Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
|
|
- Sylwia Wierzbicka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko
2 Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć rozwiązania równania nieliniowego w sposób dokładny. Istotnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, które mają postać: f (x) = 0 lub g(x) = h(x). (1) Rozwiązaniem (pierwiastkiem równania, miejscem zerowym) nazywamy każdą liczbę x = x, która spełnia równanie (1). Równanie nieliniowe charakteryzuje się tym, że może nie mieć żadnego rozwiązania lub też może mieć wiele rozwiązań. Nie można sformułować ogólnych reguł prowadzących do wyznaczenia jakiegokolwiek pierwiastka. Przykładem równań nieliniowych mogą być równania algebraiczne (wielomiany) lub równania przestępne (funkcje trygonometryczne).
3 Warunki numerycznego rozwiązywania równań nieliniowych Do obliczeń numerycznych można przystąpić dopiero wtedy gdy wiemy, że poszukiwane rozwiązanie istnieje. Przy omawianiu algorytmów obliczania rozwiązań równań nieliniowych zakładamy, że równanie ma tylko pierwiastki odosobnione, tj. dla każdego pierwiastka równania istnieje otoczenie [a, b], które nie zawiera innych pierwiastków tego równania. Takie otoczenie [a, b] będzie nazywane przedziałem izolacji.
4 Warunki numerycznego rozwiązywania równań nieliniowych Równania nieliniowe (przy pomocy komputera) rozwiązywać będziemy metodami iteracyjnymi, które wymagają: 1 dokonania właściwego wyboru punktu startowego, 2 wybrania odpowiedniego algorytmu iteracyjnego zapewniającego zbieżność procesu obliczeniowego, 3 określenia kryterium stopu wynikającego z wymaganej dokładności obliczeń. Punkt startowy musi być położony dostatecznie blisko poszukiwanego rozwiązania i znajdować się w przedziale izolacji tego pierwiastka. Zakładamy, że poszukiwany pierwiastek istnieje, i że znany jest jego przedział izolacji.
5 Etapy numerycznego rozwiązywania równań nieliniowych Obliczanie przybliżone pierwiastków odosobnionych, rzeczywistych równania f (x) = 0 dzieli się na dwa etapy: 1 ustalenie możliwie małych przedziałów [a, b], tzw. przedziałów izolacji, które zawierają jeden i tylko jeden pierwiastek; 2 uściślenie pierwiastków przybliżonych, tj. określenie tych pierwiastków z żądaną dokładnością. Każdy algorytm iteracyjnego obliczania pierwiastka generuje pewien ciąg punktów x (k), k = 1, 2,..., charakteryzujący się tym, że odległości kolejnych punktów tego ciągu maleją, tzn. ɛ k = x (k+1) x (k) k 0, (2) O metodzie iteracyjnej mówimy, że jest szybkozbieżna i wtedy, gdy odległości ɛ k kolejnych punktów szybko maleją. W przeciwnym razie mówimy, że metoda jest wolnozbieżną.
6 Kryterium stopu procesu iteracyjnego Proces iteracyjny nie może trwać w nieskończoność, dlatego należy sformułować warunek stopu, który powinien polegać na spełnieniu dwóch nierówności ɛ k < ɛ x oraz f (x) (k) < ɛ f. (3) gdzie: ɛ x, ɛ f są małymi liczbami określającymi dokładność obliczeń. Ograniczymy się równań o jednej zmiennej niezależnej x.
7 Metoda połowienia (bisekcji) Metoda bisekcji jest najprostszą ze wszystkich możliwych metod i jest bardzo wolno zbieżna. Dane jest równanie f (x) = 0, przy czym funkcja f (x) jest ciągła w przedziale domkniętym < a, b > oraz zachodzi nierówność: f (a) f (b) < 0.
8 Metoda połowienia (bisekcji) Metoda bisekcji jest najprostszą ze wszystkich możliwych metod i jest bardzo wolno zbieżna. Dane jest równanie f (x) = 0, przy czym funkcja f (x) jest ciągła w przedziale domkniętym < a, b > oraz zachodzi nierówność: f (a) f (b) < 0.
