ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
|
|
- Roman Urban
- 8 lat temu
- Przeglądów:
Transkrypt
1 Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko
2 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiazań równań nieliniowych, np. algebraicznych, trygonometrycznych, przestępnych, które przybierają postać: f (x) = 0 lub g(x) = h(x). (1) Rozwiązaniem lub pierwiastkiem równania (1) nazywamy każdą liczbę x = x, która spełnia to równanie. Równanie nieliniowe charakteryzuje się tym, że może nie mieć żadnego rozwiązania lub też może mieć wiele rozwiązań. Dlatego nie można sformułować ogólnych reguł postępowania prowadzących do obliczenia jakiegokolwiek pierwiastka.
3 Warunki numerycznego rozwiązywania równań nieliniowych Do obliczeń numerycznych można przystąpić dopiero wtedy gdy wiemy, że poszukiwane rozwiązanie istnieje. Przy omawianiu algorytmów obliczania rozwiązań równań nieliniowych zakładamy, że równanie ma tylko pierwiastki odosobnione, tj. dla każdego pierwiastka równania istnieje otoczenie [a, b], które nie zawiera innych pierwiastków tego równania.
4 Warunki numerycznego rozwiązywania równań nieliniowych Równania nieliniowe rozwiązywać będziemy metodami iteracyjnymi, które wymagają: 1 dokonania właściwego wyboru punktu startowego, 2 wybrania odpowiedniego algorytmu iteracyjnego zapewniającego zbieżność procesu obliczeniowego, 3 określenia kryterium stopu wynikającego z wymaganej dokładności obliczeń. Punkt startowy musi być położony dostatecznie blisko poszukiwanego rozwiązania i znajdować się w przedziale izolacji tego pierwiastka. Zakładamy, że poszukiwany pierwiastek istnieje, i że znany jest jego przedział izolacji.
5 Etapy numerycznego rozwiązywania równań nieliniowych Obliczanie przybliżone pierwiastków odosobnionych, rzeczywistych równania f (x) = 0 dzieli się na dwa etapy: 1 lokalizacja pierwiastków, a więc ustalenie możliwie małych przedziałów [a, b], tzw. przedziałów izolacji, które zawierają jeden i tylko jeden pierwiastek; 2 uściślenie pierwiastków przybliżonych, tj. określenie tych pierwiastków z żądaną dokładnością. Każdy algorytm iteracyjnego obliczania pierwiastka polega na generowaniu ciągu punktów x (1), x (2), x (3), x (4),... Po wykonaniu odpowiednio dużej liczby obliczeń proces jest zbieżny do x.
6 Kryterium stopu procesu iteracyjnego Proces iteracyjny nie może trwać w nieskończoność, dlatego należy sformułować warunki stopu: tempo zbieżności: residuum: liczba iteracji: ɛ 1 = x n+1 x n, x n+1 ɛ 2 = f (x n + 1), f (x 0 ) n =? Obliczenia zostaną zakończone po spełnieniu warunków: ɛ 1 ɛ dop 1, ɛ 2 ɛ dop 2 spełnione równocześnie n n max alternatywa gdzie: ɛ dop 1, ɛ dop 2, n max zadane wielkości dopuszczalne.
7 Metoda połowienia (bisekcji) To najprostsza metoda ze wszystkich możliwych metod lecz bardzo wolno zbieżna. Dane jest równanie f (x) = 0, (2) przy czym funkcja f (x) jest ciągła w przedziale domkniętym < a, b > oraz zachodzi nierówność f (a) f (b) < 0.
8 Metoda połowienia (bisekcji) To najprostsza metoda ze wszystkich możliwych metod lecz bardzo wolno zbieżna. Dane jest równanie f (x) = 0, (3) przy czym funkcja f (x) jest ciągła w przedziale domkniętym < a, b > oraz zachodzi nierówność f (a) f (b) < 0.
