Analiza numeryczna Kurs INP002009W. Wykład 8 Interpolacja wielomianowa. Karol Tarnowski A-1 p.223

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza numeryczna Kurs INP002009W. Wykład 8 Interpolacja wielomianowa. Karol Tarnowski A-1 p.223"

Transkrypt

1 Analiza numeryczna Kurs INP002009W Wykład 8 Interpolacja wielomianowa Karol Tarnowski A-1 p.223

2 Plan wykładu Wielomian interpolujący Wzór interpolacyjny Newtona Wzór interpolacyjny Lagrange a Ilorazy różnicowe Interpolacja Hermite a 2/33

3 Wielomian interpolujący Zadanie. Znaleźć wielomian p możliwie najniższego stopnia taki, że dla danych n + 1 punktów (x i,y i ) jest p(x i ) = y i (0 i n). Twierdzenie. Jeśli liczby x 0, x 1,, x n są parami różne to istnieje dokładnie jeden wielomian taki, że p(x i ) = y i (0 i n). p n 3/33

4 Wielomian interpolujący Dowód Dowód. Jednoznaczność załóżmy, że istnieją dwa wielomiany klasy n interpolujące wartości y i w węzłach x i : p n (x) oraz q n (x). Rozważmy wielomian p n (x) q n (x), który także należy do klasy n. Wielomiany należące do n mogą znikać w co najwyżej n punktach, o ile nie znikają tożsamościowo. Wielomian p n (x) q n (x) znika w n+1 punktach x i dla (0 i n), zatem p x q x. n n 4/33

5 Wielomian interpolujący Dowód Dowód. Istnienie dla n = 0 wielomian stały p 0 (x) = y 0 spełnia jedyny warunek interpolacyjny p 0 (x 0 ) = y 0. Załóżmy, że dla pewnego k istnieje wielomian p k 1 klasy k 1 taki, że p k 1 (x i ) = y i dla (0 i k 1). Wielomian p k (x) możemy zapisać jako p x p x c x x x x x x. k k1 k 0 1 k1 Stopień tego wielomianu nie przewyższa k. Wielomian ten spełnia warunki interpolacyjne (0 i k 1). Pozostaje wyznaczyć c k tak, żeby p k (x k ) = y k. p x p x c x x x x x x y k k k1 k k k 0 k 1 k k1 k. 5/33

6 Wzór interpolacyjny Newtona c k y k pk 1 xk x x x x x x k 0 k 1 k k1 p x c c x x c x x x x x x k k 0 1 k1 p x c x x k i 1 k i j i0 j0 6/33

7 Wzór interpolacyjny Newtona Przykład x y /33

8 Wzór interpolacyjny Newtona Przykład p x y x 0 1 8/33

9 Wzór interpolacyjny Newtona Przykład p x y x 0 1 p x p x c x c 1 p1 x x /33

10 Wzór interpolacyjny Newtona Przykład x y p1 x x p x p x 2 1 c2 x 1 x 5 p x p x x 1 x 5 10/33

11 Wzór interpolacyjny Newtona Przykład x y p x p x x 1 x 5x 3 11/33

12 Wzór interpolacyjny Lagrange a l x c x x x x x x x x i 0 i1 i1 n l l i i x 1 i x x x 0 x xi1 x xi1 x xn x x x x x x x x i 0 i i1 i i1 i n n x x j l i x 0 i n x x j0, ji i j k0 p x ykk l x n 12/33

13 Wzór interpolacyjny Lagrange a Przykład x y l 0 x x 3x 5 x x 3 x 5 x /33

14 Wzór interpolacyjny Lagrange a Przykład x y l 1 x x 1 x 5 x x 1 x 5x /33

15 Wzór interpolacyjny Lagrange a Przykład x y l 2 x x 1 x 3 x x 1 x 5 x /33

16 Wzór interpolacyjny Lagrange a Przykład x y l 3 x x 1 x 3 x x 1 x 3 x /33

17 Wzór interpolacyjny Lagrange a Przykład x y n kk k p x y l x l x l x l x l x 17/33

18 Iloraz różnicowy Wielomian p(x) klasy n spełniający dla danej funkcji f warunki interpolacyjne f x p x można wyrazić za pomocą wzoru Newtona: n k 1 k k0 j0 p x c x x Współczynniki c k zależą tylko od węzłów x 0, x 1,, x k i wartości funkcji w tych węzłach. i ck f x 0, x1,, xk i j. Jest to iloraz różnicowy rzędu k. 18/33

19 Iloraz różnicowy iloraz różnicowy rzędu zerowego f x f x 0 0 iloraz różnicowy rzędu pierwszego f x, x 0 1 f x f x 1 0 x x /33

20 Iloraz różnicowy Ilorazy różnicowe wyższych rzędów ilorazy różnicowe spełniają zależność f x 0, x1,, x k f x, x,, x f x, x,, x 1 2 k 0 1 k1 x k x 0 x 0 f[x 0 ] f[x 0,x 1 ] f[x 0,x 1,x 2 ] f[x 0,x 1,x 2,x 3 ] x 1 f[x 1 ] f[x 1,x 1 ] f[x 1,x 2,x 3 ] x 2 f[x 2 ] f[x 2,x 3 ] x 3 f[x 3 ] 20/33

21 Wzór interpolacyjny Newtona Ilorazy różnicowe 1 1-1/4-3/8 1/ / / p3 x x x x x x x p3 x x x x /33

22 Wzór interpolacyjny Newtona Ilorazy różnicowe c f x x x ij i, i1,, ij x 0 c 00 c 01 c 02 c 0n x 1 c 10 c 11 c 12 x n-1 c n-1,0 c n-1,1 x n c n,0 c ij c i1, j1 i, j1 x c x i j i 22/33

23 Wzór interpolacyjny Newtona Ilorazy różnicowe input n, (x i ), f(x i ) for i = 0 to n do d i f(x i ) enddo for j = 1 to n do enddo for i = n to j step -1 d i (d i d i-1 )/(x i x i-j ) enddo 23/33

24 Interpolacja wielomianowa Dokładność Twierdzenie. Jeśli f jest klasy C n+1 [a,b], a wielomian p(x) klasy n interpoluje wartości funkcji f w n + 1 różnych punktach x 0, x 1,, x n przedziału [a,b], to dla każdego x należącego do [a,b] istnieje takie x w przedziale (a,b), że n 1 f x p x f x x n 1! n1 x i0 i. 24/33

25 Interpolacja wielomianowa Przykład Jaki jest błąd przybliżenia funkcji f(x) = sin x wielomianem interpolacyjnym stopnia 9 w przedziale [0,1], do którego należą węzły? n 1 f x p x f x x n 1! n1 x i0 10 x 9 i0 f 1 x x 1 i i. 1 sin 2, ! x p x 7 25/33

26 Interpolacja wielomianowa Ważne zagadnienia Wybór węzłów interpolacji Wielomiany Czebyszewa Zbieżność wielomianów interpolacyjnych Zjawisko Rungego f x x /33

27 Interpolacja Hermite a Wstęp Szukamy wielomianu p(x) możliwie niskiego stopnia w dwóch różnych x 0 i x 1 interpoluje funkcję f i jej pochodną f. p x f x, p ' x f ' x, , ' ' p x f x p x f x p x a b x x c x x d x x x x p ' x b 2c x x 2d x x x x d x x /33

28 Interpolacja Hermite a Wstęp p x f x, p ' x f ' x, , ' ' p x f x p x f x p x a b x x c x x d x x x x p ' x b 2c x x 2d x x x x d x x 0 0 f x a, f ' x b, f x a bh ch, f ' x b 2ch 2 dh, h x x /33

29 Interpolacja Hermite a Wstęp interpolacja Birkhoffa - przykład Szukamy wielomianu p(x) takiego, że: p(0) = 0, p(1) = 1, p ( 1 / 2 )=2. p x a bx cx Z pierwszego warunku dostajemy a = 0, z dwóch pozostałych: 1 = p(1) = b + c, 2 = p ( 1 / 2 ) = b + c. 2 29/33

30 Interpolacja Hermite a Wstęp interpolacja Birkhoffa - przykład Szukamy wielomianu p(x) takiego, że: p(0) = 0, p(1) = 1, p ( 1 / 2 )= p x a bx cx dx Z pierwszego warunku dostajemy a = 0, z dwóch pozostałych: 1 = p(1) = b + c + d, 2 = p ( 1 / 2 ) = b + c + 3 / 4 d. d = -4, b + c = 5. 30/33

31 Interpolacja Hermite a Definicja zadania Dla danych węzłów x i (0 i m) parami różnych, danych liczb naturalnych k i i danych wartości c ij szukamy takiego wielomianu p(x), że j p x c 0 j k 1, 0 i m. i ij i Łączną liczbę warunków oznaczamy jako n m 1 k. i0 i Twierdzenie. W klasie n istnieje dokładnie jeden wielomian p(x) spełniający podane warunki. 31/33

32 Interpolacja Hermite a Uogólnienie interpolacji Newtona Szukamy wielomianu p klasy 2 takiego, że p(x 0 ) = c 00, p (x 0 ) = c 01, p(x 1 ) = c 10. Tablica ilorazów różnicowych ma wtedy postać: x 0 c 00 c 01 c 02 x 0 c 00 c 11 f x f x x 1 c 10 lim f x, x lim f ' x x x0 xx0 x x0,,, p x f x f x x x x f x x x x x /33 2

33 Interpolacja Hermite a Uogólnienie interpolacji Newtona 1 k f x, x,, x f x k! p x x x x x x x 33/33

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej

Bardziej szczegółowo

Analiza numeryczna kolokwium2a-15grudnia2005

Analiza numeryczna kolokwium2a-15grudnia2005 kolokwium2a-15grudnia2005 1.Niechf(x)=a n x n +a n 1 x n 1 +...+a 0.Jakąwartośćprzyjmujeilorazróżnicowy f[x 0,...,x n ]dladowolnychn+1paramiróżnychwęzłówx j?odpowiedźuzasadnić. 2. Pokazać, że zamiana zmiennych

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Wykład nr 2 Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n (nazywane węzłami interpolacji) i wartości w węzłach y 0,..., y n. Od węzłów żądamy spełnienia warunku x i x j dla

Bardziej szczegółowo

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych

Bardziej szczegółowo

Metody numeryczne. Ilorazy różnicowe. dr Artur Woike. Wzory interpolacyjne Newtona i metoda Aitkena.

Metody numeryczne. Ilorazy różnicowe. dr Artur Woike. Wzory interpolacyjne Newtona i metoda Aitkena. Ćwiczenia nr 3. Ilorazy różnicowe Niech będą dane punkty x 0,..., x n i wartości f (x 0 ),..., f (x n ). Definiujemy rekurencyjnie ilorazy różnicowe: f (x i, x i+1 ) = f (x i+1) f (x i ) x i+1 x i, i =

Bardziej szczegółowo

Interpolacja funkcji

Interpolacja funkcji Interpolacja funkcji Interpolacja funkcji Interpolacja funkcji Wielomianowa Splajny Lagrange a Trygonometryczna Interpolacja Newtona (wzór I ) Czebyszewa Newtona (wzór II ) ( Wielomiany Czebyszewa ) Załóżmy,

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

Bardzo łatwa lista powtórkowa

Bardzo łatwa lista powtórkowa Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer. METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne

Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści 1 Na czym polega różniczkowanie numeryczne

Bardziej szczegółowo

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa Sformułowanie zadania interpolacji Metody Numeryczne Wykład 4 Wykład 5 Interpolacja wielomianowa Niech D R i niech F bȩdzie pewnym zbiorem funkcji f : D R. Niech x 0, x 1,..., x n bȩdzie ustalonym zbiorem

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź

Bardziej szczegółowo

Newton vs. Lagrange - kto lepszy?

Newton vs. Lagrange - kto lepszy? Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Katedra Analizy Matematycznej Agnieszka Rydzyńska nr albumu: 254231 Praca Zaliczeniowa z Seminarium Newton vs. Lagrange - kto lepszy? Opiekun

Bardziej szczegółowo

Wstęp do metod numerycznych 7. Interpolacja. P. F. Góra

Wstęp do metod numerycznych 7. Interpolacja. P. F. Góra Wstęp do metod numerycznych 7. Interpolacja P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Interpolacja Dana jest funkcja w postaci stabelaryzowanej x i x 1 x 2 x 3... x n f i = f(x i ) f 1 f 2 f

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Technologie informatyczne

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Technologie informatyczne Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Interpolacja metoda funkcji sklejanych Materiały pomocnicze do ćwiczeń laboratoryjnych

Bardziej szczegółowo

Wstęp do metod numerycznych Interpolacja. P. F. Góra

Wstęp do metod numerycznych Interpolacja. P. F. Góra Wstęp do metod numerycznych Interpolacja P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Interpolacja Dana jest funkcja w postaci stabelaryzowanej x i x 1 x 2 x 3... x n f i = f(x i ) f 1 f 2 f 3...

Bardziej szczegółowo

Całkowanie numeryczne przy użyciu kwadratur

Całkowanie numeryczne przy użyciu kwadratur Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Grupa: A

Egzamin z Metod Numerycznych ZSI, Grupa: A Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa

Bardziej szczegółowo

Zajęcia nr 1: Zagadnienia do opanowania:

Zajęcia nr 1: Zagadnienia do opanowania: Laboratorium komputerowe oraz Ćwiczenia rachunkowe z przedmiotu Metody obliczeniowe Prowadzący: L. Bieniasz (semestr letni 018) Zagadnienia do opanowania przed zajęciami, pomocnicze zadania rachunkowe

Bardziej szczegółowo

Elementy Analizy Numerycznej - opracowanie pytań egzaminacyjnych

Elementy Analizy Numerycznej - opracowanie pytań egzaminacyjnych Elementy Analizy Numerycznej - opracowanie pytań egzaminacyjnych baszmen, entereczek, JG, kubked, MK, PajdziuPaj Vertyk WI-INFA września 0 Spis treści Teoria. Co to znaczy, że algorytm obliczeniowy jest

Bardziej szczegółowo

Metody numeryczne Wykład 6

Metody numeryczne Wykład 6 Metody numeryczne Wykład 6 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Interpolacja o Interpolacja

Bardziej szczegółowo

Interpolacja i modelowanie krzywych 2D i 3D

Interpolacja i modelowanie krzywych 2D i 3D Interpolacja i modelowanie krzywych 2D i 3D Dariusz Jacek Jakóbczak Politechnika Koszalińska Wydział Elektroniki i Informatyki Zakład Podstaw Informatyki i Zarządzania e-mail: Dariusz.Jakobczak@tu.koszalin.pl

Bardziej szczegółowo

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1 Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi

Bardziej szczegółowo

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

Obliczenia Naukowe i Metody Numeryczne. Laboratorium Komputerowe lista 4 5 października 2012

Obliczenia Naukowe i Metody Numeryczne. Laboratorium Komputerowe lista 4 5 października 2012 Obliczenia Naukowe i Metody Numeryczne Laboratorium Komputerowe lista 4 5 października 2012 Temat: interpolacja i iteracyjne metody obliczania zer funkcji Uwagi. Zalecane jest graficzne ilustrowanie przeprowadzonych

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która

3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która 3. Interpolacja Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która przyjmuje wartości y 1, y 2,, y n, dla skończonego zbioru argumentów x 1, x

Bardziej szczegółowo

Obliczenia Naukowe i Metody Numeryczne Przykładowe zadania z Analizy Numerycznej z poprzednich lat 5 października 2009

Obliczenia Naukowe i Metody Numeryczne Przykładowe zadania z Analizy Numerycznej z poprzednich lat 5 października 2009 Obliczenia Naukowe i Metody Numeryczne Przykładowe zadania z Analizy Numerycznej z poprzednich lat 5 października 2009 1. Co to jest epsilon maszynowy? Napisać schemat algorytmu obliczania w komputerze

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Metody Numeryczne. Wojciech Szewczuk

Metody Numeryczne. Wojciech Szewczuk Metody Numeryczne Równania nieliniowe Równania nieliniowe W tych równaniach jedna lub więcej zmiennych występuje nieliniowo, np równanie Keplera x a sin x = b. Zajmiemy się teraz lokalizacją pierwiastków

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 5. Aproksymacja Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Paweł Urban Jakub Ptak Łukasz Janeczko

Bardziej szczegółowo

1 Równania nieliniowe

1 Równania nieliniowe 1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p. Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia

Bardziej szczegółowo

Wstęp do metod numerycznych 5. Interpolacja. P. F. Góra

Wstęp do metod numerycznych 5. Interpolacja. P. F. Góra Wstęp do metod numerycznych 5. Interpolacja P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Interpolacja Problem: Dana jest funkcja w postaci stabelaryzowanej okreśona w węzłach pewnej siatki (jedno-,

Bardziej szczegółowo

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

2.2 Udowodnić,żejeżelif(x)=(x x 0 )(x x 1 )...(x x p ),to[x 0,x 1,...,x n ;f]= 0dlan p.jakajestwartośćtegoilorazu,gdyn=p+1?

2.2 Udowodnić,żejeżelif(x)=(x x 0 )(x x 1 )...(x x p ),to[x 0,x 1,...,x n ;f]= 0dlan p.jakajestwartośćtegoilorazu,gdyn=p+1? 2.2 Udowodnić,żejeżelif(x)=(x x 0 )(x x 1 )...(x x p ),to[x 0,x 1,...,x n ;f]= 0dlan p.jakajestwartośćtegoilorazu,gdyn=p+1? Definicja ilorazu różnicowego: [x l,x l+1,...,x l+k ;f]= l+k l+k i=l j=l j i

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a.

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a. Ćwiczenia 3032010 - omówienie zadań 1-4 z egzaminu poprawkowego Konwersatorium 3032010 - omówienie zadań 5-8 z egzaminu poprawkowego Ćwiczenia 4032010 (zad 445-473) Kolokwium nr 1, 10032010 (do zad 473)

Bardziej szczegółowo

Elementy metod numerycznych

Elementy metod numerycznych Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego

Bardziej szczegółowo

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I

Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo

Wykład 6, pochodne funkcji. Siedlce

Wykład 6, pochodne funkcji. Siedlce Wykład 6, pochodne funkcji Siedlce 20.12.2015 Definicja pochodnej funkcji w punkcie Niech f : (a; b) R i niech x 0 ; x 1 (a; b), x0 x1. Wyrażenie nazywamy ilorazem różnicowym funkcji f między punktami

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność

Bardziej szczegółowo

DOPASOWYWANIE KRZYWYCH

DOPASOWYWANIE KRZYWYCH DOPASOWYWANIE KRZYWYCH Maciej Patan Uniwersytet Zielonogórski Motywacje Przykład 1. Dane o przyroście światowej populacji są aktualizowane co każde 10 lat, celem szacowania średniego przyrostu rocznego.

Bardziej szczegółowo

INFORMATYKA ELEMENTY METOD NUMERYCZNYCH.

INFORMATYKA ELEMENTY METOD NUMERYCZNYCH. INFORMATYKA ELEMENTY METOD NUMERYCZNYCH http://www.infoceram.agh.edu.pl METODY NUMERYCZNE Metody numeryczne zbiór metod rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),

Bardziej szczegółowo

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np. Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F

Bardziej szczegółowo

Metody Numeryczne Optymalizacja. Wojciech Szewczuk

Metody Numeryczne Optymalizacja. Wojciech Szewczuk Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne

Bardziej szczegółowo

Matematyczne Metody Fizyki II

Matematyczne Metody Fizyki II Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład / 6 Ortonormalne

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Interpolacja PWSZ Gªogów, 2009 Interpolacja Okre±lenie zale»no±ci pomi dzy interesuj cymi nas wielko±ciami, Umo»liwia uproszczenie skomplikowanych funkcji (np. wykorzystywana

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )

Bardziej szczegółowo

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Elektrotechnika stacjonarne-dzienne pierwszego stopnia

Bardziej szczegółowo

Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I

Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6

Bardziej szczegółowo

O geometrii semialgebraicznej

O geometrii semialgebraicznej Inauguracja roku akademickiego 2018/2019 na Wydziale Matematyki i Informatyki Uniwersytetu Łódzkiego O geometrii semialgebraicznej Stanisław Spodzieja Łódź, 28 września 2018 Wstęp Rozwiązywanie równań

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego

Bardziej szczegółowo

III. INTERPOLACJA Ogólne zadanie interpolacji. Niech oznacza funkcjê zmiennej x zale n¹ od n + 1 parametrów tj.

III. INTERPOLACJA Ogólne zadanie interpolacji. Niech oznacza funkcjê zmiennej x zale n¹ od n + 1 parametrów tj. III. INTERPOLACJA 3.1. Ogólne zadanie interpolacji Niech oznacza funkcjê zmiennej x zale n¹ od n + 1 parametrów tj. Definicja 3.1. Zadanie interpolacji polega na okreœleniu parametrów tak, eby dla n +

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Metody numeryczne rozwiązywania równań różniczkowych

Metody numeryczne rozwiązywania równań różniczkowych Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)

Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy

Bardziej szczegółowo

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 1 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Informacje wstępne Wykład 2h Laboratorium

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

Krzywe Freya i Wielkie Twierdzenie Fermata

Krzywe Freya i Wielkie Twierdzenie Fermata Krzywe Freya i Wielkie Twierdzenie Fermata Michał Krzemiński 29 listopad 2006 Naukowe Koło Matematyki Politechnika Gdańska 1 1 Krzywe algebraiczne Definicja 1.1 Krzywą algebraiczną C nad ciałem K nazywamy

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 6 Własności wielomianów ortogonalnych Wszystkie znane rodziny wielomianów ortogonalnych dzielą pewne wspólne cechy: 1) definicja za pomocą wzoru różniczkowego, jawnej sumy lub funkcji tworzącej;

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Interpolacja i aproksymacja, pojęcie modelu regresji

Interpolacja i aproksymacja, pojęcie modelu regresji 27 styczeń 2009 SciLab w obliczeniach numerycznych - część 3 Slajd 1 Interpolacja i aproksymacja, pojęcie modelu regresji 27 styczeń 2009 SciLab w obliczeniach numerycznych - część 3 Slajd 2 Plan zajęć

Bardziej szczegółowo

Elementy matematyki, wykład 5. Pochodna funkcji. Daniel Wójcik Szymon Łęski.

Elementy matematyki, wykład 5. Pochodna funkcji. Daniel Wójcik Szymon Łęski. Elementy matematyki, wykład 5 Pochodna funkcji Daniel Wójcik Szymon Łęski d.wojcik@nencki.gov.pl s.leski@nencki.gov.pl http://www.neuroinf.pl/members/szleski/swps/ http://www.neuroinf.pl/members/danek/homepage/swps/matematyka_wyklad_html/

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

1 Całki funkcji wymiernych

1 Całki funkcji wymiernych Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...

Bardziej szczegółowo

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji Kongruencje Wykład 3 Kongruencje algebraiczne Kongruencje jak już podkreślaliśmy mają własności analogiczne do równań algebraicznych. Zajmijmy się więc problemem znajdowania pierwiastka równania algebraicznego

Bardziej szczegółowo

11. Pochodna funkcji

11. Pochodna funkcji 11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,

Bardziej szczegółowo

Pochodne wyższych rzędów definicja i przykłady

Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta

Bardziej szczegółowo

Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP

Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI JJ, IMiF UTP 05 MINIMUM LOKALNE y y = f () f ( 0 ) 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0. MINIMUM LOKALNE y y

Bardziej szczegółowo

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie.

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie. Wniosek 1 Rozpatrzmy układ równań postaci: y 1 = a 11 (x)y 1 + + a 1n (x)y n y 2 = a 21 (x)y 1 + + a 2n (x)y n y n = a n1 (x)y 1 + + a nn (x)y n (1) o współczynnikach ciągłych w przedziale J 1 Rozwiązanie

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz

Bardziej szczegółowo