9 Metoda połowienia (bisekcji) Metoda bisekcji jest najprostszą ze wszystkich możliwych metod i jest bardzo wolno zbieżna. Dane jest równanie f (x) = 0, przy czym funkcja f (x) jest ciągła w przedziale domkniętym < a, b > oraz zachodzi nierówność: f (a) f (b) < 0.
10 Metoda połowienia (bisekcji) Metoda bisekcji jest najprostszą ze wszystkich możliwych metod i jest bardzo wolno zbieżna. Dane jest równanie f (x) = 0, przy czym funkcja f (x) jest ciągła w przedziale domkniętym < a, b > oraz zachodzi nierówność: f (a) f (b) < 0.
11 Metoda połowienia (bisekcji) Metoda bisekcji jest najprostszą ze wszystkich możliwych metod i jest bardzo wolno zbieżna. Dane jest równanie f (x) = 0, przy czym funkcja f (x) jest ciągła w przedziale domkniętym < a, b > oraz zachodzi nierówność: f (a) f (b) < 0.
12 Metoda bisekcji przykład Przykład Znaleźć pierwiastki równania f (x) = (x 1)(x + 1) = 0 przyjmując a = 0, b = 1.5, ɛ x = ɛ f = Rozwiązanie f a = 1 f b = f x = ɛ x = ɛ f = 1.25 iter = 1 x = 0.75 f x = a = 0.75 f a = ɛ x = ɛ f = iter = 2 x = f x = b = f b = ɛ x = ɛ f = iter = 3 x = f x = a = f a = ɛ x = ɛ f = iter = 14 x = 1.0 f x = e 5 b = 1.0 f b = e 5 ɛ x = e 05 ɛ f = e 5
13 Metoda interpolacji liniowej Równanie prostej przechodzącej przez dwa punkty f b = f (b) y B y = f (x) f a = f (a) A a b x (b a)(y f (a)) = (f (b) f (a))(x a) (4)
14 Metoda interpolacji liniowej Metoda interpolacji liniowej (regula falsi) Regula linia prosta (inne znaczenie: reguła). Falsi fałszywy. Metoda bazuje na fałszywym twierdzeniu, że w pewnym przedziale funkcja zawsze jest liniowa. Metoda ta jest szybciej zbieżna od metody bisekcji, a ponadto jej zbieżność jest również gwarantowana. W interpretacji geometrycznej metoda interpolacji liniowej oznacza zastąpienie krzywej f (x) cięciwą łączącą punkty A(a, f (a)) i B(b, f (b)) x a b a = y f (a) f (b) f (a). (5) Dla y = 0 mamy x k = a f b b f a f b f a (6)
15 Metoda interpolacji liniowej Metoda interpolacji liniowej (regula falsi) x k = a f b b f a f b f a
16 Metoda interpolacji liniowej Metoda regula falsi przykład Znaleźć pierwiastki równania f (x) = (x 1)(x + 1) = 0 przyjmując a = 0, b = 1.5, ɛ x = ɛ f = 1e 4. Rozwiązanie f a = 1 f b = x 0 = 0 iter = 1 x = f x = ɛ x = ɛ f = a = f a = x 0 = iter = 2 x = f x = ɛ x = ɛ f = a = f a = x 0 = iter = 3 x = f x = ɛ x = ɛ f = a = f a = x 0 = iter = 8 x = f x = e 5 ɛ x = e 05 ɛ f = e 5
17 Metoda siecznych W tej metodzie generowanie ciągu kolejnych przybliżeń wartości poszukiwanego pierwiastka odbywa się także za pomocą interpolacji liniowej. Stosowana strategia interpolacji liniowej polega jednak na tym, że jest ona budowana na podstawie znanych wartości dwóch ostatnio obliczonych rzędnych funkcji f (x).
