Aproksymacja. j<k. L 2 p[a, b] l 2 p,n X = Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza przestrzeni liniowej Π n. Dowód.
|
|
- Marian Górski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Metody numeryczne Paweł Zieliński p. 1/19 Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza bazę przestrzeni liniowej Π n. Dowód. Lemat 2. Dowolny wielomian Q j stopnia j niższego od k jest prostopadły do k-tego wielomianu ortogonalnego P k ; (Q j,p k )=0dla j<k. Dowód. Lemat 3. Ciag wielomianów ortogonalnych w przestrzeni X = { L 2 p[a, b] l 2 p,n jest określony jednoznacznie z dokładnościado czynników stałych, tj. jeśli {P k } i {Q k } s to P k = α k Q k, α k = const, k =0, 1,... Dowód. aci agami ortogonalnymi w X,
2 Metody numeryczne Paweł Zieliński p. 2/19 Twierdzenie 1. Ciag wielomianów ortogonalnych {P k } w przestrzeni X = L 2 p[a, b] lub X = lp,n 2 spełnia zależność rekurencyjn a P k (x) = (α k x + β k )P k 1 (x)+γ k P k 2 (x) k =1, 2,... P 1 (x) = 0, P 0 (x) =a 0, gdzie α k = a k a k 1 0, β k,γ k 0, γ 1 jest nieistotna, ponieważ P 1 (x) =0, a k s a współczynnikami wielomianu P k przy x k, P k (x) =a k x k +, β k = α k(xp k 1,P k 1 ) (P k 1,P k 1 ), γ k = α k(p k 1,P k 1 ) α k 1 (P k 2,P k 2 ) Dla wielomianów ortogonalnych na zbiorze dyskretnym {x 1,x 2,...,x N } (w przestrzeni lp,n 2 spełniona tylko dla k N 1. Dowód. ) zależność rekurencyjna jest
3 Metody numeryczne Paweł Zieliński p. 3/19 Twierdzenie 1 umożliwia konstrukcję wielomianów ortogonalnych o zadanych współczynnikach a k, k =0, 1,...,n.Możemy również ustalić, że a k =1, k =0, 1,...,n. Wówczas α k =1, P 0 (x) =1i β k = (xp k 1,P k 1 ) (P k 1,P k 1 ), γ k = (P k 1,P k 1 ) (P k 2,P k 2 ), Wielomiany Czebyszewa T k (x) =cos(karc cos x), k =0, 1,..., tworzaukład ortogonalny w przestrzeni L 2 p[ 1, 1] z funkcja wagowa p(x) = 1 i spełniaj 1 x a zależność rekurencyjn a 2 { T 0 (x) =1 T 1 (x) =x T k (x) =2xT k 1 (x) T k 2 (x) (k 2)
4 Metody numeryczne Paweł Zieliński p. 4/19 Zadanie aproksymacji średniokwadratowej wielomianami Dla danej f L 2 p[a, b] (lp,n 2 ), szukamy elementu optymalnego dla f względem podprzestrzeni Π n, tj. wielomianu w f Π n, dla którego zachodzi równość f w f 2 = inf f w 2 = E n (f). w Π n w f nazywamy n-tym wielomianem optymalnym dla f, a E n (f) nazywamy n-tym błędem optymalnym.
5 Metody numeryczne Paweł Zieliński p. 5/19 Twierdzenie 2. Jeśli {P k } jest ciagiem wielomianów ortogonalnych w X = L 2 p[a, b] lub X = lp,n 2 i zawiera co najmniej wielomiany P 0,P 1,...,P n,ton-ty wielomian optymalny w f określony jest jednoznacznie i wyraża się wzorem w f = n k=0 (f,p k ) (P k,p k ) P k, a n-ty bład optymalny jest równy ( E n (f) = f 2 2 n k=0 ) 1/2 (f,p k ) 2 (P k,p k )
6 Metody numeryczne Paweł Zieliński p. 6/19 Z rysunku poniżej wynika, że w f jest elementem optymalnym dla f wtedy i tylko wtedy, gdy f w f (f w f = r) jest prostopadły doπ n (r Π n ). f f w f = r w f Π n
7 Metody numeryczne Paweł Zieliński p. 7/19 Wielomiany ortogonalne P 0,P1,...,P n sa baza Π n na mocy lematu 1. Stad n-ty wielomian optymalny dla f można przedstawić n w f = c i P i. i=0 w f jest optymalny, gdy r Π n, co jest równoważne r P j, j =0,...,n. (f w f,p j ) = 0, j =0,...,n (w f,p j ) = (f,p j ), j =0,...,n n ( c i P i,p j ) = (f,p j ), j =0,...,n i=0 Otrzymujemy układ n +1równań on +1niewiadomych c i.
8 Metody numeryczne Paweł Zieliński p. 8/19 c 0 (P 0,P 0 )+c 1 (P 1,P 0 )+ + c n (P n,p 0 ) = (f,p 0 ) c 0 (P 0,P 1 )+c 1 (P 1,P 1 )+ + c n (P n,p 1 ) = (f,p 1 )... c 0 (P 0,P n )+c 1 (P 1,P n )+ + c n (P n,p n ) = (f,p n ) Powyższy układ nazywamy układem równań normalnych. (P i,p j )=0dla i j, (P i,p j ) 0dla i = j. Zukładu wyznaczamy c i = (f,p i), i =0, 1,...,ni wielomian (P i,p i ) w f = n (f,p i ) i=0 (P i,p i ) P i. Z faktu, że w przestrzeniach unitarnych zachodzi twierdzenie Pitagorasa mamy f 2 2 = w f f w f 2 2 f w f 2 = ( f 2 2 w f 2 2) 1/2 = ( f 2 2 n k=0 ) 1/2 (f,p k ) 2 (P k,p k )
9 Metody numeryczne Paweł Zieliński p. 9/19 Wyznaczanie n-tego wielomianu optymalnego krok 1. Wyznaczyć wielomiany ortogonalne P 0,...,P n np. ze zwiazku rekurencyjnego lub wykorzystać znane wielomiany ortogonalne. krok 2. Obliczyć współczynniki c k = (f,p k) (P k,p k ), k =0, 1,...,n Cała informacja o wielomianach ortogonalnych powinna wyrażać się współczynnikami zwiazku rekurencyjnego, α k, β k, γ k. Nie powinno się wyznaczać postaci naturalnej n-tego wielomianu optymalnego w f bez potrzeby n w f (x) = c k P k (x) =a n x n + a n 1 x n a a x + a 0. k=0
10 Metody numeryczne Paweł Zieliński p. 10/19 Wartość n-tego wielomianu optymalnego w f n w f (x) = c k P k (x) k=0 w punkcie liczymy za pomoca algorytmu Clenshow a wykorzystujacego fakt, że wielomiany ortogonalne spełniaja zwiazek rekurencyjny: Y n+1 := Y n+2 := 0 Y k := c k +(α k+1 x β k+1 )Y k+1 γ k+2 Y k+2, k = n, n 1,...,0 w f (x) =a 0 Y 0
11 w przestrzeniach unitarnych ogólne podejście Dla danej f X, X jest przestrzenia unitarna, szukamy elementu optymalnego dla f względem podprzestrzeni Y X, tj. g f Y, dla którego zachodzi równość f g f 2 =inf f g. g Y Niech układ, niekoniecznie ortogonalny, f 0,f 1,...,f n będzie baza Y. Wówczas szukany element g f możemy przedstawić: g f = n i=0 c if i. Podobnie jak dla przestrzeni Π n, g f jest optymalny, gdy f g f Y, co jest równoważne f g f f j, j =0,...,n. n ( c i f i,f j )=(f,f j ), j =0,...,n i=0 Metody numeryczne Paweł Zieliński p. 11/19
12 Metody numeryczne Paweł Zieliński p. 12/19 Otrzymujemy układ równań normalnych o n +1 niewiadomych c i. c 0 (f 0,f 0 )+c 1 (f 1,f 0 )+ + c n (f n,f 0 ) = (f,f 0 ) c 0 (f 0,f 1 )+c 1 (f 1,f 1 )+ + c n (f n,f 1 ) = (f,f 1 )... c 0 (f 0,f n )+c 1 (f 1,f n )+ + c n (f n,f n ) = (f,f n ) Macierz n +1 n +1powyższego układu nazywamy macierza Grama.
13 Metody numeryczne Paweł Zieliński p. 13/19 Przykład 1 (Układ równań normalnych źle uwarunkowany). Niech X = L 2 p [0, 1], p(x) =1, Y =Π n. Iloczyn skalarny w tej przestrzeni jest postaci (f,g) = 1 0 f(x)g(x)dx. Szukamy n-tego wielomianu optymalnego dla f względem Π n. Jako bazę Π n bierzemy f 0 =1,f 1 = x, f 2 = x 2,...,f n = x n. Wyznaczamy elementy macierzy Grama (f i,f j )=(x i,x j )= 1 0 x i x j dx == 1, i, j=0, 1,...,n. i+j+1 Macierz układu jest zatem macierza Hilberta.
14 Metody numeryczne Paweł Zieliński p. 14/19 Dowód Lematu 1 Dowód wynika bezpośrednio z faktu, że dla dowolnego układu f 1,f 2,...,f n liniowo niezależnych elementów przestrzeni unitarnej istnieje układ ortogonalny g 1,g 2,...,g n taki, że każdy z elementów g i, i =1,...,n, jest kombinacja liniowa f 1,...,f i.układ ortogonalny konstruujemy metoda ortogonalizacji Grama-Schmidta.
15 Metody numeryczne Paweł Zieliński p. 15/19 Dowód Lematu 2 Przedstawmy wielomian Q j jako kombinację liniowa wielomianów ortogonalnych (z lematu 1 wynika, że P 0,...,P j sa baza Π j ). Q j = jx α i P i. i=0 Biorac iloczyn skalarny obu stron z wielomianem P k, otrzymujemy (Q j,p k )= jx α i (P i,p k )=0, i=0 ponieważ (P i,p k )=0dla i<k.
16 Metody numeryczne Paweł Zieliński p. 16/19 Dowód Lematu 3 Niech P 0,P 1,...,P n i Q 0,Q 1,...,Q n będaróżnymi ciagami ortogonalnymi. Z lematu 1 wynika, że wielomian P k możemy przedstawić jako kombinację liniowa wielomianów Q 0,...,Q k P k = kx α j Q j. j=0 Biorac iloczyn skalarny obu stron powyższego równania z wielomianem Q l, l<k, stosujac lemat 2 i korzystajac z faktu, że ciag {Q i } jest ortogonalny otrzymujemy 0=(Q l,p k )= kx α l (Q l,q j )=α l (Q l,q l ). j=0 Zdefinicji (Q l,q l ) 0.St adizpowyższego równania otrzymujemy α l =0dla l<k. Zatem P k = kx α l Q l = α k Q k. l=0
17 Metody numeryczne Paweł Zieliński p. 17/19 Dowód Twierdzenia 1 a k a k 1. P k jest wielomianem dokładnie k-tego stopnia, czyli a k 0. Przyjmijmy α k = Wówczas wielomian P k α k xp k 1 jest k 1-go stopnia. Przedstawmy ten wielomian w postaci kombinacji liniowej wielomianów ortogonalnych (zob. lemat 1) k 1 X P k α k xp k 1 = b i P i. Iloczyn skalarny (P k α k xp k 1,P j )=0dla j<k 2. Możemy go zapisać (P k α k xp k 1,P j )=(P k,p j ) α k (xp k 1,P j ) i=0 (P k,p j )=0z ortogonalności układu. Ponieważ w przestrzeniach L 2 p[a, b] i l 2 p,n spełniona jest równość (xp k 1,P j )=(P k 1,xP j ) (zob. postać iloczynów skalarnych). Z lematu 2 natychmiast dostajemy (P k 1,xP j )=0,co daje (xp k 1,P j )=0. Zatem 0=(P k α k xp k 1,P j )= k 1 X i=0 b i (P i,,p j )=b j (P j,p j ). Zdefinicji (P j,p j ) 0.St adipowyższego równania otrzymujemy b j =0dla j<k 2.
18 Metody numeryczne Paweł Zieliński p. 18/19 Tak więc P k = α k xp k 1 + b k 1 P k 1 + b k 2 P k 2 = α k xp k 1 + β k P k 1 + γ k P k 2, gdzie β k = b k 1, γ k = b k 2. Stosujac iloczyn skalarny z P k 1 do powyższej równości otrzymujemy 0=(P k,p k 1 )=α k (xp k 1,P k 1 )+β k (P k 1,P k 1 ) Wyznaczamy β k = α k(xp k 1,P k 1 ). (P k 1,P k 1 ) Podobnie wyznaczamy γ k biorac iloczyn skalarny z P k 2 γ k = α k(xp k 1,P k 2 ) (P k 2,P k 2 ) = (P k 1,P k 1 ) (P k 2,P k 2 ). (P k 1,P k 1 )=α k 1 (xp k 2,P k 1 ),a(xp k 2,P k 1 )=(P k 2,xP k 1 ).
19 Metody numeryczne Paweł Zieliński p. 19/19 Dla wielomianów ortogonalnych na zbiorze dyskretnym {x 1,x 2,...,x N } zależność rekurencyjna jest spełniona tylko dla k N 1. Następuj acy wielomian a N (x x 1 )(x x 2 ) (x x N ) zeruje się wx k ze zbioru. Czyli jest on ortogonalny do wszystkich wielomianów ortogonalnych P j niższego stopnia. Z lematu 3 wynika, że ciag wielomianów ortogonalnych jest określony jednoznacznie z dokładnościa do czynników stałych, więc N-ty wielomian ortogonalny musi być postaci a N (x x 1 )(x x 2 ) (x x N ). Zatem (P N,P N )=0,co dowodzi, że P N jest zerowym elementem lp,n 2.Więc nie może być elementem układu ortogonalnego.
Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
Zaawansowane metody numeryczne
Wykład 6 Własności wielomianów ortogonalnych Wszystkie znane rodziny wielomianów ortogonalnych dzielą pewne wspólne cechy: 1) definicja za pomocą wzoru różniczkowego, jawnej sumy lub funkcji tworzącej;
Obliczenia naukowe Wykład nr 6
Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza
Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1
Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Definicja 1 (Iloczyn skalarny). Niech V będzie rzeczywistą przestrzenią liniową. Iloczynem skalarnym w przestrzeni V nazywamy funkcję
Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.
Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa
Metody Obliczeniowe w Nauce i Technice
5. Aproksymacja Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Paweł Urban Jakub Ptak Łukasz Janeczko
Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :
Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem
2.7 Przestrzenie unormowane skończenie wymiarowe
2.7 Przestrzenie unormowane skończenie wymiarowe Rozważamy teraz przestrzenie unormowane X skończenie wymiarowe. Załóżmy, że dimx = m. Niech dalej e,e 2,...,e m będzie bazą algebraiczną tej przestrzeni
Obliczenia naukowe Wykład nr 2
Obliczenia naukowe Wykład nr 2 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza
Informacja o przestrzeniach Hilberta
Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba
Zadania przygotowawcze, 3 kolokwium
Zadania przygotowawcze, 3 kolokwium Mirosław Sobolewski 8 grudnia. Niech φ t : R 3 R 3 bedzie endomorfizmem określonym wzorem φ t ((x, x, )) (x +, tx + x, x + ), gdzie parametr t R. a) Zbadać dla jakiej
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący
Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
INTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
Geometria Lista 0 Zadanie 1
Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio
Rozwiazywanie układów równań liniowych. Ax = b
Rozwiazywanie układów równań liniowych Ax = b 1 PLAN REFERATU: Warunki istnienia rozwiazań układu Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów - algorytm rekurencyjny Rozwiazanie układu
3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która
3. Interpolacja Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która przyjmuje wartości y 1, y 2,, y n, dla skończonego zbioru argumentów x 1, x
Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013
Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy
VI. Równania różniczkowe liniowe wyższych rzędów
VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych
Obliczenia naukowe Wykład nr 8
Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,
1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler
GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy
n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa
Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym
Metody numeryczne. Sformułowanie zagadnienia interpolacji
Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Aproksymacja cz. II, wielomiany ortogonalne zastosowania PWSZ Gªogów, 2009 Iloczyn skalarny Funkcja okre±lona na przestrzeni liniowej (, ) R iloczyn skalarny wektorów
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa
Sformułowanie zadania interpolacji Metody Numeryczne Wykład 4 Wykład 5 Interpolacja wielomianowa Niech D R i niech F bȩdzie pewnym zbiorem funkcji f : D R. Niech x 0, x 1,..., x n bȩdzie ustalonym zbiorem
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa,listopad
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, grudzień 2011 Mirosław Sobolewski (UW) Warszawa, grudzień
Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Wyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s.
Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2016/2017) 1 Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe
Wykład 5. Ker(f) = {v V ; f(v) = 0}
Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Reprezentacje sygnału Jak reprezentujemy sygnał: wybieramy sygnały wzorcowe (bazę) rozwijamy sygnał w wybranej
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja QR i SVD P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy
Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych. P. F. Góra
Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Metoda gradientów sprzężonych motywacja Rozważmy funcję f : R N R f(x) = 1 2
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
Zaawansowane metody numeryczne
Wykład 7 a szeregi Fouriera (zarówno w przypadku ciągłym, jak i dyskretnym) jest szczegónym przypadkiem aproksymacji funkcjami ortogonanymi. Anaitycznie rozwiązanie zadania aproksymacji trygonometrycznej
Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0
Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto
1 Przestrzenie unitarne i przestrzenie Hilberta.
Przestrzenie unitarne i przestrzenie Hilberta.. Wykazać, że iloczyn skalarny w przestrzeni wektorowej X nad cia lem K ma nastepuj ace w lasności: (i) x, y + z = x, y + x, z, (ii) x, λy = λ x, y, (iii)
Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)
Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) 1. Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe
Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego
Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
WYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 1 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Informacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
Zadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie.
Wniosek 1 Rozpatrzmy układ równań postaci: y 1 = a 11 (x)y 1 + + a 1n (x)y n y 2 = a 21 (x)y 1 + + a 2n (x)y n y n = a n1 (x)y 1 + + a nn (x)y n (1) o współczynnikach ciągłych w przedziale J 1 Rozwiązanie
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Wyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
Zastosowania wyznaczników
Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17
Kryptografia - zastosowanie krzywych eliptycznych
Kryptografia - zastosowanie krzywych eliptycznych 24 marca 2011 Niech F będzie ciałem doskonałym (tzn. każde rozszerzenie algebraiczne ciała F jest rozdzielcze lub równoważnie, monomorfizm Frobeniusa jest
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła autokorelacji Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN autokorelacji p. 1/25 Zarys referatu Co to sa procesy
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Wielomiany. dr Tadeusz Werbiński. Teoria
Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych
Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50
Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie
Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego
Rozwiązywanie zależności rekurencyjnych metodą równania charakterystycznego WMS, 2019 1 Wstęp Niniejszy dokument ma na celu prezentację w teorii i na przykładach rozwiązywania szczególnych typów równań
1 Przestrzeń liniowa. α 1 x α k x k = 0
Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Niezb. ednik matematyczny. Niezb. ednik matematyczny
Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )
Metody Obliczeniowe w Nauce i Technice
8. Wyznaczanie pierwiastków wielomianów Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Magdalena Nowak
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;
1 Podobieństwo macierzy
GAL (Informatyka) Wykład - zagadnienie własne Wersja z dnia 6 lutego 2014 Paweł Bechler 1 Podobieństwo macierzy Definicja 1 Powiemy, że macierze A, B K n,n są podobne, jeżeli istnieje macierz nieosobliwa
Bardzo łatwa lista powtórkowa
Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin
Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011
1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy
Równania różniczkowe. Notatki z wykładu.
Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
ALGEBRA LINIOWA 2. Lista zadań 2003/2004. Opracowanie : dr Teresa Jurlewicz, dr Zbigniew Skoczylas
ALGEBRA LINIOWA 2 Lista zadań 23/24 Opracowanie : dr Teresa Jurlewicz dr Zbigniew Skoczylas Lista pierwsza Zadanie Uzasadnić z definicji że zbiór wszystkich rzeczywistych macierzy trójkątnych górnych stopnia
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Definicja Niech V, W,
Rozwiązania, seria 5.
Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba
WIELOMIANY. ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu.
IMIE I NAZWISKO WIELOMIANY SUMA PUNKTÓW: 125 ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu. ZADANIE 2 (5 PKT)
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH
ALGEBRA Z GEOMETRIĄ 1/10 BAZY PRZESTRZENI WEKTOROWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 11, 18.12.2013 Typeset by Jakub Szczepanik. Istnienie bazy Tak jak wśród wszystkich pierścieni wyróżniamy
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna
Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania
Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f: