GAL, konspekt wyk ladów: Tensory
|
|
- Patryk Klimek
- 6 lat temu
- Przeglądów:
Transkrypt
1 GAL, konspekt wyk ladów: Tensory Notatki zawieraja odsy lacze do podre czników [Kos]=Kostrikin, [Tor]=Toruńczyk. [Kos roz. 6]. Materia l mniej standardowy jest opisany dok ladniej. 1 Iloczyn tensorowy 1.1 Zewne trzna suma prosta S = V W (zbiór równy produktowi kartezjańskiemu z dzia laniami po wspó lrze dnych) może być zdefiniowana przez diagram (przypomnienie) S i V i W V! φ W φ V U φ W 1.2 [Kos roz.6 5 Tw.3] Dla przestrzeni liniowych V i W rozważamy wszystkie odwzorowania 2- liniowe φ : V W U. Istnieje przestrzeń T wraz z odwzotowaniem 2-liniowym τ : V W T o tej w lasności, że każde przekszta lcenie φ faktoryzuje sie jednoznacznie przez τ τ T V W φ! φ U 1.3 Przestrzeń V wraz z odwzorowaniem τ : V W T jest jedyna z dok ladnościa do izomorfizmu. Oznaczana przez V W. Ma w lasność: dla każdej przestrzeni wektorowej U mamy L 2-liniowe (V W, U) = L(V W, U). 1.4 Konstrukcja efektywna V W za pomoca baz w V i W. Wymiar dim(v W ) = dim(v ) dim(w ). 1.5 Inna konstukcja: elementami V W sa formalne kombinacje liniowe i v i w i, gdzie v i V, w i W. Wyrażenia te przekszta lcamy wed lug regu l: a v w = v a w dla a K (v 1 + v 2 ) w = v 1 w + v 2 w oraz v (w 1 + w 2 ) = v w 1 + v w τ : V W V W jest różnowartościowe modulo skalary, obrazem sa tensory proste v w. Tensory proste rozpinaja V W. 1.7 Ćwiczenie: niech dim V = dim W = 2. Udowodnić, że zbiór tensorów prostych w V W jest zdegenerowana kwadryka (zbiorem wektorów izotropowych, ze wzgle du na pawna forme kwadratowa ). Gdy V i W maja wie kszy wymiar, jedno równanie nie wystarzy. Udowodnić, że zbiór tensorów prostych można opisać uk ladem równań kwadratowych. 1
2 1.8 Ćwiczenie: Jeśli wektory v 1, v 2,..., v k sa liniowo niezależne, oraz v i w i = 0 to w 1 = w 2 = = w k. 1.9 Macierz zamiany bazy w V przy zamianach baz w V i W jeśli {α k, {α i = k ak i α k bazy V, {β l, {β j = l bl j β l bazy W, to α i β j = k,l ak i bl j α k β l, w konwencji Einsteina α i β j = a k i bl j α k β l Jeśli T = i,j T i,j α i β j = i,j T i,j α i β j, to T i,j = k,l T k,l a i k bj l Ćwiczenie prawa przemienności i la czności. 2 Tensory c.d. 2.1 Prawo rozdzielności mnożenia wzgle dem dodawania. 2.2 W dalszej cze ści przez przekszta lcenie, izomorfizm, itp. naturalny rozumiemy niezależny od wyboru bazy. Pe lne znaczenie s lowa naturalny można wyrazić używaja c poje ć kategorii (patrz naturalna transformacja funktorów). 2.3 Dla przestrzeni liniowych W, Z zbiór przekszta lceń liniowych L(W, Z) ma strukture przestrzeni liniowej. W lasność iloczynu tensorowego: istnieje naturalne przekszta lcenie, L(V, L(W, Z)) L(V W, Z), które jest izomorfizmem. Jest ono zadane tak: dane α : V L(W, Z), definiujemy przekszta lcenie 2-liniowe β : V W Z, β(v, w) := α(v)(w). Teraz β zadaje β : V W Z. 2.4 Istnieje naturalne przekszta lcenie V W L(V, W ), które jest izomorfizmem, jeśli dim V <. Jeśli dim V =, to obraz sk lada sie z endomorfizmów, których obraz jest skńczonego wymiaru. 2.5 Jeśli dim V < i dim W < to V W (V W ). Dow. przekszta lcenie z V W wystarczy zadać na V W : V W (V W ) = L(V W, K) = L 2-liniowe (V W, K). Wystarczy na tensorach prostych f g ( ) (v, w) f(v)g(w). Klasyczne tensory typu (p, q) 2
3 2.6 Tensory typu p-kowariantne q-kontrawariantne to funkcje p + q-liniowe V V {{ V V V {{ V K p q czyli elementy ( V V V {{ p ) V V {{ V q W skrócie T q p(v ) = (V ) p V q. 2.7 Tensor typu (1,0) funkcjona l (0,1) wektor (1,1) endomorfizm (2,0) forma 2-liniowa (2,1) np mnożenie w algebrze (0,0) skalar V V {{ V V V {{ V p q 2.8 Dana baza {α k przestrzeni V. Niech {α k baza sprze żona przestrzeni V, oraz dany tensor T typu (p, q). Jego wspó lrzednymi w bazie α i 1... α ip α j1... α jq 2.9 Regu ly transformacji: jeśli α i = k ak i α k niech α j = l bj l α l. T j 1,...,j q i 1,...,i p = T (α i1... α ip α j 1... α jq ). sa liczby (Macierz (b i k ) = (ak i ) 1, nie trzeba transponować, bo transpozycja jest zawarta w notacji.) T j 1,...,j q i 1,...,i p = b i 1 i1... b i p i p T j 1,...,j q i a j 1 i,j 1,...,i p j... a j q 1 j. q 2.10 Co to za tensor T j i = δ j i? 2.11 Który z naste puja cych tensorów jest tensorem prostym? a) T i,j = i + j, b) T i,j = i j 3 Algebra symetryczna 3.1 Mnożenie tensorów: S typu (p, q), T typu (p, q ), to S T typu (p + p, q + q ). 3.2 Zwe żenie tensorów (kontrakcja) ślad tr : End(V ) = V V K zadany przez przekszta lcenie 2-liniowe V V K, (f, v) f(v). We wspó lrze dnych i,j T j i αi α j i T i i K 3
4 dla wybranych indeksów r q, s p tr r s : T q p(v ) T q 1 p 1 (V ) tr r s(t ) j 1, r...j q i 1, s...,i p = i T j 1, r i...j q i 1, s i...,i p. 3.3 Tensor metryczny to tensor typu (2,0), czyli forma 2-liniowa, która jest iloczynem skalarnym G = g i,j e i e j, zadaje izomorfizm V V, v = i xi e i i,j g i,jx i e j = tr1 1 (g v) ogólniej tesor metryczny pozwala opuszczać wskaźniki T q p(v ) T q 1 p+1 T tr r 1(G T ) operacja podnoszenia wskaźników jest zadana przez zwe żanie z tensorem typu (0,2), T tr 1 s(g 1 T ) gdzie G 1 = i,j gi,j e i e j spe lnia tr 1 1 (G 1 G) = i,j δj i ei e j (macierzowo [g i,j ] = [g i,j ] 1 ). 3.4 Algebra tensorowa. Przez T(V ) oznaczamy algebre tensorowa T(V ) = T q (V ) = V q = K V V 2 V 3... q=0 q=0 3.5 W lasność uniwersalna: Dla dowolnej algebry A z 1 nad cia lem K L(V, A) = Mor algebry z 1 (T (V ), A). 3.6 Tensory symetryczne : grupa permutacji Σ q dzia la na T q (V ) = T q 0 (V ) = V q permutuja c wspó lrze dne. Tensor T jest symetryczny jeśli dla każdej permutacji σ(t ) = T, tzn we wspó lrze dnych T i 1,i 2,...,i q = T i σ(1),i σ(2),...,i σ(q) 3.7 Oznaczenia: S q (V ) T q (V ) to przestrzeń tensorów symetrycznych, 3.8 Symetryzacja : zak ladamy, że char(k) = 0 i uśredniamy po permutacjach σ Σ q sym : V q S q (V ), sym(t ) = 1 q! σ σ(t ), Mamy sym sym = sym, zatem sym jest rzutowaniem na przestrzeń tensorów symetrycznych. 3.9 Niech e 1, e 2,... e n baza V, wtedy tensory e I = sym(e i1 e i2 e iq ) dla I = {i 1 i 2 i q sa baza S q (V ) Ćwiczenie; obliczyć dim Sq (R n ) Algebra symetryczna: s, t S(V ), definiujemy mnozenie s t = sym(s t) Dla s, t T(V ) mamy sym(sym(s) sym(t)) = sym(s t). Sta d sym : T(V ) S(V ) zachowuje mnożenie. Zatem S(V ) jest la czna. Dow: jeśli t T k (V ), s T l (V ), to u = sym(s) sym(t) jest tensorem symetrycznym ze wzgle du na pierwsza i druga grupe zmiennych. Zatem sym(u) = ( ) k+l 1 k (k,l) tasowania σ(u). 4
5 3.13 Tensory symetryczne można utożsamić z przestrzenia ilorazowa S q (V ) otrzymana z V q przez przestrzeń rozpie ta przez (v 1 v i v j v q ) (v 1 v j v i v q ). Mamy naturalne odwzorowanie (bez za lożenia o charakterystyce cia la) S q (V ) S q (V ). Symetryzacja indukuje przekszta lcenie odwrotne Gdy char K q przekszta lcenie S q (V ) S q (V ) nie jest izomorfizmem, np dla q = 2, char K = 2 element przestrzeni ilorazowej [v w] nie jest obrazem tensora symetrycznego S p ((K n ) )= wielomiany jednorodne od n zmiennych. (W szczególności S 0 ((K n ) ) = K, S 1 ((K n ) ) = (K n ) = formy liniowe.) 3.16 W lasność uniwersalna: A algebra przemienna, nad cia lem K L(V, A) = Mor algebry przemienne z 1 (S(V ), A). UZUPE LNIENIE (nie by lo na wyk ladzie) 4 Algebra symetryczna (cd) i Algebra zewne trzna 4.1 Jeśli K jest skończone to przekszta lcenie S(V ) F unkcje(v K) nie jest różnowartościowe. Np dla K = F q, gdy V = K: wtedy S(V ) K[x] i ja dro sk lada sie z wielomianów podzielnych przez x q x. Algebra zewne trzna 4.2 Tensor T V q jest antysymetryczny jeśli dla każdej permutacji σ σ(t ) = sgn(σ) T. We wspó lrze dnych: T i 1,i 2,...,i q = sgn(σ) T i σ(1),i σ(2),...,i σ(q). Oznaczenie przestrzeni tensorów antysymetrycznych Λ q (V ). 4.3 Jedynie dla q = 2 mamy V 2 = S 2 (V ) Λ 2 (V ). 4.4 Operacja antysymetryzacji Mamy A A = A. A : V q Λ q (V ) A(T ) = 1 q! ( 1) sgn(σ) σ(t ). σ Σ q 4.5 Mnożenie tensorów antysymetrycznych a b = A(a b). 4.6 Niech e 1, e 2,... e n baza V, wtedy tensory e I = A(e i1 e i2 e iq ) dla I = {i 1 < i 2 <... i q sa baza Λ q (V ). Sta d dim Λ q (V ) = ( ) dim V q. 4.7 Iloczyn zewne trzny: v 1 v 2 v q = A(v 1 v 2 v q ) Λ q (V ) 5
6 4.8 Pote ga zewne trzna przestrzeni sprze żonej Λ p (V ) to p-formy alternuja ce na V. Gdy n = dim(v ) generatorem Λ n (V ) jest wyznacznik (rozumiany jako n-liniowa forma antysymetryczna V n K). 4.9 Niezdegenerowane przekszta lcenie 2-liniowe, : Λ q (V ) Λ q (V ) K poprzez w lożenie do T q q(v ) i zwe żenie wszystkich indeksów. Na bazie e I, e J = 1 q! δj I, 4.10 Żeby pozbyć sie czynnika 1 q! dla form modyfikujemy definicje ej tak, aby to by la baza sprze żona do e I. Traktuja c e J jako tensor typu (q, 0) mamy (e i 1 e i 2 e iq )(e i1, e i2,..., e iq ) = δ J I (Jednak w literaturze zdarzaja sie teź inne konwencje.) 4.11 Algebra zewne trzna (Grassmanna): ΛV = dim V q=0 Λ q (V ) ma strukture algebry ze wzgle du na zdefiniowany jako a b = A(a b) Dla s, t T(V ), mamy A(s) A(t) = A(s t), czyli A : T(V ) ΛV zachowuje mnożenie. Sta d ΛV jest la czna. Dow: jeśli t T k (V ), s T l (V ), to u = A(s) A(t) jest tensorem antysymetrycznym ze wzgle du na pierwsza i druga grupe zmiennych. Zatem A(u) = ( ) k+l 1 k (k,l) tasowania sgn(σ)σ(u) Mnożenie jest przemienne z uwzgle dnieniem gradacji (super-przemienne): tzn dla a Λ i V, b Λ j V mamy a b = ( 1) ij b a. Ćwiczenia o tensorach i pote gach zewne trznych 4.14 (Zanurzenie Veronese) Rozważyć przekszta lcenie ( ) n + k 1 K n = V S k (V ) = K m, m =, v v v v k {{. k Pokazać, że indukuje ono w lożenie P(V ) P(S k (V )). Opisać równaniami obaz (Zanurzenie Plückera). Niec Gras k (K n ) oznacza zbiór k-wymiarowych podprzestrzeni w K n. Wykazać, że przekszta lcenie V = lin(v 1, v 2,..., v k ) lin(v 1 v 2 v k ) P(Λ k (K n )) jest dobrze określone. Opisać wielomianami obraz Niech ω Λ 2 (V ) be dzie antysymetryczna forma 2-liniowa na V = K 2n. Wykazać, że ω jest niezdegenerowana wtedy i tylko wtedy, gdy ω ω {{ ω 0. n 4.17 Niech v V, a Λ q V. Wykazać, że v a = 0 wtedy i tylko wtedy, gdy a = v b dla pewnego b Λ q 1 V 4.18 Pokazać, że Λ q rozszerza sie do funktora Λ q : V ect K V ect K. 6
GAL, konspekt wyk ladów: Tensory
GAL, konspekt wyk ladów: Tensory 15.6.2018 Notatki zawieraja odsy lacze do podre czników [Kos]=Kostrikin, [Tor]=Toruńczyk. [Kos roz. 6]. Materia l mniej standardowy jest opisany dok ladniej. 1 Iloczyn
Algebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:
Zadania z GAL-u. 1 Rozwia. Listopad x + 3y = 1 3x + y = x + y = 1 x + 2y 3z = 3 2x + 4y + z = 1 1.2
Zadania z GAL-u Listopad 2004 1 Rozwia zać uk lady równań: 11 12 13 14 15 { 2x + 3y = 1 3x + y = 0 x + y = 1 x + 2y 3z = 3 2x + 4y + z = 1 3x + y + z = 1 x + 2z = 6 3y + 2z = 0 2x + 3y + 2z = 1 3x + 4y
Przestrzenie wektorowe, liniowa niezależność wektorów, bazy przestrzeni wektorowych
Grupa, cia lo Zadanie 1. Jakie w lasności w zbiorze liczb naturalnych, ca lkowitych, wymiernych, rzeczywistych maj dzia lania a b = a b, a b = a 2 + b 2, a b = a+b, a b = b. 2 Zadanie 2. Pokazać, że (R
GAL, konspekt wyk ladów: Przestrzenie afiniczne
GAL, konspekt wyk ladów: Przestrzenie afiniczne 4 kwietnia 2017 Notatki zawieraja odsy lacze do podre czników [Kos]=Kostrikin, [Tor]=Toruńczyk Materia l mniej standardowy jest opisany dok ladniej 1 Przestrzenie
spis treści 1 Zbiory i zdania... 5
wstęp 1 i wiadomości wstępne 5 1 Zbiory i zdania............................ 5 Pojęcia pierwotne i podstawowe zasady 5. Zbiory i zdania 6. Operacje logiczne 7. Definicje i twierdzenia 9. Algebra zbiorów
Wyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011
1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy
Wyk lad 13 Funkcjona ly dwuliniowe
1 Izomorfizmy kanoniczne Wyk lad 13 Funkcjona ly dwuliniowe Definicja 13.1. Niech V i W bed przestrzeniami liniowymi. Funkcje ξ : V W R nazywamy funkcjona lem dwuliniowym, jeżeli i a,b R α,β V γ W ξa α
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
13. Cia la. Rozszerzenia cia l.
59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja
Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).
Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich
Endomorfizmy liniowe
Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy
Algebra i jej zastosowania ćwiczenia
Algebra i jej zastosowania ćwiczenia 13 stycznia 013 1 Reprezentacje liniowe grup skończonych 1. Pokazać, że zbiór wszystkich pierwiastków stopnia n z jedności jest grupa abelowa wzgle dem mnożenia.. Pokazać,
Niezb. ednik matematyczny. Niezb. ednik matematyczny
Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )
Wyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Pierścienie grupowe wyk lad 3. lewych podmodu lów prostych. Ogólniej, aby roz lożyć dany pierścień na sume. prosta
Pierścienie rupowe wyk lad 3 Już wiemy, że alebre rupowa CG skończonej rupy G można roz lożyć na sume lewych podmodu lów prostych Oólniej, aby roz lożyć dany pierścień na sume prosta jeo dwóch podmodu
GAL z Konspekt wyk ladów: Formy 2-liniowe [Kos roz.1 4], [Tor VII] 1 zadane wzorem φ # (w) = φ(, w). W bazach:
GAL z 2017 Konspekt wyk ladów: Formy 2-liniowe [Kos roz1 4], [Tor VII] 242017 Notatki zawieraja odsy lacze do podre czników [Kos]=Kostrikin, [Tor]=Toruńczyk Materia l mniej standardowy jest opisany dok
A. Strojnowski - Twierdzenie Jordana 1
A Strojnowski - Twierdzenie Jordana 1 Zadanie 1 Niech f b edzie endomorfizmem skończenie wymiarowej przestrzeni V nad cia lem charakterystyki różnej od 2 takim, że M(f) nie jest diagonalizowalna ale M(f
Wyk lad 10 Przestrzeń przekszta lceń liniowych
Wyk lad 10 Przestrzeń przekszta lceń liniowych 1 Określenie przestrzeni przekszta lceń liniowych Niech V i W bed a przestrzeniami liniowymi Oznaczmy przez L(V ; W ) zbór wszystkich przekszta lceń liniowych
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
Algebra i jej zastosowania konspekt wyk ladu, czȩść druga
Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Wyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
Warunki dzia lań na wektorach - aksjomaty przestrzeni liniowej a) b) daja podobnie do wektorów: strza lki, si la, pre
PRZESTRZENIE LINIOWE V = V, +,,, 0, K Warunki dzia lań na wektorach - aksjomaty przestrzeni liniowej a) b) c) d) e) f) g) h) v V v V u V u V (v + u = u + v) w V v V (v + 0 = v) (v + v V v = 0) (1 v = v)
(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach
Rozdzia l 4 Przestrzenie liniowe 4.1 Przestrzenie i podprzestrzenie 4.1.1 Definicja i podstawowe w lasności Niech X z dzia laniem dodawania + b edzie grupa przemienna (abelowa). Oznaczmy przez 0 element
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Definicja Niech V, W,
Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego
Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni
Zadania o grupach Zadania zawieraja
Zadania o grupach 18112014 Zadania zawieraja odsy lacze do podre czników [BT] A Bojanowska, P Traczyk, Algebra I (skrypt) http://wwwmimuwedupl/%7eaboj/algebra/algfinv1pdf [Br] J Browkin, Teoria cia, BiblMat49,
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, grudzień 2011 Mirosław Sobolewski (UW) Warszawa, grudzień
Wyk lad 11 Przekszta lcenia liniowe a macierze
Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β
Zadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,
GAL, konspekt wyk ladów: Przestrzenie afiniczne
GAL, konspekt wyk ladów: Przestrzenie afiniczne 5 kwietnia 2018 Notatki zawieraja odsy lacze do podre czników [Kos]=Kostrikin, [Tor]=Toruńczyk Materia l mniej standardowy jest opisany dok ladniej 1 Przestrzenie
Dziedziny Euklidesowe
Dziedziny Euklidesowe 1.1. Definicja. Dziedzina Euklidesowa nazywamy pare (R, v), gdzie R jest dziedzina ca lkowitości a v : R \ {0} N {0} funkcja zwana waluacja, która spe lnia naste ce warunki: 1. dla
Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika
Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa,listopad
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 29 Mirosław Sobolewski (UW) Warszawa, wrzesień
Kombinacje liniowe wektorów.
Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,
Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :
Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem
Przestrzenie wektorowe, liniowa niezależność Javier de Lucas
Przestrzenie wektorowe, liniowa niezależność Javier de Lucas Ćwiczenie 1. W literaturze można znaleźć pojȩcia przestrzeni liniowej i przestrzeni wektorowej. Obie rzeczy maj a tak a sam a znaczenie. Nastȩpuj
GAL z aweber/zadania/gal2017gw/ Wersja
Przestrzenie rzutowe GAL z 27 http://wwwmimuwedupl/ aweber/zadania/gal27gw/ Wersja 2627 Patrz osobny plik http://wwwmimuwedupl/ aweber/zadania/gal27gw/przestrzenie rzutowe-zadaniapdf Do zrobienia na ćwiczeniach:
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Algebra i jej zastosowania ćwiczenia
Algebra i jej zastosowania ćwiczenia A Pilitowska i A Romanowska 24 kwietnia 2006 1 Grupy i quasigrupy 1 Pokazać, że w każdej grupie (G,, 1, 1): (a) jeśli xx = x, to x = 1, (b) (xy) 1 = y 1 x 1, (c) zachodzi
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
DB Algebra liniowa 1 semestr letni 2018
DB Algebra liniowa 1 semestr letni 2018 Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo Naukowo-Techniczne,
4 Przekształcenia liniowe
MIMUW 4. Przekształcenia liniowe 16 4 Przekształcenia liniowe Obok przestrzeni liniowych, podstawowym obiektem algebry liniowej są przekształcenia liniowe. Rozpatrując przekształcenia liniowe między przestrzeniami
Dzia lanie grupy na zbiorze. Twierdzenie Sylowa
Dzia lanie grupy na zbiorze. Twierdzenie Sylowa Niech G be dzie dowolna grupa, zaś X zbiorem. 1. Definicja. Dzia laniem grupy G na zbiorze X nazywamy funkcje µ: G X X, µ(g, x) = g x, spe lniaja ca dwa
9 Przekształcenia liniowe
9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
6 Homomorfizmy przestrzeni liniowych
konspekt wykladu - 2009/10 1 6 Homomorfizmy przestrzeni liniowych Definicja 6.1. Niech V, U be przestrzeniami liniowymi nad cialem K. Przeksztalcenie F : V W nazywamy przeksztalceniem liniowym (homomorfizmem
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując
Wyk lad 14 Cia la i ich w lasności
Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,
Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych
Rozdział 3 Tensory 3.1 Krzywoliniowe układy współrzędnych W kartezjańskim układzie współrzędnych punkty P są scharakteryzowane przez współrzędne kartezjańskie wektora wodzącego r = x 1 i 1 + x 2 i 2 +
FUNKCJE LICZBOWE. x 1
FUNKCJE LICZBOWE Zbiory postaci {x R: x a}, {x R: x a}, {x R: x < a}, {x R: x > a} oznaczane sa symbolami (,a], [a, ), (,a) i (a, ). Nazywamy pó lprostymi domknie tymi lub otwartymi o końcu a. Symbol odczytujemy
1 Działania na zbiorach
Algebra liniowa z geometrią /4 Działania na zbiorach Zadanie Czy działanie : R R R określone wzorem (x x ) (y y ) := (x y x y x y + x y ) jest przemienne? Zadanie W dowolnym zbiorze X określamy działanie
P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja
19. O ca lkach pierwszych W paragrafie 6 przy badaniu rozwia zań równania P (x, y) + Q(x, y)y = 0 wprowadzono poje cie ca lki równania, podano pewne kryteria na wyznaczanie ca lek równania. Znajomość ca
Szczegółowa lista zagadnień kursu Algebra z geometrią MT obowiązujących na egzamin ustny w roku akademickim 2018/19
Szczegółowa lista zagadnień kursu Algebra z geometrią MT obowiązujących na egzamin ustny w roku akademickim 2018/19 1. Zbiory, zdania i formy zdaniowe. 2. Operacje logiczne i podstawowe prawa rachunku
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler
GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy
1 Przestrzeń liniowa. α 1 x α k x k = 0
Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Wyk lad 1 Podstawowe struktury algebraiczne
Wyk lad 1 Podstawowe struktury algebraiczne 1 Dzia lanie w zbiorze Majac dane dowolne dwa przedmioty a b możemy z nich utworzyć pare uporzadkowan a (a b) o poprzedniku a i nastepniku b. Warunek na równość
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
3 Przestrzenie liniowe
MIMUW 3 Przestrzenie liniowe 8 3 Przestrzenie liniowe 31 Przestrzenie liniowe Dla dowolnego ciała K, analogicznie jak to robiliśmy dla R, wprowadza się operację dodawania wektorów kolumn z K n i mnożenia
4. Dzia lanie grupy na zbiorze
17 4. Dzia lanie grupy na zbiorze Znaczna cze ść poznanych przez nas przyk ladów grup, to podgrupy grupy bijekcji jakiegoś zbioru. Cze sto taka podgrupa sk lada sie z bijekcji, które zachowuja dodatkowa
Wyk lad 6 Podprzestrzenie przestrzeni liniowych
Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy
Przestrzenie liniowe
Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie
Prostota grup A n. Pokażemy, że grupy A n sa. proste dla n 5. Dowód jest indukcyjny i poprzedzimy go lematem.
Prostota grup A n. Pokażemy, że grupy A n sa proste dla n 5. Dowód jest indukcyjny i poprzedzimy go lematem. 1 2 0. Twierdzenie Schura Zassenhausa W tym rozdziale zajmiemy sie bardzo użytecznym twierdzeniem,
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
Normy wektorów i macierzy
Rozdzia l 3 Normy wektorów i macierzy W tym rozdziale zak ladamy, że K C. 3.1 Ogólna definicja normy Niech ψ : K m,n [0, + ) b edzie przekszta lceniem spe lniaj acym warunki: (i) A K m,n ψ(a) = 0 A = 0,
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
2 Rachunek macierzowy, metoda eliminacji Gaussa-Jordana Wprowadzenie teoretyczne Zadania... 9
Spis treści 1 Podstawowe struktury algebraiczne 2 11 Grupa, pierścień, ciało 2 12 Grupy permutacji 4 13 Pierścień wielomianów, algorytm Euklidesa, największy wspólny dzielnik 6 14 Zadania 7 2 Rachunek
1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ).
B 2 Suma Zbadać, czy liniowo niezależne wektory u, v, w stanowią bazę przestrzeni liniowej lin { u + 2 v + w, u v + 2 w, 3 u + 5 w } 2 Współrzędne wektora (, 4, 5, 4 ) w pewnej bazie podprzestrzeni U R
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,
Cia la i wielomiany Javier de Lucas
Cia la i wielomiany Javier de Lucas Ćwiczenie 1. Za lóż, że (F, +,, 1, 0) jest cia lem i α, β F. w laściwości s a prawd a? Które z nastȩpuj acych 1. 0 α = 0. 2. ( 1) α = α. 3. Każdy element zbioru F ma
Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle
Algebra konspekt wykladu 2009/10 1 3 Podgrupy Niech S g mówimy, że podzbiór S jest zamknie ty ze wzgle du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle
Wyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:
Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
Geometria Lista 0 Zadanie 1
Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio
Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.
Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa
Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja
Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja przestrzenie liniowe nad A: każdy z nich ma rozk lad na sume modu lów prostych. W tych rozk
Notatki do wykładu Geometria Różniczkowa I
Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 1 listopada 013 1 Odwzorowanie styczne i cofnięcie formy cd: 1.1 Transport pola wektorowego i cofnięcie formy W poprzednim paragrafie
2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie
Seria zadań z Algebry IIR nr 29 kwietnia 207 r Notacja: We wszystkich poniższych zadaniach K jest ciałem, V wektorow a nad K zaś jest przestrzeni a Zadanie Niechaj V = K 4 [t] Określmy podprzestrzenie
Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach
Sterowalność liniowych uk ladów sterowania
Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,