18 Metoda siecznych W tej metodzie, x (k+1) wyznacza się jako odciętą punktu przecięcia siecznej przechodzącej przez punkt A(x k 1, f (x k 1 )) oraz B(x k, f (x k )) z osią x ów: x k+1 = x k f (x k ) f (x k ) f (x k 1 ) (x k x k 1 ), k = 1, 2,..., n (7)
19 Metoda siecznych Posługiwanie się taką interpolacją może w pewnych przypadkach prowadzić do obliczenia pierwiastka x k+1 leżącego poza bieżącym przedziałem izolacji. Przykład: Znaleźć pierwiastek równania x 3 6 x x 6 = 0 dla a = 0.9, b = 1.9. Uwaga! Jak widać znaleziony został pierwiastek x = 2.0 leżący poza przyjętym przedziałem izolacji.
20 Metoda stycznych (Newtona-Raphsona) Pochodna funkcji Analizujemy funkcję f zmiennej x w otoczeniu punktu x 0. Definiujemy iloraz (różnicowy) funkcji f w punkcie x 0 dla przyrostu x: f (x 0 + x) f (x 0 ) x Pochodna funkcji y = f (x) w punkcie x 0 jest to granica, do której dąży iloraz, gdy x dąży do 0, o ile taka granica istnieje: f f (x 0 + x) f (x 0 ) (x 0 ) = lim x 0 x (8) Obliczanie pochodnej f (x) to różniczkowanie funkcji f (x). Pochodna istnieje, jeśli: funkcja f (x) jest ciągła, istnieje granica określona w (8) funkcja f (x) jest różniczkowalna.
21 Metoda stycznych (Newtona-Raphsona) Pochodna funkcji Interpretacja geometryczna y f (x) y 0 + y y 0 A(x 0, y 0 ) x y f (x 0 ) = tg(α) α - kąt nachylenia stycznej α x 0 x 0 + x x
22 Metoda stycznych (Newtona-Raphsona) Metoda stycznych (Newtona-Raphsona) Podstawę metody stanowi interpolacja funkcji f (x) za pomocą stycznej prowadzonej w punkcie B(x 0, f 0 ). Kolejne przybliżenia poszukiwanego pierwiastka są odciętymi punktu przecięcia stycznej z osią x: x k+1 = x k f (x k) f (x k ). (9)
23 Metoda stycznych (Newtona-Raphsona) Metoda stycznych przyjęcie punktu startowego Jest to metoda najszybciej zbieżna o zbieżności kwadratowej. Oznacza to, że przy spełnionych założeniach jej błąd maleje kwadratowo wraz z liczbą iteracji. Wadą metody jest fakt, że zbieżność nie zawsze musi zachodzić. W wielu przypadkach metoda bywa rozbieżna przeważnie wtedy gdy punkt startowy jest zbyt daleko od szukanego pierwiastka równania. Jeżeli zachodzą cztery warunki: 1 funkcje f (x) jest określona i ciągła w przedziale < x < + ; 2 f (a)f (b) < 0; 3 f (x) 0 dla a x b; 4 f (x) istnieje w przedziale (, + ) i nie zmienia znaku; to przy zastosowaniu metody Newtona za początkowe przybliżenie x 0 można przyjąć dowolną wartość c < a, b >.
24 Metoda stycznych (Newtona-Raphsona) Metoda stycznych przykład Znaleźć pierwiastki równania f(x)= (x-1)(x+1)=0 przyjmując a = 0, b = 1.5, ɛ X = ɛ F = 1e 4. Rozwiązanie f a = 1 f b = x 0 = 1.5 iter = 1 x 1 = , ɛ x = , ɛ f = iter = 2 x 1 = , ɛ x = , ɛ f = iter = 3 x 1 = , ɛ x = , ɛ f = e 5 iter = 4 x 1 = , ɛ x = e 06, ɛ f = e 11
25 Metoda stycznych (Newtona-Raphsona) Zmodyfikowana metoda Newtona Jeżeli pochodna f (x) zmienia się w przedziale domkniętym < a, b > nieznacznie to we wzorze można przyjąć x k+1 = x k f (x k) f, k = 0, 1, 2,, n (x k ) f (x k ) f (x 0 ). Zatem kolejne przybliżenia pierwiastka x równania f (x) = 0 można obliczyć ze wzoru x k+1 = x k f (x k) f, k = 0, 1, 2,, n (10) (x 0 )
26 Metoda stycznych (Newtona-Raphsona) Zmodyfikowana metoda Newtona x k+1 = x k f (x k) f, k = 0, 1,..., n (x 0 ) W interpretacji geometrycznej metoda ta oznacza zamianę stycznych w punktach B k (x k, f (x k )) prostymi, równoległymi do stycznej, przeprowadzonej przez punkt B 0 (x 0, f (x 0 )).
