Notatki do wykładu Geometria Różniczkowa I
|
|
- Przybysław Socha
- 10 lat temu
- Przeglądów:
Transkrypt
1 Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 1 listopada Odwzorowanie styczne i cofnięcie formy cd: 1.1 Transport pola wektorowego i cofnięcie formy W poprzednim paragrafie zdefiniowaliśmy odwzorowanie styczne i relacje kostyczną. Sprawdźmy jak działają one nie tylko na pojedyncze wektory i kowektory ale na pola wektorowe i formy. Niech F : M N będzie odwzorowaniem gładkim. Zauważmy, że jeśli y = F (x) to dla β y T yn istnieje dokładnie jeden kowektor w T xm będący w relacji kostycznej z β. Wynika to z faktu, ze relacja kostyczna obcięta do przestrzeni kostycznych w punktach x i y = F (x) jest odwzorowaniem liniowym (sprzężonym do TF ). Jeśli więc β jest jednoformą na N, to wzór M x T F (β(f (x))) T M (1) określa jednoformę na M. Zobaczmy jak to wygląda na diagramie T M T F T N F β M π M F π N N β Definicja 1 Jednoformę zadaną wzorem (1) oznaczać będziemy F β i nazywać cofnięciem formy β przez odwzorowanie F. Zamiast cofnięcie mówi się też czasami pull-back. Szczegónie prosto wyglada wzór na cofnięcie jednoformy, która jest różniczką funkcji F df = d(f F ). Gdybyśmy funkcję f F oznaczyli F f i nazwali cofnięciem funkcji, moglibyśmy stwierdzić, że cofnięcie jest przemienne z braniem różniczki F df = d(f f). Nieco gorzej ma się sprawa z polami wektorowymi. Odwzorowanie styczne działa z lewej do prawej TM TF TN X M τ M F τ N N? 1
2 i jeśli istnieją x 1 x takie, że F (x 1 ) = F (x ) to może się zdarzyć, że TF (X(x 1 )) TF (X(x )). W takim przypadku pola X nie można przetransportować z M do N. Każde pole wektorowe da się przetransportować jedynie gdy F jest dyfeomorfizmem: F X(y) = TF (X(F 1 (y))). () Jeśli F nie jest dyfeomorfizmem dają się (czasami) przetransportować niektóre pola. Na przykład jeśli F : R R, F (x, y) = x to transport istnieje dla pól postaci X = f(x) x + g(x, y) y. Wtedy F X = f(x) x. Definicja Pole wektorowe zdefiniowane wzorem () nazywamy transportem pola X przez odwzorowanie F. Zamiast transport mówi się też czasami popchniecie lub push-forward. Wielokowektory i wieloformy na powierzchni Poniższe notatki powstały z użyciem notatek do wykładów Matematyka II i Matematyka III, więc mogą Państwo mieć czasami wrażenie, że autor niepotrzebnie rozdziela włos na czworo. Z drugiej strony jednak wykładanie kawy na ławę ma też swoje zalety... Definicja 3 Niech V będzie n-wymiarową przestrzenią wektorową nad ciałem liczb rzeczywistych. Formą k-liniową nazywamy odwzorowanie: ω : V V V R, które jest liniowe ze względu na każdy argument, tzn. dla każdego i, dowolnych wektorów v j, j = 1... k, v i i dowolnych λ, µ R zachodzi ω(v 1, v,, λv i + µv i,, v k ) = λω(v 1, v,, v i,, v k ) + µω(v 1, v,, v i,, v k ) Z kursu algebry i analizy znają państwo dobrze formy dwuliniowe, szczególnie dwuliniowe symetryczne (np. iloczyn skalarny, druga pochodna funkcji wielu zmiennych obliczona w ustalonym punkcie, tensor bezwładności ciała sztywnego...). Wśród wszystkich form k-linowych wyróżnimy teraz szczególnie funkcje antysymetryczne, to znaczy mające własność ω(v 1, v,, v i,..., v j,, v k ) = ω(v 1, v,, v j,..., v i,, v k ) (3) dla dowolnych i j. Formy k-liniowe antysymetryczne nazywane są też k-formami antysymetrycznymi, lub k-kowektorami. Omawiając odwzorowania liniowe i formy dwuliniowe stwierdziliśmy, że własność liniowości powoduje, że odwzorowanie jest jednoznacznie określone przez wartości na wektorach bazowych. Stąd na przestrzeni n-wymiarowej do zdefiniowania formy dwuliniowej potrzeba n liczb: Q : V V R, Q ij = Q(e i, e j ).
3 Jeśli wiadomo, że forma jest symetryczna, wtedy wystarczy n(n + 1)/ wartości. Jeśli forma jest antysymetryczna potrzeba jeszcze mniej n(n 1)/, gdyż wyrazy diagonalne Q ii muszą być zero: z warunku antysymetrii wynika, że dla dowolnego v V Q(v, v) = Q(v, v) Po opuszczeniu kolorów (w końcu v i v to ostatecznie ten sam wektor v) dostajemy Q(v, v) = Q(v, v), (4) czyli Q(v, v) = 0. Innymi słowy przestrzeń wektorowa wszystkich form dwuliniowych ma wymiar n a podprzestrzenie form symetrycznych i antysymetrycznych wymiary odpowiednio n(n + 1)/ i n(n 1)/. Jeśli zauważymy ponadto, że forma, która jest jednocześnie symetryczna i antysymetryczna musi być zerowa, oraz że n(n + 1) + n(n 1) = n + n + n n zrozumiemy, że przestrzeń wszystkich form dwuliniowych jest sumą prostą podprzestrzeni form symetrycznych i podprzestrzeni form antysymetrycznych. Każda forma dwuliniowa da się więc rozłożyć w sposób jednoznaczny na część symetryczną i antysymetryczną: Q(v, w) = Q (v, w) + Q + (v, w) = n Q (v, w) = 1 [Q(v, w) Q(w, v)], Q +(v, w) = 1 [Q(v, w) + Q(w, v)]. Dla k > także jest prawdą, że forma k-liniowa jest jednoznacznie określona przez wartości na bazie, zatem przestrzeń takich odwzorowań jest przestrzenią wektorową wymiaru n k. W tej przestrzeni są także wyróżnione podprzestrzenie form symetrycznych i antysymetrycznych, których częścią wspólną jest przestrzeń zerowa, ale podprzestrzenie te nie wyczerpują przestrzeni wszystkich form. Zastanówmy się nad wymiarem przestrzeni k V form antysymetrycznych (pochodzenie dziwnego oznaczenia k V wyjaśni się wkrótce). Niech ω oznacza formę antysymetryczną. W zbiorze n k liczb ω i1 i i k = ω(e i1, e i,..., e ik ) jest wiele zer. Wystarczy, że w układzie (e i1, e i,..., e ik ) kórykolwiek wektor bazowy powtarza się, a już wartość ω na tym układzie musi być równa zero jak w (4). Jeśli zaś układ (e i1, e i,..., e ik ) nie zawiera powtarzających się wektorów, to wartość ω na tym układzie różni się od wartości ω na układzie zawierającym te same wektory tylko uporządkowane rosnąco ze względu na indeks, tylko znakiem. Wniosek: do zdefiniowania k-formy wystarczy tyle liczb ile jest różnych podzbiorów k-elementowych w zbiorze n-elementowym. Sięgając do wiedzy z zakresu kombinatoryki stwierdzamy, że jest ich ( n k ) = n! k!(n k)! tzn. 3 dim k V = n! k!(n k)!.
4 Powyższe rozważania prowadzą także do wniosku, że przestrzeń k-form antysymetrycznych dla k > n jest zerowa, natomiast przestrzeń n-form ma wymiar równy 1. Znamy już przynajmniej jeden przykład n-kowektora: Jeśli kolumny macierzy potraktujemy jak elementy R n wyznacznik jest n-kowektorem na R n. Podsumujmy teraz własności k-kowektorów. W poniższych wypowiedzach α jest k-kowektorem: Jeśli wśród argumentów α którykolwiek z wektorów powtarza się, wartość α na tym układzie wektorów jest równa zero. Wynika z tego, że jeśli v 1, v,..., v k jest układem liniowo-zależnym to α(v 1, v,..., v k ) = 0. Jak każde odwzorowanie liniowe α jest jednoznacznie określone na wektorach bazowych. Jeśli (e 1, e,..., e n ) jest bazą w V to liczby α i1 i...i k = α(e i1, e i,..., e ik ), 0 < i 1 < i < < i k < n + 1 wyznaczają jednoznacznie odwzorowanie α. Wynika z tego, że ( ) dim k n V = = k n!. k!(n k)! Skoro znamy już wymiar przestrzeni k-kowektorów, przydałby nam się także jakaś wygodna baza. Jako narzędzie do konstrukcji takiej bazy posłuży następujące pojęcie: Definicja 4 Iloczynem zewnętrznym k-kowektora α i l-kowektora β jest (k+l)-kowektor zadany wzorem α β = sgn σ σ S k+l k!l! α(v σ(1), v σ(),..., v σ(k) )β(v σ(k+1), v σ(l+),..., v σ(l) ). Zanim zastanowimy się nad własnościami iloczynu zewnętrznego przyjrzyjmy się przykładom dla konkretnych (niedużych) k i l. Niech k = 1 i l = 1, czyli α, β są po prostu kowektorami na V. Wtedy α β jest -kowektorem określonym wzorem α β(v 1, v ) = sgn σ σ S 1!1! α(v σ(1))β(v σ() ). W grupie permutacji S są tylko dwie permutacje: identyczność (parzysta) i jedna transpozycja (1 ) (nieparzysta). Wzór przyjmuje więc postać α β(v 1, v ) = α(v 1 )β(v ) α(v )β(v 1 ) Teraz załóżmy, że α jest -kowektorem a β kowektorem. Potrzebujemy więc permutacji z S 3. W tej grupie jest sześć permutacji: trzy transpozycje (1 ), (1 3), ( 3) (nieparzyste), dwa cykle (1 3), (1 3 ) i identycznosć. Wzór na iloczyn zewnętrzny przyjmuje postać: α β(v 1, v, v 3 ) = 1!1! (+α(v 1, v )β(v 3 ) α(v, v 1 )β(v 3 ) α(v 1, v 3 )β(v ) α(v 3, v )β(v 1 ) +α(v 3, v 1 )β(v )+α(v, v 3 )β(v 1 )) = 4
5 Wyrazy zaznaczone tym samym kolorem różnią się jedynie kolejnością argumentów -kowektora α. Po uporządkowaniu można je dodać. Trzeba jedynie pamiętać o zmianie znaku przy zamianie kolejności argumentów: = 1!1! (+α(v 1, v )β(v 3 ) + α(v 1, v )β(v 3 ) α(v 1, v 3 )β(v ) +α(v, v 3 )β(v 1 ) α(v 1, v 3 )β(v )+α(v, v 3 )β(v 1 )) = 1 (+α(v 1, v )β(v 3 ) α(v 1, v 3 )β(v )+α(v, v 3 )β(v 1 )) = Ostatecznie α(v 1, v )β(v 3 ) α(v 1, v 3 )β(v ) + α(v, v 3 )β(v 1 ). α β(v 1, v, v 3 ) = α(v 1, v )β(v 3 ) α(v 1, v 3 )β(v ) + α(v, v 3 )β(v 1 ). Jako ostatniej przyjrzyjmy się sytuacji kiedy oba czynniki iloczynu zewnętrznego są -kowektorami. Potrzebujemy teraz permutacji z S 4. Poprzedni przykład pokazuje, że istotny jest jedynie podział argumentów między czynniki. Argumenty jednego -kowektora porządkujemy rosnąco dodając podobne składniki. W tym przypadku mamy sześć możliwych podziałów zbioru indeksów {1,, 3, 4} pomiedzy -kowektory α i β: {1,, 3, 4} = {1, } {3, 4} {1,, 3, 4} = {1, 3} {, 4} {1,, 3, 4} = {1, 4} {, 3} {1,, 3, 4} = {, 3} {1, 4} {1,, 3, 4} = {, 4} {1, 3} {1,, 3, 4} = {3, 4} {1, }. Argumenty z indeksami z pierwszego zbioru będziemy wstawiac do α a z drugiego do β. Pierwszemu z podziałów odpowiadają cztery możliwe permutacje: id, (1 ), (3 4), (1 )(3 4) Pierwsza i ostatnia są parzyste, druga i trzecia nieparzyste. Permutacje te mieszają indeksy w ramach podziału, a nie między zbiorami podziału. Wkład od tych czterech permutacji do wzoru na iloczyn α β jest następujący +α(v 1, v )β(v 3, v 4 ) α(v, v 1 )β(v 3, v 4 ) α(v 1, v )β(v 4, v 3 ) + α(v, v 1 )β(v 4, v 3 ) Po uporządkowaniu rosnąco argumentów obu -kowektorów otrzymujemy wkład +4α(v 1, v )β(v 3, v 4 ). Podobnie analizując każdy z możliwych podziałów i odpowiadające każdemu cztery permutacje dostaniemy wzór α β(v 1, v, v 3, v 4 ) = 1!! (4α(v 1, v )β(v 3, v 4 ) 4α(v 1, v 3 )β(v, v 4 ) + 4α(v 1, v 4 )β(v, v 3 ) +4α(v, v 3 )β(v 1, v 4 ) 4α(v, v 4 )β(v 1, v 3 ) + 4α(v 3, v 4 )β(v 1, v )) = α(v 1, v )β(v 3, v 4 ) α(v 1, v 3 )β(v, v 4 ) + α(v 1, v 4 )β(v, v 3 ) +α(v, v 3 )β(v 1, v 4 ) α(v, v 4 )β(v 1, v 3 ) + α(v 3, v 4 )β(v 1, v ). 5
6 Zupełnie nieprzypadkowo współczynniki liczbowe za każdym razem się upraszczają. Oto najważniejsze własności ioczynu zewnętrznego: Fakt 1 1. Iloczyn zewnętrzny jest operacją dwuliniową, tzn: (aα + bα ) β = aα β + bα β, α (aβ + bβ = aα β + bα β ).. Iloczyn zewnętrzny jest łączny, tzn (α β) γ = α (β γ). 3. Iloczyn zewnętrzny w ogólności nie jest przemienny, ale zachodzi wzór: α β = ( 1) kl β α. 6
5 Wielokowektory i wieloformy na powierzchni
5 Wielokowektory i wieloformy na powierzchni Poniższe notatki powstały z użyciem notatek do wykładów Matematyka II i Matematyka III, więc mogą Państwo mieć czasami wrażenie, że autor niepotrzebnie rozdziela
Notatki do wykładu Geometria Różniczkowa I
Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 17 listopada 2013 1 Wielokowektory i wieloformy na powierzchni Poprzedni wykład zakończyliśmy na sformułowaniu następującego faktu:
Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).
Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011
Wykład 9. Matematyka 3, semestr zimowy 2011/2012 4 listopada 2011 W trakcie poprzedniego wykładu zdefiniowaliśmy pojęcie k-kowektora na przestrzeni wektorowej. Wprowadziliśmy także iloczyn zewnętrzny wielokowektorów
Algebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Definicja Niech V, W,
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie
; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...
Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
Wykład 11 i 12. Matematyka 3, semestr zimowy 2011/ i 18 listopada 2011
Wykład 11 i 12 Matematyka 3, semestr zimowy 2011/2012 15 i 18 listopada 2011 Zanim przejdziemy do formułowaniu lematu Poincaré musimy zdefiniować pojęcie transportu formy. Dyskutowaliśmy już wcześniej
3. Iloczyn zewnętrzny w ogólności nie jest przemienny, ale zachodzi wzór:
2 Iloczyn zewnętrzny jest łączny, tzn: (α β) γ α (β γ) 3 Iloczyn zewnętrzny w ogólności nie jest przemienny, ale zachodzi wzór: α β ( 1) kl β α Dowód: Punkt (1) wynika łatwo z definicji Dowód punktu (2)
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler
GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
5.6 Klasyczne wersje Twierdzenia Stokes a
Ostatecznie f = 1 r 2 f ) r 2 r r + ctg ϑ f r 2 ϑ + 1 2 f r 2 ϑ + 1 2 2 f r 2 sin 2 ϑ ϕ 2 56 Klasyczne wersje Twierdzenia Stokes a Odpowiedniość między polami wektorowymi i jednoformami lub n 1)-formami
1 Podobieństwo macierzy
GAL (Informatyka) Wykład - zagadnienie własne Wersja z dnia 6 lutego 2014 Paweł Bechler 1 Podobieństwo macierzy Definicja 1 Powiemy, że macierze A, B K n,n są podobne, jeżeli istnieje macierz nieosobliwa
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Podstawowe struktury algebraiczne
Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak
Macierz o wymiarach m n. a 21. a 22. A =
Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.
Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
5 Wyznaczniki. 5.1 Definicja i podstawowe własności. MIMUW 5. Wyznaczniki 25
MIMUW 5 Wyznaczniki 25 5 Wyznaczniki Wyznacznik macierzy kwadratowych jest funkcją det : K m n K, (m = 1, 2, ) przypisującą każdej macierzy kwadratowej skalar, liniowo ze względu na każdy wiersz osobno
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Przestrzenie liniowe
Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8
ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8 1. Sprawdzić, czy następujące podzbiory są podprzestrzeniami liniowymi przestrzeni R n (dla odpowiednich n) (a) {[u, v, 2u, 4v] ; u, v R} R 4, (b) {[u, v,
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
Notatki do wykładu Geometria Różniczkowa I
Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 30 grudnia 2013 1 Całkowanie form różniczkowych 11 Klasyczne wersje Twierdzenia Stokes a W tej części zajmiemy się interpretacją poniższych
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Notatki do wykładu Geometria Różniczkowa I
Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 6 stycznia 014 1 Różniczkowanie pól i form 1.1 Pochodna kowariantna Zobaczmy jak we współrzędnych wyglądać będzie równanie różniczkowe
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =
Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka
Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
Notatki do wykładu Geometria Różniczkowa I
Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 11 listopada 013 1 Alternatywne spojrzenie na wektory styczne Definicja 1 Algebrą nazywamy przestrzeń wektorową A wyposażoną w działanie
1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3.
Logika (3h). Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( p q) 3. (p q) ( q p) 4. (p q) ( p q) 5. (p q) (p q) 6. ((p q) r) (p (q r)) 7. (p q) r (p r) (q r) 8. (p q) (q r) (p r). Sprawdź, czy wyrażenia:.
Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :
Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem
Przestrzenie wektorowe, liniowa niezależność wektorów, bazy przestrzeni wektorowych
Grupa, cia lo Zadanie 1. Jakie w lasności w zbiorze liczb naturalnych, ca lkowitych, wymiernych, rzeczywistych maj dzia lania a b = a b, a b = a 2 + b 2, a b = a+b, a b = b. 2 Zadanie 2. Pokazać, że (R
Kombinacje liniowe wektorów.
Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
ZBIORY Z POWTÓRZENIAMI W zbiorze z powtórzeniami ten sam element może występować kilkakrotnie. Liczbę wystąpień nazywamy krotnością tego elementu w zbiorze X = { x,..., x n } - zbiór k,..., k n - krotności
Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011
Wykład 5 Matematyka 3, semestr zimowy / 9 listopada W trakcie tego i następnych kilku wykładów zajmować się będziemy analizą zespoloną, czyli różniczkowaniem i całkowaniem funkcji argumentu zespolonego
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Lokalna odwracalność odwzorowań, odwzorowania uwikłane
Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie
Postać Jordana macierzy
Rozdział 8 Postać Jordana macierzy Niech F = R lub F = C Macierz J r λ) F r r postaci λ 1 0 0 0 λ 1 J r λ) = 0 λ 1 0 0 λ gdzie λ F nazywamy klatką Jordana stopnia r Oczywiście J 1 λ) = [λ Definicja 81
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub
WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy
Zadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.
Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)
Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego
Geometria Różniczkowa II wykład piąty
Geometria Różniczkowa II wykład piąty Wykład piąty poświęcony będzie pojęciu całkowalności dystrybucji oraz fundamentalnemu dal tego zagadnienia twierdzeniu Frobeniusa. Przy okazji postanowiłam sprawdzić
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH
ALGEBRA Z GEOMETRIĄ 1/10 BAZY PRZESTRZENI WEKTOROWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 11, 18.12.2013 Typeset by Jakub Szczepanik. Istnienie bazy Tak jak wśród wszystkich pierścieni wyróżniamy
Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )
Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze
Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory
Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ).
B 2 Suma Zbadać, czy liniowo niezależne wektory u, v, w stanowią bazę przestrzeni liniowej lin { u + 2 v + w, u v + 2 w, 3 u + 5 w } 2 Współrzędne wektora (, 4, 5, 4 ) w pewnej bazie podprzestrzeni U R
spis treści 1 Zbiory i zdania... 5
wstęp 1 i wiadomości wstępne 5 1 Zbiory i zdania............................ 5 Pojęcia pierwotne i podstawowe zasady 5. Zbiory i zdania 6. Operacje logiczne 7. Definicje i twierdzenia 9. Algebra zbiorów
Notatki do wykładu Geometria Różniczkowa I
Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 22 października 2013 1 Przestrzeń styczna i kostyczna c.d. Pora na podsumowanie: Zdefiniowaliśmy przestrzeń styczną do przestrzeni afinicznej
Geometria Lista 0 Zadanie 1
Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio
Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa
1 Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych
Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych 2. Wektory. 2.. Wektor jako n ka liczb W fizyce mamy do czynienia z pojęciami lub obiektami o różnym charakterze. Są np. wielkości,
Wykład 2. . = n x k y k
Wykład 2 Matematyka 2, semestr letni 2/2 Kontynuujemy przygotowanie do studiowania rachunku różniczkowego funkcji wielu zmiennychwiedząjużpaństwo,żepochodnafunkcjif: R n Rwpunkciex R n jestodwzorowaniemliniowymdziałającymnawektorachzaczepionychwx
Algebra z Geometrią Analityczną. { x + 2y = 5 x y = 9. 4x + 5y 3z = 9, 2x + 4y 3z = 1. { 2x + 3y + z = 5 4x + 5y 3z = 9 7 1,
Lista Algebra z Geometrią Analityczną Układy równań. Zadanie 1 Wyjaśnij na czym polega metoda elininacji Gaussa rozwiązując układ równań: { x + 2y = 5 x y = 9 Zadanie 2 Rozwiąż układ równań metodą eliminacji
3 Przestrzenie liniowe
MIMUW 3 Przestrzenie liniowe 8 3 Przestrzenie liniowe 31 Przestrzenie liniowe Dla dowolnego ciała K, analogicznie jak to robiliśmy dla R, wprowadza się operację dodawania wektorów kolumn z K n i mnożenia
ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska
ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N