9 Metoda połowienia (bisekcji) To najprostsza metoda ze wszystkich możliwych metod lecz bardzo wolno zbieżna. Dane jest równanie f (x) = 0, (4) przy czym funkcja f (x) jest ciągła w przedziale domkniętym < a, b > oraz zachodzi nierówność f (a) f (b) < 0.
10 Metoda połowienia (bisekcji) To najprostsza metoda ze wszystkich możliwych metod lecz bardzo wolno zbieżna. Dane jest równanie f (x) = 0, (5) przy czym funkcja f (x) jest ciągła w przedziale domkniętym < a, b > oraz zachodzi nierówność f (a) f (b) < 0.
11 Metoda połowienia (bisekcji) To najprostsza metoda ze wszystkich możliwych metod lecz bardzo wolno zbieżna. Dane jest równanie f (x) = 0, (6) przy czym funkcja f (x) jest ciągła w przedziale domkniętym < a, b > oraz zachodzi nierówność f (a) f (b) < 0.
12 Metoda bisekcji przykład Przykład Znaleźć pierwiastki równania f (x) = (x 1)(x + 1) = 0 przyjmując a = 0, b = 1.5, ɛ x = ɛ f = Rozwiązanie x 1 = 0.75, x 2 = 1.125, x 3 = ,..., x 14 = 1.0
13 Metoda interpolacji liniowej Metoda interpolacji liniowej (regula falsi) Metoda ta jest szybciej zbieżna od metody bisekcji, a ponadto jej zbieżność jest również gwarantowana. W interpretacji geometrycznej metoda interpolacji liniowej oznacza zastąpienie krzywej f (x) cięciwą łączącą punkty A(a, f (a)) i B(b, f (b)) x a b a = y f (a) f (b) f (a). (7) Dla y = 0 mamy x k = a f b b f a f b f a (8)
14 Metoda interpolacji liniowej Metoda interpolacji liniowej (regula falsi) x k = a f b b f a f b f a
15 Metoda interpolacji liniowej Metoda regula falsi przykład Znależć pierwiastki równania f (x) = (x 1)(x + 1) = 0 przyjmując a = 0, b = 1.5, ɛ x = ɛ f = 1e 4. Rozwiązanie x k = a f b b f a f b f a x 1 = , x 2 = , x 3 = ,..., x 8 =
16 Metoda siecznych W tej metodzie generowanie ciągu kolejnych przybliżeń wartości poszukiwanego pierwiastka odbywa sie także za pomocą interpolacji liniowej. Stosowana strategia interpolacji liniowej polega jednak na tym, że jest ona budowana na podstawie znanych wartości dwóch ostatnio obliczonych rzędnych funkcji f (x).
17 Metoda siecznych W tej metodzie, x (k+1) wyznacza się jako odciętą punktu przecięcia siecznej przechodzącej przez punkt A(x k 1, f (x k 1 )) oraz B(x k, f (x k )) z osią x ów: x k+1 = x k f (x k ) f (x k ) f (x k 1 ) (x k x k 1 ), k = 1, 2,..., n (9)
18 Metoda siecznych Posługiwanie się taką interpolacją może w pewnych przypadkach prowadzić do obliczenia pierwiastka x k+1 leżącego poza bieżącym przedziałem izolacji. Przykład: Znależć pierwiastek równania x 3 6 x x 6 = 0 dla a = 0.9, b = 1.9. Uwaga! Jak widać znaleziony został pierwiastek x = 2.0 leżący poza przyjętym przedziałem izolacji.
19 Metoda stycznych (Newtona-Raphsona) Metoda stycznych (Newtona-Raphsona) Podstawę metody stanowi interpolacja funkcji f (x) za pomocą stycznej prowadzonej w punkcie B(x 0, f 0 ). Kolejne przybliżenia poszukiwanego pierwiastka są odciętymi punktu przecięcia stycznej z osią x: x k+1 = x k f (x k) f (x k ). (10)
20 Metoda stycznych (Newtona-Raphsona) Metoda stycznych przyjęcie punktu startowego Jest to metoda najszybciej zbieżna o zbieżności kwadratowej. Oznacza to, że przy spełnionych założeniach jej błąd maleje kwadratowo wraz z liczbą iteracji. Wadą metody jest fakt, że zbieżność nie zawsze musi zachodzić W wielu przypadkach metoda bywa rozbieżna przeważnie wtedy gdy punkt startowy jest zbyt daleko od szukanego pierwiastka równania. Jeżeli zachodzą cztery warunki: 1 funkcje f (x) jest określona i ciągła w przedziale < x < + ; 2 f (a)f (b) < 0; 3 f (x) 0 dla a x b; 4 f (x) istnieje w przedziale (, + ) i nie zmienia znaku; to przy zastosowaniu metody Newtona za początkowe przybliżenie x 0 można przyjąć dowolną wartość c < a, b >.
21 Metoda stycznych (Newtona-Raphsona) Metoda stycznych przykład Znależć pierwiastki równania f(x)= (x-1)(x+1)=0 przyjmując x 0 = 1.5, ɛ x = ɛ f = 1e 4, n = 100. x k+1 = x k f (x k) f, k = 0, 1, 2, 3,... (x k ) Rozwiązanie x 1 = , x 2 = , x 3 = , x 4 = , ɛ x = , ɛ f =
22 Metoda stycznych (Newtona-Raphsona) Zmodyfikowana metoda Newtona Jeżeli pochodna f (x) zmienia się w przedziale domkniętym < a, b > nieznacznie to we wzorze można przyjąć x k+1 = x k f (x k) f, k = 0, 1, 2,, n (x k ) f (x k ) f (x 0 ). Zatem kolejne przybliżenia pierwiastka x równania f (x) = 0 można obliczyć ze wzoru x k+1 = x k f (x k) f, k = 0, 1, 2,, n (11) (x 0 )
23 Metoda stycznych (Newtona-Raphsona) Zmodyfikowana metoda Newtona x k+1 = x k f (x k) f, k = 0, 1,..., n (x 0 ) W interpretacji geometrycznej metoda ta oznacza zamianę stycznych w punktach B k (x k, f (x k )) prostymi, równoległymi do stycznej, przeprowadzonej przez punkt B 0 (x 0, f (x 0 )).
24 Metoda iteracji prostej Dane jest równanie f (x) = 0, (12) gdzie f (x) jest funkcją ciągłą. Należy wyznaczyć pierwiastki rzeczywiste tego równania. W tym celu równanie (12) sprowadzamy do równoważnego x = g(x). (13) Algorytm metody polega na wykorzystaniu schematu rekurencyjnego: x k+1 = g(x k ), k = 0, 1, 2,... (14) do generowania ciągu kolejnych przybliżeń poszukiwanego rozwiązania x. Wygenerowany ciąg liczbowy x 0, x 1, x 2,... może okazać się zbieżny do rozwiązania x, ale też może nie być zbieżny i wykazywać niestabilność.
25 Metoda iteracji prostej przykład 1 Rozważmy równanie x 2 = 2. Przy założeniu, że x 0 można napisać: x = g(x) = 2/x, a następnie skorzystać z reguły rekurencyjnej: Przyjmując punkt startowy: x k+1 = g(x) = 2 x k. a) x 0 = 0.5, x 1 = 2/0.5 = 4.0, x 2 = 2/4 = 0.5, x 3 = 2/0.5 = 4,... b) x 0 = 1.0, x 1 = 2/1.0 = 2.0, x 2 = 2/2 = 1.0, x 3 = 2/1.0 = 2,... c) x 0 = 2.0, x 1 = 2/2.0 = 1.0, x 2 = 2/1 = 2.0, x 3 = 2/2.0 = 1,... Pokazane elementy wygenerowanych ciągów oscylują. Takie zachowanie się algorytmu świadczy, że nie nadaje się on do rozwiązywania równania x 2 = 2.
26 Metoda iteracji prostej przykład 1 (c.d.) Można jednak zaproponować inną postać algorytmu, dokonując przekształceń: x 2 = 2 x = 2 x x+x = x+ 2 x 2x = x+ 2 x x = 1 2 (x+ 2 x ) Teraz formuła rekurencyjna przyjmie postać: x k+1 = g(x k ) = 1 2 (x k + 2 x k ) (15) Jeżeli teraz przyjmiemy x 0 = 0.5 to otrzymamy: x 1 = x 3 = x 4 = x 5 = x 6 = która dobrze przybliża liczbę x =
27 Metoda iteracji prostej przykład 1 (c.d.)
28 Metoda iteracji prostej z relaksacją f (x) = 0 x = g(x) Relaksacja zamienia początkowy schemat rozbieżny na zbieżny. Polega ona na obróceniu wykresu funkcji f (x) względem początku układu o kąt α wpływając na przyspieszenie zbieżności procesu iteracyjnego. Wartość kąta α obliczamy ze wzoru: α = g (x 0 ). a końcowa postać schematu iteracyjnego: gdzie: x 0 jest punktem startowym. x n+1 = g(x n) 1 g (x 0 ) x g (x 0 ) n 1 g (x 0 )
29 Metoda iteracji prostej przykład 2 Znależć pierwiastki równania f (x) = x 2 1 = 0. Po przekształceniu mamy: Schemat iteracyjny I: x = g(x) x = 1 x x k+1 = g(x k) 1 α x α k 1 α Dla: x 0 = 2 α = g (x 0 ) = 1 Schemat iteracyjny II: Wyniki: x 2 0 = 1 4. x k+1 = 4 5 x k x k x 1 = x 2 = x 3 = x 5 = x 6 = x 7 = x 23 =
30 Postać układu równań nieliniowych Układ równań nieliniowych ma następującą postać: f 1 (x 1, x 2,..., x n ) = 0, f 2 (x 1, x 2,..., x n ) = 0, f n (x 1, x 2,..., x n ) = 0 (16) lub f(x) = 0. (17)
31 Metoda Newtona-Raphsona Układy równań nieliniowych Metoda Newtona-Raphsona Uogólnienie metody Newtona-Raphsona (metoda stycznej w punkcie) na przypadek wielowymiarowy można zapisać wektorowo w następujący sposób: x k+1 = x k f(x k), k = 0, 1,... (18) J(x k ) wektor zmiennych wektor funkcji macierz Jakobianu f 1 x x 1 f 1 1 x = x 2. f = f 2 f 2. J = fi x j = x x n f n lub x k+1 = x k + x k, k = 0, 1,..., ( 1 gdzie x k+1 = J(x k )) f(xk ). f n x 1 W celu uniknięcia odwracania Jakobianu, rozwiązywany jest układ równań J(x k ) x k+1 = f(x k ) do określenia x k+1. f 1 x n f 2 x n f 1 x n
32 Metoda Newtona-Raphsona Układy równań nieliniowych przykład Metoda Newtona-Raphsona Rozwiąż układ równań: x 1 + (x 2 1) 2 2 = 0 (x 1 + 2) 3 x = 0. przyjmując wektor startowy x0 = [1, 0].
33 Metoda Newtona-Raphsona Układy równań nieliniowych Tok postępowania zgodnie z metodą Newtona-Raphsona Dla k = 0, 1,... wykonaj 1. Oblicz wartość funkcji i Jakobianu w punkcie : f(x k ), J(x k ) 2. Rozwiąż układ równań liniowych ze względu na x : J x = f 3. Wyznacz następne oszacowanie x : x k+1 = x k + x Rozwiązanie k = 0 f(x 0 ) = [ 2 28 ] [ 1 2, J(x 0 ) = 27 1 ], [ ] [ x 1 =, x = ],
34 Metoda Newtona-Raphsona Układy równań nieliniowych Rozwiązanie przykładu (c.d.) k = 1 f(x 1 ) = [ [ x 2 = k = 9 [ f(x 8 ) = x 9 = ] [ , J(x 1 ) = ] [ , x 2 = ], e e 12 [ e e 12 ], ] [ , J(x 8 ) = ] [ , x 9 = ]. ],
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Metody numeryczne Wykład 7
Metody numeryczne Wykład 7 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Plan wykładu Rozwiązywanie równań algebraicznych
Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych
Wykład trzeci 1 Wybrane metody przybliżonego wyznaczania rozwiązań pierwiastków równań nieliniowych 2 Metody rozwiązywania równań nieliniowych = 0 jest unkcją rzeczywistą zmiennej rzeczywistej Rozwiązanie
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Metody numeryczne. materiały do wykładu dla studentów
Metody numeryczne materiały do wykładu dla studentów 5. Przybliżone metody rozwiązywania równań 5.1 Lokalizacja pierwiastków 5.2 Metoda bisekcji 5.3 Metoda iteracji 5.4 Metoda stycznych (Newtona) 5.5 Metoda
Kubatury Gaussa (całka podwójna po trójkącie)
Kubatury Gaussa (całka podwójna po trójkącie) Całka podwójna po trójkącie Dana jest funkcja dwóch zmiennych f (x, y) ciągła i ograniczona w obszarze trójkątnym D. Wierzchołki trójkąta wyznaczają punkty
METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska
METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą prof. dr hab.inż. Katarzyna Zakrzewska Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
Metody rozwiązywania równań nieliniowych
Metody rozwiązywania równań nieliniowych Rozwiązywanie równań nieliniowych Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci f ( x)=0, x R, (1) gdzie f jest wystarczająco regularną funkcją.
Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych
Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:
Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych.
Ćwiczenia nr 2 metody połowienia, regula falsi i siecznych. Sformułowanie zagadnienia Niech będzie dane równanie postaci f (x) = 0, gdzie f jest pewną funkcją nieliniową (jeżeli f jest liniowa to zagadnienie
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
Elementy metod numerycznych
Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą
METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą
Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1
Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy
Metody numeryczne. Równania nieliniowe. Janusz Szwabiński.
Metody numeryczne Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-9.tex Metody numeryczne Janusz Szwabiński 7/1/2003 20:18 p.1/64 Równania nieliniowe 1. Równania nieliniowe z pojedynczym
Iteracyjne rozwiązywanie równań
Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie
Wyznaczanie miejsc zerowych funkcji
Wyznaczanie miejsc zerowych funkcji Piotr Modliński 6 października 010 Spis treści 1 Wstęp 1 Metody iteracyjne 1.1 Zbieżność metody............ Lokalizacja zer.............3 Metody odnajdywania zer.......3.1
RÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c
INTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku
Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku
Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski
Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Elektrotechnika stacjonarne-dzienne pierwszego stopnia
Wyznaczanie miejsc zerowych funkcji
Wyznaczanie miejsc zerowych funkcji Piotr Modliński 31 października 010 Spis treści 1 Wstęp 1 Metody iteracyjne 1.1 Zbieżność metody............ Lokalizacja zer.............3 Metody odnajdywania zer.......3.1
Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych
Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Numeryczne
Zagadnienia - równania nieliniowe
Zagadnienia - równania nieliniowe Sformułowanie zadania poszukiwania pierwiastków. Przedział izolacji. Twierdzenia o istnieniu pierwiastków. Warunki zatrzymywania algorytmów. Metoda połowienia: założenia,
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH.