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
Metody numeryczne Wykład 7
Metody numeryczne Wykład 7 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Plan wykładu Rozwiązywanie równań algebraicznych
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska
METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą prof. dr hab.inż. Katarzyna Zakrzewska Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
Metody rozwiązywania równań nieliniowych
Metody rozwiązywania równań nieliniowych Rozwiązywanie równań nieliniowych Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci f ( x)=0, x R, (1) gdzie f jest wystarczająco regularną funkcją.
Elementy metod numerycznych
Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego
Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych
Wykład trzeci 1 Wybrane metody przybliżonego wyznaczania rozwiązań pierwiastków równań nieliniowych 2 Metody rozwiązywania równań nieliniowych = 0 jest unkcją rzeczywistą zmiennej rzeczywistej Rozwiązanie
Iteracyjne rozwiązywanie równań
Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie
METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą
METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą
Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych
Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera
Metody numeryczne. materiały do wykładu dla studentów
Metody numeryczne materiały do wykładu dla studentów 5. Przybliżone metody rozwiązywania równań 5.1 Lokalizacja pierwiastków 5.2 Metoda bisekcji 5.3 Metoda iteracji 5.4 Metoda stycznych (Newtona) 5.5 Metoda
Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych.
Ćwiczenia nr 2 metody połowienia, regula falsi i siecznych. Sformułowanie zagadnienia Niech będzie dane równanie postaci f (x) = 0, gdzie f jest pewną funkcją nieliniową (jeżeli f jest liniowa to zagadnienie
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:
Zagadnienia - równania nieliniowe
Zagadnienia - równania nieliniowe Sformułowanie zadania poszukiwania pierwiastków. Przedział izolacji. Twierdzenia o istnieniu pierwiastków. Warunki zatrzymywania algorytmów. Metoda połowienia: założenia,
RÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c
Metody numeryczne. Równania nieliniowe. Janusz Szwabiński.
Metody numeryczne Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-9.tex Metody numeryczne Janusz Szwabiński 7/1/2003 20:18 p.1/64 Równania nieliniowe 1. Równania nieliniowe z pojedynczym
Kubatury Gaussa (całka podwójna po trójkącie)
Kubatury Gaussa (całka podwójna po trójkącie) Całka podwójna po trójkącie Dana jest funkcja dwóch zmiennych f (x, y) ciągła i ograniczona w obszarze trójkątnym D. Wierzchołki trójkąta wyznaczają punkty
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Wyznaczanie miejsc zerowych funkcji
Wyznaczanie miejsc zerowych funkcji Piotr Modliński 6 października 010 Spis treści 1 Wstęp 1 Metody iteracyjne 1.1 Zbieżność metody............ Lokalizacja zer.............3 Metody odnajdywania zer.......3.1
Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych
Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Numeryczne
Metody Numeryczne. Wojciech Szewczuk
Metody Numeryczne Równania nieliniowe Równania nieliniowe W tych równaniach jedna lub więcej zmiennych występuje nieliniowo, np równanie Keplera x a sin x = b. Zajmiemy się teraz lokalizacją pierwiastków
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Metody Obliczeniowe w Nauce i Technice
7. Równania nieliniowe (non-linear equations) Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Dawid Prokopek
Wyznaczanie miejsc zerowych funkcji
Wyznaczanie miejsc zerowych funkcji Piotr Modliński 31 października 010 Spis treści 1 Wstęp 1 Metody iteracyjne 1.1 Zbieżność metody............ Lokalizacja zer.............3 Metody odnajdywania zer.......3.1
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku
Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody poszukiwania ekstremum funkcji jednej zmiennej Materiały pomocnicze do ćwiczeń
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH.
INFORMATYKA ELEMENTY METOD NUMERYCZNYCH http://www.infoceram.agh.edu.pl METODY NUMERYCZNE Metody numeryczne zbiór metod rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku
Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (
Wykład 5. Zagadnienia omawiane na wykładzie w dniu r
Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.
Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)
Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski
Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Elektrotechnika stacjonarne-dzienne pierwszego stopnia
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego
Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
Optymalizacja ciągła
Optymalizacja ciągła 1. Optymalizacja funkcji jednej zmiennej Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 54 Plan wykładu Optymalizacja funkcji jednej
Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.
Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika
Matematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
INTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1
Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy
Metody Numeryczne Optymalizacja. Wojciech Szewczuk
Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy. Wykład 5. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy Wykład 5 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Algorytm Euklidesa Liczby pierwsze i złożone Metody
Bardzo łatwa lista powtórkowa
Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Reprezentacja
Pochodna funkcji. Niech f : A R, a A i załóżmy, że istnieje α > 0 taka, że
Niec f : A R, a A i załóżmy, że istnieje α > 0 taka, że (a α, a + α) A. Niec f : A R, a A i załóżmy, że istnieje α > 0 taka, że (a α, a + α) A. Definicja Ilorazem różnicowym funkcji f w punkcie a nazywamy
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
Analiza numeryczna kolokwium2a-15grudnia2005
kolokwium2a-15grudnia2005 1.Niechf(x)=a n x n +a n 1 x n 1 +...+a 0.Jakąwartośćprzyjmujeilorazróżnicowy f[x 0,...,x n ]dladowolnychn+1paramiróżnychwęzłówx j?odpowiedźuzasadnić. 2. Pokazać, że zamiana zmiennych
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6
Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna
Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora
Granice funkcji-pojęcie pochodnej
Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego
Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:
Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
KADD Minimalizacja funkcji
Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Metody numeryczne rozwiązywania równań różniczkowych
Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,
Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur.
Języki i paradygmaty programowania 1 studia stacjonarne 2018/19 Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur. 1. Identyfikator funkcji,
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą
Rachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
Rachunek Różniczkowy
Rachunek Różniczkowy Sąsiedztwo punktu Liczby rzeczywiste będziemy teraz nazywać również punktami. Dla ustalonego punktu x 0 i promienia r > 0 zbiór S(x 0, r) = (x 0 r, x 0 ) (x 0, x 0 + r) nazywamy sąsiedztwem
11. Pochodna funkcji
11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,
Funkcje wielu zmiennych
Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.
Analiza matematyczna i algebra liniowa Pochodna funkcji
Analiza matematyczna i algebra liniowa Pochodna funkcji Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Optymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
8. PODSTAWY ANALIZY NIELINIOWEJ
8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:
Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014
I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki
Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu
Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12 P.
Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A
Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź
Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji)
Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Od roku 2010 matematyka będzie obowiązkowo zdawana przez wszystkich maturzystów. W ślad za tą decyzją podjęto prace nad
Granica funkcji wykład 4
Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie
Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna
Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym
WYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
II. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
22 Pochodna funkcji definicja
22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica
KLASA II LO Poziom rozszerzony (wrzesień styczeń)
KLASA II LO Poziom rozszerzony (wrzesień styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY: 1) na podstawie wykresu funkcji y = f(x) szkicuje wykresy funkcji y = f(x), y = c f(x), y =
Całkowanie numeryczne przy użyciu kwadratur
Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Metody numeryczne. Sformułowanie zagadnienia interpolacji
Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej
Standardy wymagań maturalnych z matematyki - matura
Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania