia

Bardziej szczegółowo

Fizyka 3.3 III. DIODA ZENERA. 1. Zasada pomiaru.

Fizyka 3.3 III. DIODA ZENERA. 1. Zasada pomiaru. Fiyka 3.3 III. DIODA ZENERA Cel ćwicenia: Zaponanie się asadą diałania diody Zenera, wynacenie jej charakterystyki statycnej, napięcia wbudowanego ora napięcia Zenera. 1) Metoda punkt po punkcie 1. Zasada

Bardziej szczegółowo

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania

Bardziej szczegółowo

1. Wstêp. Marian Paluch*, Ryszard Wosz* Górnictwo i Geoin ynieria Rok 35 Zeszyt

1. Wstêp. Marian Paluch*, Ryszard Wosz* Górnictwo i Geoin ynieria Rok 35 Zeszyt Górnictwo i Geoin ynieria Rok 35 Zesyt 1 011 Marian Paluch*, Rysard Wos* ANALIZA DYNAMICZNEGO ZACHOWANIA SIÊ BELKI STROPU BEZPOŒREDNIEGO BÊD CEGO W JEDNOPARAMETROWYM KONTAKCIE ZE Z O EM W FORMIE POK ADU

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

1. Zestawienie obciążeń

1. Zestawienie obciążeń 1. Zestawienie obciążeń Lp Opis obciążenia Obc. char. kn/m γ f k d Obc. obl. kn/m 1. Pokrcie ser.1,75 m [0,400kN/m2 1,75m] 0,70 1,35 -- 0,95 2. Obciążenie wiatrem połaci nawietrnej dachu - -0,86 1,50 0,00-1,29

Bardziej szczegółowo

SPIS OZNACZE 1. STATYKA

SPIS OZNACZE 1. STATYKA SPIS TRECI OD AUTORÓW... 7 WSTP... 9 SPIS OZNACZE... 11 1. STATYKA... 13 1.1. Zasady statyki... 16 1.1.1. Stopnie swobody, wizy, reakcje wizów... 18 1.2. Zbieny układ sił... 25 1.2.1. Redukcja zbienego

Bardziej szczegółowo

SPIS OZNACZE 1. STATYKA

SPIS OZNACZE 1. STATYKA SPIS TRECI OD AUTORÓW... 7 WSTP... 9 SPIS OZNACZE... 11 1. STATYKA... 13 1.1. Zasady statyki... 16 1.1.1. Stopnie swobody, wizy, reakcje wizów... 18 1.2. Zbieny układ sił... 25 1.2.1. Redukcja zbienego

Bardziej szczegółowo

PORÓWNANIE PEŁZANIA DREWNA PRZED I PO PORAśENIU PRZEZ MIKROORGANIZMY

PORÓWNANIE PEŁZANIA DREWNA PRZED I PO PORAśENIU PRZEZ MIKROORGANIZMY JAN KUBIK, j.kubik@po.opole.pl KAMIL PAWLIK, k.pawlik@po.opole.pl Politechnika Opolska PORÓWNANIE PEŁZANIA DREWNA PRZED I PO PORAśENIU PRZEZ MIKROORGANIZMY CREEP COMPARISON O WOOD BEORE AND ATER INECTION

Bardziej szczegółowo

ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI ENERGII

ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI ENERGII Zesyty Problemowe Masyny Elektrycne Nr 9/211 15 Marcin Fice, Rafał Setlak Politechnika Śląska, Gliwice ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI

Bardziej szczegółowo

OBLICZENIA STATYCZNE FUNDAMENTÓW PŁYTOWO-PALOWYCH

OBLICZENIA STATYCZNE FUNDAMENTÓW PŁYTOWO-PALOWYCH Ireneusz Dyka 1 Piotr E. Srokosz 1 OBLICZENIA STATYCZNE FUNDAMENTÓW PŁYTOWO-PALOWYCH STRESZCZENIE: W referacie przedstawiono zagadnienia zwizane z obliczeniami statycznymi płyt fundamentowych na podporach

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

MODELOWANIE SAMOZASILAJĄCEGO SIĘ UKŁADU REDUKCJI DRGAŃ

MODELOWANIE SAMOZASILAJĄCEGO SIĘ UKŁADU REDUKCJI DRGAŃ MODELOWANIE INśYNIERSKIE ISSN 896-77X 7, s. -, Gliwice 9 MODELOWANIE SAMOZASILAJĄCEGO SIĘ UKŁADU REDUKCJI DRGAŃ BOGDAN SAPIŃSKI, ŁUKASZ JASTRZĘBSKI, MARCIN WĘGRZYNOWSKI Katedra Automatyacji Procesów, Akademia

Bardziej szczegółowo

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D) FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

ROZWIĄZANIE PROBLEMU NIELINIOWEGO

ROZWIĄZANIE PROBLEMU NIELINIOWEGO Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja

Bardziej szczegółowo

2. Określenie składowych tensora naprężenia i odkształcenia

2. Określenie składowych tensora naprężenia i odkształcenia Górnicto i Geoinżynieria ok Zesyt /1 9 Marek Cała*, Marian Paluch*, Antoni Tajduś* NIELINIWA DEFMACJA IZTPWEJ SFEY GUBŚCIENNEJ 1. Wproadenie Palia ciekłe i gaoe lub inne płyny mogą być magaynoane naiemnych

Bardziej szczegółowo

ANALIZA KONSTRUKCJI I MODERNIZACJA TRENINGOWEJ OBRABIARKI CNC

ANALIZA KONSTRUKCJI I MODERNIZACJA TRENINGOWEJ OBRABIARKI CNC Agnieszka NIEDWIEDZKA Dr in. Wojciech MISKOWSKI Dr in. Krzysztof NALEPA Uniwersytet Warmi&sko-Mazurski, Wydzia+ Nauk Technicznych ANALIZA KONSTRUKCJI I MODERNIZACJA TRENINGOWEJ OBRABIARKI CNC Streszczenie:

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:

Bardziej szczegółowo

UCHWAŁA NR VIII/92/07 RADY MIASTA ZIELONA GÓRA. z dnia 29 maja 2007 r. zmieniajca uchwał w sprawie budetu miasta na rok 2007.

UCHWAŁA NR VIII/92/07 RADY MIASTA ZIELONA GÓRA. z dnia 29 maja 2007 r. zmieniajca uchwał w sprawie budetu miasta na rok 2007. UCHWAŁA NR VIII/92/07 RADY MIASTA ZIELONA GÓRA dnia 29 maja r. mieniajca uchwał w sprawie na rok. Na podstawie art.18 ust.2 pkt 4 ustawy dnia 8 marca 1990 r. o samordie gminnym (D.U. 2001 r. Nr 142, po.1591

Bardziej szczegółowo

Algorytm projektowania dolnoprzepustowych cyfrowych filtrów Buttlewortha i Czebyszewa

Algorytm projektowania dolnoprzepustowych cyfrowych filtrów Buttlewortha i Czebyszewa Zadanie: Algorytm projektowania dolnopreputowych cyfrowych filtrów Buttlewortha i Cebyewa Zaprojektować cyfrowe filtry Buttlewortha i Cebyewa o natępujących parametrach: A p = 1,0 db makymalne tłumienie

Bardziej szczegółowo

W Y B R A N E P R O B L E M Y I N Y N I E R S K I E

W Y B R A N E P R O B L E M Y I N Y N I E R S K I E W Y B R A N E P R O B L E M Y I NY N I E R S K I E Z E S Z Y T Y N A U K O W E I N S T Y T U T U A U T O M A T Y Z A C J I P R O C E S Ó W T E C H N O L O G I C Z N Y C H I Z I N T E G R O W A N Y C H

Bardziej szczegółowo

Konstrukcje betonowe Wykład, cz. II

Konstrukcje betonowe Wykład, cz. II Konstrukcje betonowe Wykład, cz. II Dr inż. Jacek Dyczkowski Studia stacjonarne, KB, II stopień, rok I, semestr I 1 K. Kopuły Rys. K-1 [5] 2 Obciążenia i siły od ciężaru własnego kopuły, pokazanej na rys.

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu

Karta (sylabus) modułu/przedmiotu Karta (sylabus) modułu/predmiotu Budownictwo (Nawa kierunku studiów) Studia I Stopnia Predmiot: Eksploatacja i remonty budynków Exploitation and building structures repairs Rok: III Semestr: 5 MK_56 Rodaje

Bardziej szczegółowo

Rurka Pitota Model FLC-APT-E, wersja wyjmowana Model FLC-APT-F, wersja stała

Rurka Pitota Model FLC-APT-E, wersja wyjmowana Model FLC-APT-F, wersja stała Pomiar prepływu Rurka Pitota Model FLC-APT-E, wersja wyjmowana Model FLC-APT-F, wersja stała Karta katalogowa WIKA FL 10.05 FloTec Zastosowanie Produkcja i rafinacja oleju Udatnianie i dystrybucja wody

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania

Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania Modelowanie i oblicenia technicne Modelowanie matematycne Metody modelowania Modelowanie matematycne procesów w systemach technicnych Model może ostać tworony dla całego system lb dla poscególnych elementów

Bardziej szczegółowo

UOGÓLNIONE PRAWO HOOKE A

UOGÓLNIONE PRAWO HOOKE A UOGÓLNIONE PRAWO HOOKE A Układ liniowosprężysty Clapeyrona Robert Hooke podał następującą, pierwotna postać prawa liniowej sprężystości: ut tensio sic vis, czyli takie wydłużenie jaka siła W klasycznej

Bardziej szczegółowo

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć: adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,

Bardziej szczegółowo