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH http://www.infoceram.agh.edu.pl METODY NUMERYCZNE Metody numeryczne zbiór metod rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Metody Numeryczne. Wojciech Szewczuk
Metody Numeryczne Równania nieliniowe Równania nieliniowe W tych równaniach jedna lub więcej zmiennych występuje nieliniowo, np równanie Keplera x a sin x = b. Zajmiemy się teraz lokalizacją pierwiastków
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko
Wstęp do metod numerycznych 9a. Układy równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych 9a. Układy równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Układy równań algebraicznych Niech g:r N równanie R N będzie funkcja klasy co najmniej
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
KADD Minimalizacja funkcji
Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego
Bardzo łatwa lista powtórkowa
Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Matematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
Optymalizacja ciągła
Optymalizacja ciągła 1. Optymalizacja funkcji jednej zmiennej Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 54 Plan wykładu Optymalizacja funkcji jednej
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Metody Obliczeniowe w Nauce i Technice
7. Równania nieliniowe (non-linear equations) Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Dawid Prokopek
Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 14 stycznia 2012 P. Modliński, GiK PW Rozw.
FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c
FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie
KLASA II LO Poziom rozszerzony (wrzesień styczeń)
KLASA II LO Poziom rozszerzony (wrzesień styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY: 1) na podstawie wykresu funkcji y = f(x) szkicuje wykresy funkcji y = f(x), y = c f(x), y =
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Analiza numeryczna kolokwium2a-15grudnia2005
kolokwium2a-15grudnia2005 1.Niechf(x)=a n x n +a n 1 x n 1 +...+a 0.Jakąwartośćprzyjmujeilorazróżnicowy f[x 0,...,x n ]dladowolnychn+1paramiróżnychwęzłówx j?odpowiedźuzasadnić. 2. Pokazać, że zamiana zmiennych
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
Metody Numeryczne Optymalizacja. Wojciech Szewczuk
Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A
Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
Równania nieliniowe. LABORKA Piotr Ciskowski
Równania nieliniowe LABORKA Piotr Ciskowski przykład 1. funkcja fplot fplot ( f, granice ) fplot ( f, granice, n, linia, tol ) [ x, y ] = fplot ( )» fplot ( sin(x*x)/x, [ 0 4*pi ] )» fplot ( sin(x*x)/x,
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy. Wykład 5. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy Wykład 5 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Algorytm Euklidesa Liczby pierwsze i złożone Metody
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6
Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur.
Języki i paradygmaty programowania 1 studia stacjonarne 2018/19 Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur. 1. Identyfikator funkcji,
FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie
Funkcja kwadratowa jest to funkcja postaci y = ax 2 + bx + c, wyrażenie ax 2 + bx + c nazywamy trójmianem kwadratowym, gdzie x, a, oraz a, b, c - współczynniki liczbowe trójmianu kwadratowego. ó ó Wykresem
Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU
Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a
Egzamin z Metod Numerycznych ZSI, Grupa: A
Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa
Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/
Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Lokalna minimalizacja ciagła Minimalizacja funkcji jest jedna z najważniejszych
Wykład 5. Zagadnienia omawiane na wykładzie w dniu r
Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji
Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi
SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Wstęp do metod numerycznych 11. Minimalizacja: funkcje jednej zmiennej. P. F. Góra
Wstęp do metod numerycznych 11. Minimalizacja: funkcje jednej zmiennej P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Lokalna minimalizacja ciagła Minimalizacja funkcji jest jedna z najważniejszych
Optymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu
Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12 P.
Całkowanie numeryczne przy użyciu kwadratur
Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych. P. F. Góra
Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która
3. Interpolacja Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która przyjmuje wartości y 1, y 2,, y n, dla skończonego zbioru argumentów x 1, x
Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna
Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody poszukiwania ekstremum funkcji jednej zmiennej Materiały pomocnicze do ćwiczeń
MATEMATYKA Katalog wymagań programowych
MATEMATYKA Katalog wymagań programowych KLASA 1H LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych - na ocenę dopuszczającą () lub dostateczną przedstawiać liczby rzeczywiste w różnych
Standardy wymagań maturalnych z matematyki - matura
Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania